252nd LHC Collimation Working Group joint with 195th LHC Machine Protection Panel meeting October 26th, 2020 CERN, Geneva, CH

Strategy for Crystal Collimator Interlocks and Operation in Run 3

M. Di Castro, A. Masi, S. Redaelli Many thanks to D. Wollmann for inputs

Introduction

Planned Run 3 layouts

Old and new interlocks

Conclusions

Introduction

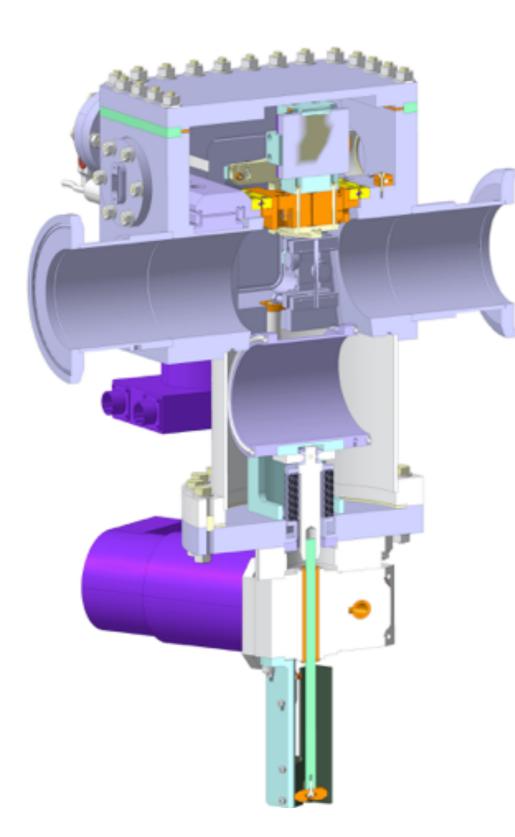
At the end of 2019, crystal collimation was added to the upgrade baseline of HL-LHC as part of the WP5 (baseline 4.0)

- Pb ion runs: risk mitigation for schedule concerns with 11 T dipoles
 - → important to have the crystal collimation operational in Run 3!
- Instrumental: Russian's in-kind contributions for mechanical parts (PNPI/IHEP)
- Crystals from production contracts with INFN and PNPI. Controls at CERN.

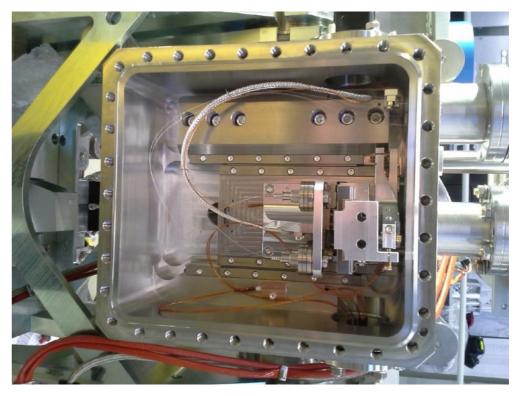
Comparison to conventional collimation: Gain in Pb ion cleaning at 6.37 Z TeV, 2018 configuration.

B1H	B1V	B2H	B2V
7.50	3.09	3.61	1.65

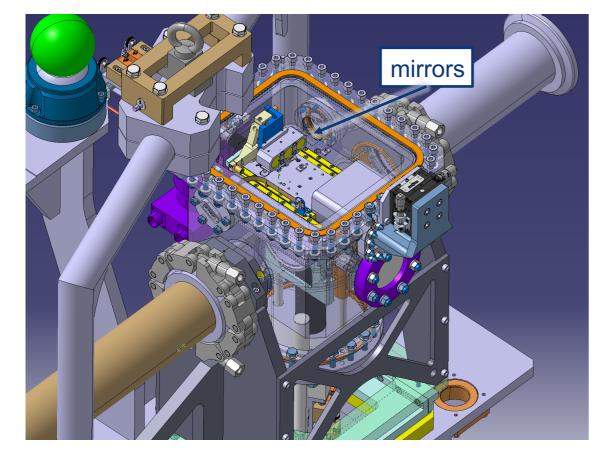
- In MDs, gained up to more than a <u>factor 50</u> at some limiting locations jr
- Successfully used in special runsi successfully used in special runsi be kepti functionality finat must be kepti Present crystal assemblies (TCPCs) are devices for tests: HW not for long-term reliable operation. Control system also needs an y

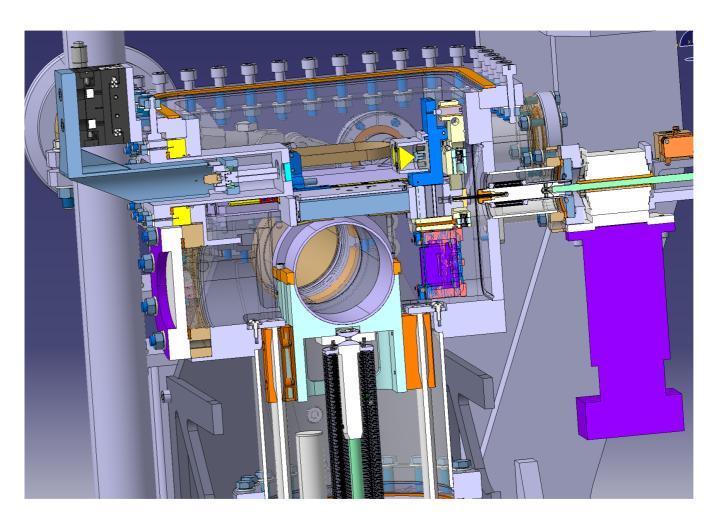

LS2 target upgrade: change all 4 T/

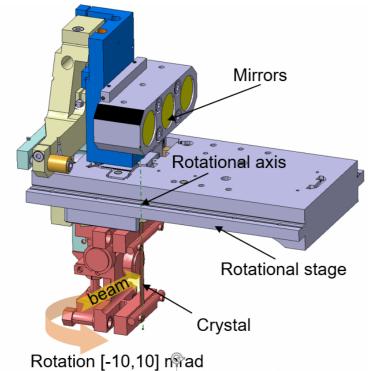
devices, for operation in the ic



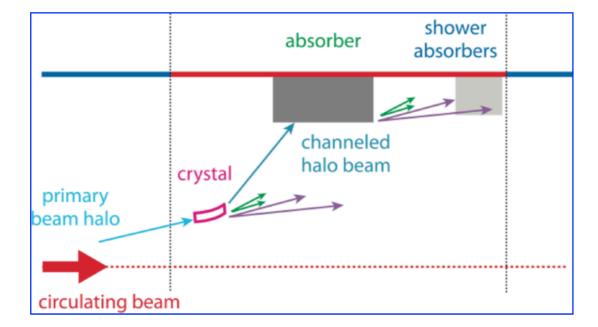
TCPC hardware

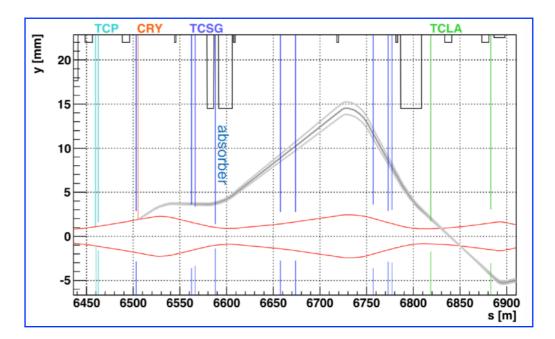

V1 used for beam 1 (2015)
Improved hardware V2 installed on B2 (2016, 2017)
Baseline for Run 3: "V3 design" See dedicated <u>130th ColUSM</u>
Basic design features same for V3: replacement chamber for highintensity proton operation. Added redundancy in angle measurements.





TCPC design version 3




From slides by I. Lamas, <u>130th ColUSM</u>

IR7 layouts

	Beam 1		Beam 2	
Name	TCPCH.A4L7	TCPCV.A6L7	TCPCH.A5R7	TCPCV.A6R7
Plane	Horizontal	Vertical	Horizontal	Vertical
<i>s</i> [m]	19918	19842	20090	20145
eta_{x} [m]	342.1	30.5	201.6	30.5
$oldsymbol{eta}_{y}$ [m]	64.9	281.1	135.0	281.1
α_x [rad]	-2.05	0.24	-3.53	0.24
$\alpha_y [{ m rad}]$	0.84	-2.63	2.36	-2.63
D_x [m]	0.03	0.15	-0.28	0.01
D_y [m]	0.10	0.12	0.22	0.32
Absorber	TCSG.B4L7	TCSG.D4L7	TCSG.B4R7	TCSG.D4R7

Updated plan (first phase): replace the existing 4 devices

Operational modes

- Proton beam operation: MDs and low intensity runs
 - OUT (replacement chamber IN) for standard operation
 - a. Discrete position limits enforcing parking positions
 - b. Injection prevented by SIS if chamber moving
 - c. Check status as part of the LHC sequencer
 - d. Beam interlock while moving
 - MD mode of operation as in Run 2
 - Dedicated runs like forward physics: to be discussed

✓ Ion beam operation: baseline usage for collimation.

- Replacement chamber OUT for all operation
- To be decided: TCPC in or out during injection?
- Part of the ramp functions and kept in channeling at 7TeV

Controls strategy

Available in Run 2, to be kept:

- Discrete position limits triggering interlocks
- Ramp functions for position / angle settings
- "Moving" status for SIS purposes.

Planned change for Run 3:

Ramp functions for linear-position limit interlocks

Comments:

- No interlock on beam angle because at top energy, RMS noise too close to critical angle: ~ 1µrad RMS vs ~ ±2µrad.
- Plan validation loss maps in amorphous configuration.
- BLM thresholds will need important adjustments in IR7.
- Improvements identified following the incident in 2018:
 - a. Need a sequence's recovery/check task in nominal sequence
 - b. Movements and checks done through sequences

Conclusions

- Crystal collimation of heavy ion beams needs to be made operational in 2022
 - Aim for 4 new crystals (challenging)
 - Backup: re-use some of the existing.
- New hardware will enable reliable operation and redundant angular measurements
- Planned controls update will enable using the TCPC in highintensity operation for ion beam.

Main focus is on the new ramp functions for linear-position interlock limits

 For the rest, we need to tighten the operational procedures and the integration in the operational sequence to make a successful operation

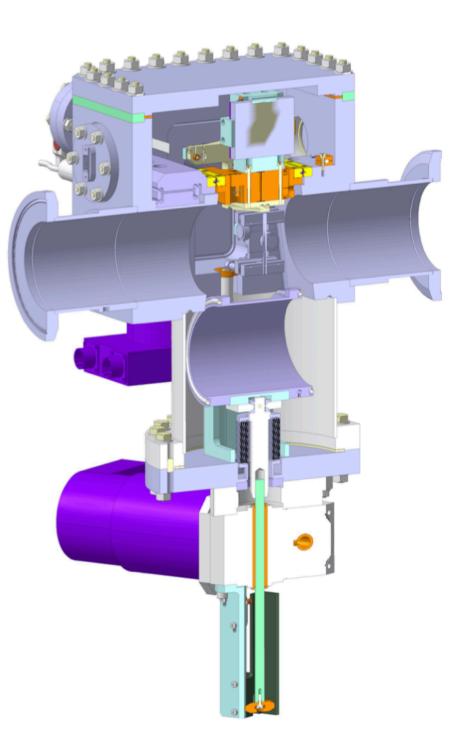
- A series of improvements was identified: to be implemented.

Reserve slides

Crystal interlocking

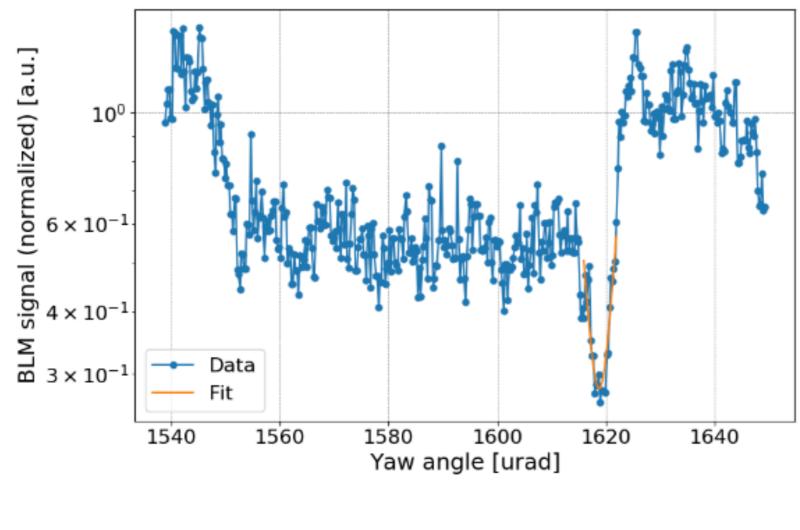
Key design feature: a replacement "O"-shape chamber moves into the beam to hide the goniometer.

- ☑ 2018 operational mode (for high intensity):
 - 1) Hardware interlock while moving OUT \leftrightarrow IN
 - 2) Software interlock prevents injection if IN


To be masked to inject with crystals seeing the beam: only in MDs and for high- β^* run.

3) Time position limits, like other collimators

Not used operationally at start of 2018, deployed to allow EoF tests with ion beams


High intensity operation in 2018 relied on 1+2.

- ✓ High-beta* run in 2018
 - Used in "MD mode" [SIS masked]
 - New specific high-beta* sequence for settings crystal positions (in and out) and angles

(a) B1H