Mini-CAS on Mechanical and Materials Engineering for Accelerators

Numerical Tools I

Federico Carra CERN Engineering Department Mechanical and Materials Engineering Group

November 6th, 2020

Outline

- 1. What is CAE and why do we use it?
- 2. FEM theory in a Nutshell
- 3. FE Implicit vs Explicit Solvers
- 4. Examples of FE Implicit studies for particle accelerator components
- 5. Conclusions

Computer-Aided Technologies (CAx)

Computer-Aided Design and Engineering (CAD/CAE)

*The more time spent here, the less money and time spent later

CAE Fields

FEM Theory in a Nutshell

FEM Theory in a Nutshell

The displacements of all the points in a continuum under the action of external forces depends on the displacements of discrete points known as **nodes**.

This dependence is regulated by interpolating functions known as **shape functions**.

To study a body with FEM, we must thus discretize the continuum in a finite number of elements, each one featuring a number of nodes which depends on the type of element chosen.

FEM Theory in a Nutshell

FEM: solving for the nodal displacements $\{s\}$ After calculation of $\{s\}$:

 ${u} = [N]{s}$

Shape functions

 $\{\varepsilon\} = [\partial]\{u\} = [\partial][N]\{s\}$

 $\{s\} = [K]^{-1}\{F\}$

 $\{\sigma\} = [D]\{\varepsilon\} = [D][\partial][N]\{s\}$

Material Constitutive Law (e.g. Hooke's law)

Solution known in all points of the structure (not only at the nodes!)

 $[\partial] = \begin{bmatrix} \partial/\partial x & 0 & 0 \\ 0 & \partial/\partial y & 0 \\ 0 & 0 & \partial/\partial z \\ \partial/\partial y & \partial/\partial x & 0 \\ 0 & \partial/\partial z & \partial/\partial y \\ \partial/\partial z & 0 & \partial/\partial x \end{bmatrix}$

Properties of shape functions

- It **must** be a continuous function, and must possess a derivative at least until to the *n-1* order required by the problem under study (*e.g.* n = 1 for a truss element, n = 2 for a beam or plane element, etc.)
- It must reproduce rigid motion of the element with a null deformation energy (*i.e.* in an eigenvalue problem, the rigid motion d.o.f. gave a null eigenvalue → in a 3D space, for an unconstrained body there will be 6 null eigenvalues)
- 3. It **must** guarantee a constant deformation along the element (minimal condition when element size tends to zero)
- 4. It **must** guarantee continuity among elements (*i.e.* identical displacement field on a segment belonging to two adjacent elements)
- 5. It **should** be geometrically isotropic (*i.e.* displacement field is invariant wrt the reference system, not presenting preferential directions)

Complete Conform

Shape function of a truss element

$$u = a_1 + a_2 x = \begin{bmatrix} 1 & x \end{bmatrix} \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$$

 $[N] = \left[\left(1 - \frac{x}{i} \right) \quad \frac{x}{i} \right]$

 a_1 , a_2 are coefficients that can be calculated imposing the b.c. $x_1 = 0$, $x_2 = l$

- This shape function respects the properties discussed earlier, in particular the *n* order of the problem under study
- Choose the right element for the right problem! In case of bending and shear, use a beam element instead

Linear elements: computationally more efficient, but when a nonlinear stress state is expected, use quadratic elements or more linear elements over the thickness

- and Structural Mechanics' ISBN 978-1-85617-634-7 U. C. Lienkiewicz, Ine Finite Element Method and Fundamentals", ISBN 978-1-85617-633-0. U. C. Lienkiewicz, "The Finite Element Method for Sc. and Structural Mechanics", ISBN 978-1-85617-634-7. D. Braess, in Solid Merchanics, ISBN 978-0-52170-516 Annlications in Solid Merchanics D. Braess, "Finite Elements: Theony, Fast Solvers, 10-518.9. Applications in Solid Mechanics', small, small, small, solid Mechanics', small, solid

35 SIML . ABAOL

۲

FEM tips: from reality to model

- Simplification of the model: removal of details not contributing to the solution of the problem under study
 - Screws, welds typically defeatured in the FEA, and calculated "by hand" extracting internal loads from FEA
 - Chamfers, radii can be verified via submodels
- Loads and boundaries:
 - As accurate as possible representation of the real working conditions
 - Compromise sometimes to be made to simplify the problem (*e.g.* nonlinear contacts, etc.)
 - Most critical step of the process
- Safety factors! (*i.e. factor of ignorance*)
- When approximating, always be on the conservative side
- Start simple, complexify later

Particle accelerator components: typical loads

Examples

FRESCA2: a facility for testing SC samples

FRESCA2: design of the OHV

Two main design cases:

- 1. Operation:
 - Internal pressure in the OHV 3.9 bara
 - Thermal gradient 2-300 K
 - EM torque 3500 Nm
 - Most likely failure scenario is by plastic deformation
- 2. Vacuum loss during OHV purging:
 - External pressure on the OHV 1.5 bara
 - Most likely failure scenario is by buckling

FRESCA2 OHV: operational scenario

- Use shell elements wherever possible wrt solids
- Nonlinearity of materials (temperature, strain, ...)
- Structure verified against EN-13445 Direct Route: plastic strain must be less than 5%
- T field can be calculated in a separated thermal analysis, then imported into structural (thermomechanical coupling)

2000.00 (mm)

FRESCA2 OHV: operational scenario

abs(eptt3) - 1. s Expression: abs(eptt3) Time: 1 23/04/2020 17:25

- Direct route requires $max(|\varepsilon_1|, |\varepsilon_2|, |\varepsilon_3|) < 5\%$
- How to make sure of accuracy of the results?
 - Convergence study
 - Submodeling

FRESCA2 OHV: vacuum loss during purging

- Direct route check: $0.08\% < 5\% \rightarrow$ not enough!
- (Especially) with external pressure, important to verify buckling

FRESCA2 OHV: vacuum loss during purging – Buckling

Which kind of buckling study?

Deformation

- When going with FEM, better to directly take the most accurate one (GMNIA)
- Also required by direct route. It accounts for large deformation theory, material nonlinearities, and initial geometry imperfections (e.g. shape errors, etc.)

FRESCA2 OHV: vacuum loss during purging – Buckling

Conclusions

- Nowadays, Computer-Aided Engineering (CAE) is of paramount importance in the design phase of components, to decrease cost, time, risk for the project
- CAE require a number of iterations with CAD, with the goal of optimizing the component
- What cannot be calculated, must be validated through tests / prototypes (calculation cannot replace everything!)
- Thanks to the increase in the computational power, the Finite-Element Method (FEM) has been, in the last years, the most adopted tool for CAE
- When engineering particle accelerator components, implicit codes are typically adopted over explicit ones
- Explicit codes become necessary when dealing with short transient simulations (*e.g.* beam impact on dumps, windows, etc.) and with strongly nonlinear problems (e.g. fabrication technologies: cutting, welding, brazing, forming, etc.)
- Graphical interfaces of FEM tools are becoming simpler: easier for the work, riskier if we do
 not well master the method!

Symbols

- [M]: mass matrix [kg]
- [C]: damping matrix [N/(m/s)]
- [K]: stiffness matrix [N/m]
- { \ddot{u} }: acceleration vector [m/s^2]
- {*i*: velocity vector [*m*/s]
- {*u*}: displacement vector [*m*]
- {*F*}: external force vector [*N*]
- {s}: nodal displacements vector [m]
- [N]: shape functions matrix [-]
- {ε}: strain vector [-]

- $[\partial]$: strain-displacement matrix $[m^{-1}]$
- $\{\sigma\}$: stress vector [*Pa*]
- [D]: material constitutive matrix [Pa]
- {a}: polynomial coefficients vector [-]
- [P]: position matrix [m]
- {*a*}: nodal position matrix [*m*]
- ε₁: maximum principal strain [-]
- ε₂: middle principal strain [-]
- ε₃: minimum principal strain [-]

Thank you! Questions?

Backup slides

Solution will converge to exact answer as number of elements tends to infinity.

Manual FE in 10 steps

- I .Displacement u=[N]{s}.
- *II. Strain {ε}=[B]{s}.*
- III. Define material property matrix [D].
- *IV.* Stress {σ}=[D][B]{s}.
- V. Determine element stiffness matrix and force vectors.
- VI. Transform nodal variables to global.
- VII. Assemble the global stiffness matrix and load vector.
- VIII. Boundary conditions.
- IX. Get unknown displacements and reactions.
- X. $\{\sigma\}=[D][B]\{u\}.$

Derivation of shape function for a truss element

$$y \longrightarrow x \longrightarrow u_{1}^{2} \xrightarrow{l} \frac{1}{l} \xrightarrow{l} \frac{2}{u_{2}} \xrightarrow{u_{2}} u_{2}$$

$$u = a_{1} + a_{2}x = \begin{bmatrix} 1 & x \end{bmatrix} \begin{cases} a_{1} \\ a_{2} \\ \end{pmatrix} = \begin{bmatrix} P \end{bmatrix} \{a\} \rightarrow u_{1} = \begin{bmatrix} 1 & x_{1} \end{bmatrix} \begin{cases} a_{1} \\ a_{2} \\ \end{pmatrix}; u_{2} = \begin{bmatrix} 1 & x_{2} \end{bmatrix} \begin{cases} a_{1} \\ a_{2} \\ \end{pmatrix}$$

$$b. c.: x_{1} = 0; x_{2} = x_{1} + l = l \qquad (1)$$

$$\{s\} = \begin{cases} u_{1} \\ u_{2} \\ \end{pmatrix} = \begin{bmatrix} 1 & 0 \\ 1 \\ d_{2} \\ \end{pmatrix} = \begin{bmatrix} A \end{bmatrix} \{a\} \rightarrow [A] \{a\} \rightarrow [A]^{-1} = \frac{1}{l} \begin{bmatrix} l & 0 \\ -1 & 1 \end{bmatrix} \rightarrow [a] = \begin{bmatrix} A \end{bmatrix}^{-1} \{s\} = \frac{1}{l} \begin{bmatrix} l & 0 \\ -1 & 1 \end{bmatrix} \begin{pmatrix} u_{1} \\ u_{2} \\ \end{pmatrix}$$

$$(1) + (2) \rightarrow u = \begin{bmatrix} P \end{bmatrix} \begin{bmatrix} A \end{bmatrix}^{-1} \{s\} = \begin{bmatrix} 1 & x \end{bmatrix} \frac{1}{l} \begin{bmatrix} l & 0 \\ -1 & 1 \end{bmatrix} \begin{pmatrix} u_{1} \\ u_{2} \\ \end{bmatrix} = \begin{bmatrix} (1 - \frac{x}{l}) & \frac{x}{l} \end{bmatrix}$$

$$[N] = \begin{bmatrix} P \end{bmatrix} \begin{bmatrix} A \end{bmatrix}^{-1} = \begin{bmatrix} (1 - \frac{x}{l}) & \frac{x}{l} \end{bmatrix}$$

Calculation of the element stiffness matrix

Deformation matrix $[B] = [\partial][N]$

Applying principle of virtual works: $[K] = \int_{V} [B]^{T} [D] [B] dV$

Implicit and Explicit Problems

Implicit analysis

- aim to solve the unknowns {x} through matrix inversion.
- in nonlinear problems the solution is obtained in a number of steps and the solution for the current step is based on the solution from the previous step.
- for large models inverting the matrix is highly expensive and will require advanced iterative solvers
 - these solutions are unconditionally stable and facilitate larger time steps.

Despite this advantage, the implicit methods can be extremely time-consuming when solving dynamic and nonlinear problems.

Explicit analysis

- aim to solve for acceleration {x"}
- in most cases, the mass matrix is considered as lumped \rightarrow a diagonal matrix \rightarrow inversion is straightforward
 - once the accelerations are calculated in nth step, the velocity at n+1/2 step and displacement at n+1 step are calculated
- in these calculations, the scheme is not unconditionally stable and thus smaller time steps are required.

To be more precise, the time step in an explicit finite element analysis must be less than the Courant time step (the time taken by a sound wave to travel across an element).

Explicit vs Implicit

Explicit

- robust, even for strongly non linear models
- low memory requirements
- expensive to conduct long term simulations
- conditionally stable
- equations are uncoupled
- only matrix multiplication

Implicit

- can be unconditionally stable
- eventually problematic for strongly nonlinear models
- high memory requirements(inverting stiffnes matrix)
- relatively inexpensive for long duration analysis
- equations are coupled
- matrix inversion
- convergence problem

Examples of studies performed (2)

Crab cavities (BE-RF)

 Studies for the design of dressed cavities and cryomodule, optimization of the thermal loss balance

 Explicit analyses for the sheet metal forming of cavity components (bowl, diabolo, etc.), to explore different tool shapes and forming steps as well as predict the stress-strain field and thickness distribution

Job example: TIDVG5 hipping

- User: EN-STI
- Problem: TIDVG5 cooling circuit bursting during hipping
- Method: FEA (implicit + explicit)
- Proposed solution: reduce pipe/housing gap, adapted shape of housing
- Future developments: standardize bending process

E: Workbench LS-DYNA - 0.01 mm Tooling

Total Deformation

27/09/2019 17:26

0.16402 0.14352

0.12302 0.10251

0.08201

0.0615

0.0410 0.020503

0 Min

Unit: m Time: 2.e-002

Type: Total Deformation

0.18452 Max

