

Cable strategy proposal HL-LHC

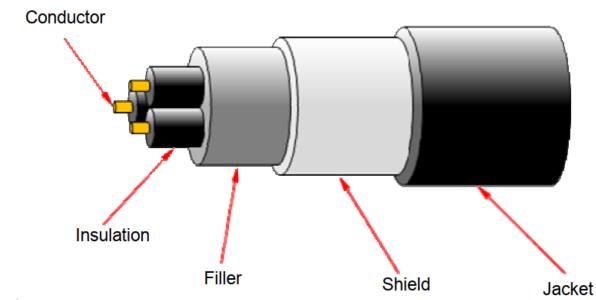
CARE Project

08/10/20

J. Gascon - HSE-OHS EDMS no. 2425714

Cable applications at CERN

- HV power
- LV power
- DC power (Power converters & magnets)
- Instrumentation & Control
- Speciality (RF, experimental areas, others)
- Safety (lighting, monitoring, safety systems)
- IT & office (IEC/EU compliant)
- Grounding



Cable main components

- Conductors: copper, aluminium
- Insulation: polymers (XLPE, PVC, EVA, etc.)
- Shielding: foil (AI) or braided (Cu, AI)
- Jacket: similar materials to insulation

Structural components

- Fillers or bedding: mechanical stability
- Tape wraps: electrical, mechanical, fire or identification
- Armouring: mechanical protection

Common polymeric cable materials

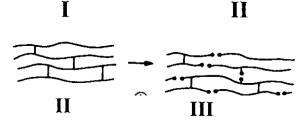
- Ethylene vinyl acetate (EVA)
- Cross-linked polyethylene/polyolefin (XLPE / XLPO)
- Low and High density polyethylene (LDPE / HDPE)
- Ethylene propylene based elastomers (EPR / EPDM)
- Polyphenylene oxide (PPO known as Noryl®)
- Butyl rubber (BR)
- Polyimide (known as Kapton®)
- Silicone rubber (SiR)
- Polyether ether ketone (PEEK)
- Polyurethane

Additives (anti-oxidants) & stabilizers: how-know of cable manufacturers !!!

(halogen free)

Cable Stressors

- Temperature
- Humidity
- Chemicals (oxygen, ozone, lubricants)
- Ionising radiation (UV included)
- Electrical (ohmic heating)
- Mechanical (bending, squeezing, vibration)

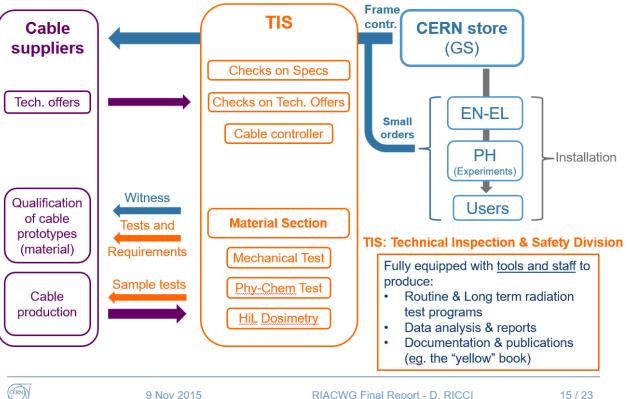

Cable degradation is a combination of stressors effects !!!!

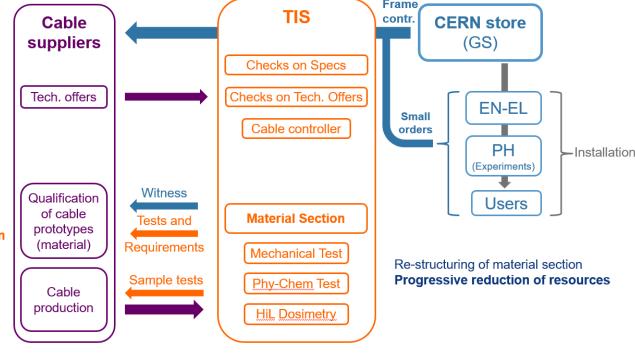
(ageing and degradation)

Chemistry of ageing

• Scission of molecular chains: typically alkoxyl or peroxide radicals

Cross-linking reactions: formation of new molecular links


- Oxidation process
 - 1. Initiation: formation of free radicals
 - 2. Propagation: formation of peroxy radicals and hydroperoxide
 - 3. Chain branching: decomposition of hydroperoxide
 - 4. Termination: deactivation of radicals in inert products (alcohol, acid ...)
- Synergistic effect: combined stressors effects higher than stressors effects separately (e.g. temperature + radiation)



Source: RIACWG

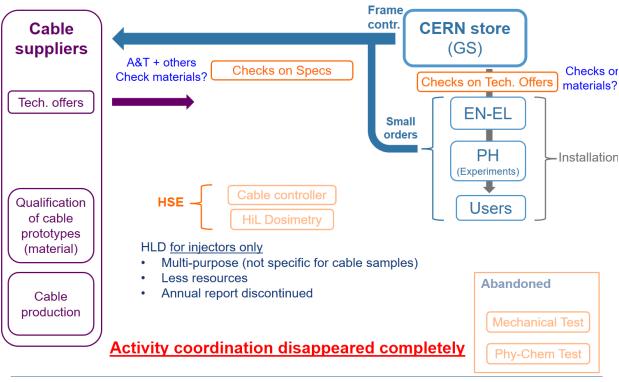
Historical perspective (until 1997)

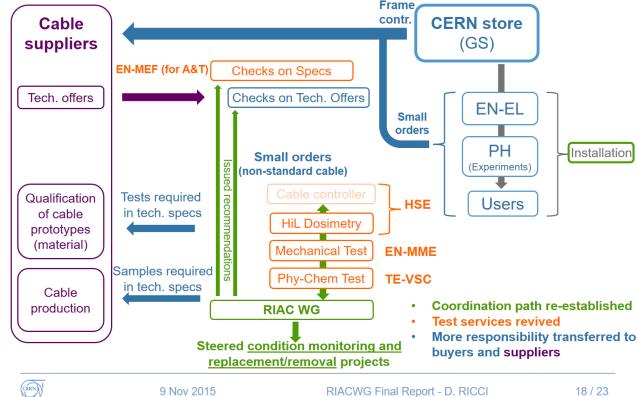
Historical perspective (1997-2002)

RIACWG Final Report - D. RICCI

9 Nov 2015

RIACWG Final Report - D. RICCI


16 / 23



Source: RIACWG

Historical perspective (after 2002)

Historical perspective (Today: 2015)

9 Nov 2015

RIACWG Final Report - D. RICCI

17 / 23

9 Nov 2015

RIACWG Final Report - D. RICCI

18 / 23

Background

CARE Working Group 2016-2019

- Problems with samples placed in tunnels from RIAC WG (length shorter, not end-caps, displaced from original place, dosimeters solid state)
- Test results not conclusive and sometimes erratic (inconsistency)
- Budget contribution from departments reduced

CARE Project 2019-

- Conversion into a formal research project
- Implementing lessons learned
- Reviewing test procedures and samples management
- Focusing in cable purchasing and quality control for radiation resistant cables
- Provide technical support to CERN cable users on demand
- Project funded by HSE

CARE motivations

CERN's motivations for the CARE project are <u>still endorsed</u>

- Cable procurement cost: cable price, quality control & storage requirements (now based on IS23)
- Replacement cost: manpower for removing and pulling
- Personnel safety cost: more workers in radiation areas (Limited Stay and High Radiation Areas)
- **Time schedule**: time required during LS & TS (radiation cooling limits time for works)
- Waste cost: irradiated cables are radioactive waste and require treatment expenses

CERN 89-12 Technical Inspection and Safety Commission 31 December 1989

CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

COMPILATION OF RADIATION DAMAGE TEST DATA

PART I, 2nd EDITION: Halogen-free cable-insulating materials

> INDEX DES RÉSULTATS D'ESSAIS DE RADIORÉSISTANCE

l'e PARTIE, 2e ÉDITION: Matériaux d'isolation de câbles exempts d'halogène

H. Schönbacher and M. Tavlet

CARE Objectives

- Enhanced decision making process in terms of expected cables lifetime
- Improvement in cable quality control
- Condition monitoring of "sensitive" installed cables
- Reference database for new "sensitive" cables
- Improve knowledge on cable ageing mechanisms
- Develop lifetime models on ageing cables
- Expertise on cable ageing testing techniques
- Expertise on polymers behavior under radiation and other cable stressors

CARE proposal to HL-LHC project

Limited only to "sensitive" cables

- Technical support in cable ageing during purchasing process
- Condition Monitoring of HL-LHC cables in collaboration with R2E/R2M
- Artificial irradiation of cable samples&compounds in collaboration with R2E/R2M
- Cable tests and analysis for cable ageing
- Product Lifecycle Management according to HL-LHC quality plan
- Predictive maintenance oriented (estimate lifetime)
- Waste RP characterization

Technical support during purchasing

√ Cable design

- Technical requirements: define cable requirements appropriated to cable stressors presents in HL-LHC
- Polymer selection: propose the most appropriated polymer according to cable stressors
- Test techniques: establish type and routine tests to be performed by cable manufacturer
- **Documentation:** identify technical documentation to be delivered with cable supply (data sheet, test records, cable composition, additives, etc)

✓ Acceptance criteria

- Prototypes: provide technical support to select the most convenient cable among manufacturers proposals
- FAT: routine tests criteria for acceptance
- SAT: criteria for CERN site acceptance

✓ Manufacturing process

- Audit: technical support on manufacturing quality control
- Witnessing: participation on FAT and SAT

Condition Monitoring

✓ Sensitive areas definition (R2E/R2M)

- Identification: identify the most appropriated areas to place samples by stressors expected values
- Placement: accurate spot in the zone for the samples
- Geometry: position and conditioning of samples
- Equipment: define the most appropriated sensors to measure real stressor values

√ Samples management

- **Installation:** put in place samples in the identified areas
- Stressor follow-up: follow-up sensors and measurements obtained from sample area
- Extraction: collect samples
- Data: database all measurements data obtained
- Extraction: collect samples

Cable testing

√ Samples conditioning

- Preparation: sample handling for testing according to defined procedures and standards
- Measurements: inputs in database on measurements of specimens prepared (codification, shape, weight, etc)

✓ Testing

- Ageing test techniques: determine appropriated tests technique by cable stressor and type of polymer
- Artificial irradiation: define tests parameters, facility required at CERN or externally (collaboration R2E)
- Tests: perform all tests techniques in prepared specimens according to defined procedures
- Tests records: introducing in database obtained results and managing tests

PLM & Lifetime models

✓ Database

- Cable codification: cable codification per batch (drum codification) where attach all cable data information
- Cable data sheet: cable parameters (electrical & mechanical) and drums length
- Tests records: prototype tests records, FAT, SAT, samples tests performed
- Samples codification: codification of cable samples to be placed in targeted areas
- Specification stressors: technical requirements and location stressors

✓ Mathematical statistics

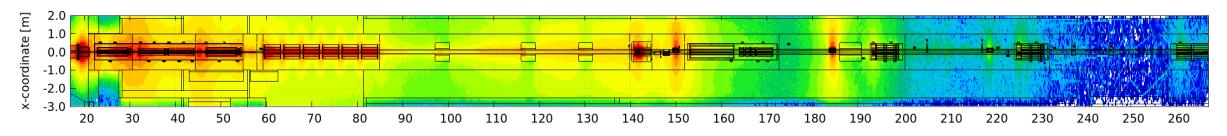
- Correlation: statistic models to compare testing results among test techniques
- Models: research on mathematical models to predict lifetime of cable

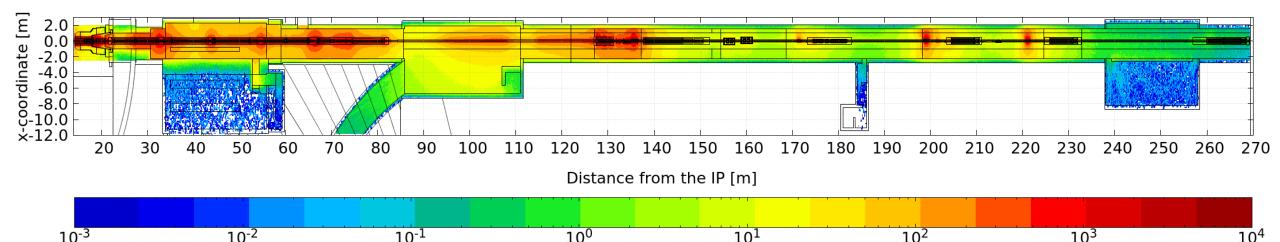
HSE-RP Considerations for HL-LHC

Radiation levels in HL-LHC era significantly higher than LHC impacting directly on

- Cumulated (collective/individual) dose during intervention
- Waste management for future decommissioning

Regarding the HL-LHC cables


- LS3 will face a major de-cabling campaign and large fraction of the cables will be activated → to be treated as radioactive waste
- Estimates via FLUKA simulations ongoing but experimental validation of the cables activation in collaboration with R2E is crucial for accurate evaluation/characterization of cable waste
- Cable bundles placed at LHC during RUN3 can be measured in gamma-ray spectrometry (non-destructive analysis) to characterize the radionuclide inventory and benchmark FLUKA activation studies
- More radiation-resistant cables will reduce the need of cable-replacement during HL-LHC era, and consequently
 avoiding long interventions in highly activated environments.
- Sinergy between CARE, R2E and RP groups can lead to an extremely valuable scientific outcome with a significant beneficial impact to the organization's future projects/activities.



Radiation levels in LHC/HL-LHC LSS1/5

LHC LSS1 - RESIDUAL AMBIENT DOSE EQUIVALENT RATE (LS3) - 4 WEEKS COOL DOWN

HL-LHC LSS5 v1.5 (VERTICAL CROSSING) - RESIDUAL AMBIENT DOSE EQUIVALENT RATE (LS4) - ULTIMATE CONDITIONS - 4 WEEKS COOL DOWN

10⁰

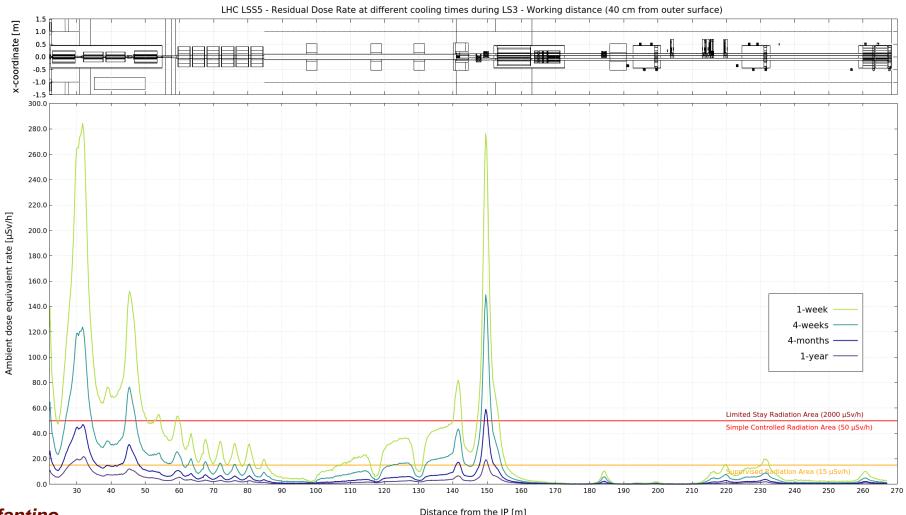
Residual Ambient Dose Equivalent Rate [µSv/h]

 10^{1}

Courtesy A. Infantino

 10^{-2}

 10^{-3}



10³

 10^{4}

10⁻¹

Radiation levels in LHC LSS5 (V. crossing)



Courtesy A. Infantino

Distance from the IP [m]

Radiation levels in HL-LHC LSS1 (V. Crossing)

Courtesy A. Infantino

Conclusions

- CARE & R2E can contribute efficiently in HL-LHC cable purchasing
 - Choosing suitable cable for HL-LHC requirements
 - Increasing quality control and traceability of cable batches
- During HL-LHC operation, CARE, R2E and RP can monitor cable condition
 - Cable Samples in sensitives areas
 - Complete information on cable characterization
 - Ageing estimation of installed cables
- Benefits
 - Cable purchasing cost optimized: recent materials and production cables
 - Optimization on cable replacement campaigns: cable condition monitoring
 - Reduction on cable waste expenses

QUESTIONS?

