

Research supported by the High Luminosity LHC project

HiLumi LHC: DA with the field quality specified in the HL-LHC magnets acceptance criteria documents

F.F. Van der Veken and M. Giovannozzi

Outline

- Acceptance of MCBRD
- Acceptance of MCBXF
- Acceptance of MCBXF with FRAS
- Conclusions and Outlook

- New HL-LHC orbit correctors have acceptance criteria on field imperfections:
 - MCBRD: within \pm 10 units for a_3/b_3
 - within \pm 3 units for all other orders
 - MCBXF: within \pm 20 units for a_3/b_3
 - within \pm 5 units for all other orders
- Goal is to probe range with high statistics and investigate impact on DA

Assignment of Field Imperfections

- Magnetic errors have 3 components:
 - systematic error $\xi_{\rm M}$
 - **uncertainty** error $\xi_{\rm U}$ per magnet family
 - random error $\xi_{\rm R}$ per magnet
- Total error given by $\xi_{tot} = \xi_{M} + \xi_{U} \frac{\sigma_{1.5}}{1.5} + \xi_{R} \sigma_{3}$
 - $\sigma_{1.5}$ is a Gaussian random variable capped at 1.5 σ sampled once per magnet family
 - σ_3 is a Gaussian random variable capped at 3σ resampled for every magnet

Approach for MCBRD and MCBXF

- Systematic errors are known for specific orders (in existing error tables)
- Uncertainty errors are not assigned
- Random errors are used to probe acceptance criteria:
 - scale up slightly, to have enough statistics for high values
 - equivalent variance of uniform distribution $\sigma_{\text{uniform}} = \frac{\text{interval}}{\sqrt{12}}$
 - ± 5 units $\Rightarrow \xi_R = 2.887$
 - ± 3 units $\Rightarrow \xi_R = 1.732$
- Same value for all multipoles up to 7th order. Orders a_3/b_3 have higher acceptance criteria, however, budget is already taken by systematic error

Setup of Studies

• Very CPU-intensive (2M+ jobs)

 \Rightarrow submission to BOINC

Many thanks to the numerous LHC@Home volunteers

- Studies are performed:
 - using HL-LHC v1.4 round collision optics
 - for minimum β^* (15/1000/15/150 cm)
 - without octupoles and with low chromaticity
 - with nominal settings for all other values and errors

Outline

- Acceptance of MCBRD
- Acceptance of MCBXF
- Acceptance of MCBXF with FRAS
- Conclusions and Outlook

MCBRD New Error Table

	MCBRDH						MCBRDV						
	ξ_M	ξ_R											
a_1	0	0	b_1	0	0	a_1	0	0	b_1	0	0		
a_2	0	1.732	b_2	0	1.732	a_2	0	1.732	b_2	0	1.732		
a_3	0	1.732	b_3	-10	1.732	a_3	10	1.732	b_3	0	1.732		
a_4	0	1.732	b_4	0	1.732	a_4	0	1.732	b_4	0	1.732		
a_5	0	1.732	b_5	0	1.732	a_5	0	1.732	b_5	0	1.732		
a_6	0	1.732	b_6	0	1.732	a_6	0	1.732	b_6	0	1.732		
a_7	0	1.732	b_7	0	1.732	a_7	0	1.732	b_7	0	1.732		
a_8	0	0	b_8	0	0	a_8	0	0	b_8	0	0		
a_9	0	0	b_9	0	0	a_9	0	0	b_9	0	0		
a_{10}	0	0	b_{10}	0	0	a_{10}	0	0	b_{10}	0	0		
a_{11}	0	0	b_{11}	0	0	a_{11}	0	0	b_{11}	0	0		
a_{12}	0	0	b_{12}	0	0	a_{12}	0	0	b_{12}	0	0		
a_{13}	0	0	b_{13}	0	0	a_{13}	0	0	b_{13}	0	0		
a_{14}	0	0	b_{14}	0	0	a_{14}	0	0	b_{14}	0	0		
a_{15}	0	0	b_{15}	0	0	a_{15}	0	0	b_{15}	0	0		

- First investigation is impact of b_2 errors on beta-beating
- Higher orders are not considered as orbit is very small
- High statistics: 1000 seeds

• Beta-beating of around 0.5% \Rightarrow perfectly manageable

DA with Random MCBRD

- To estimate the impact on DA, we compare to nominal baseline
- Also compare impact of systematic vs random
- Errors for all other magnets are assigned (except MCBXF)
- High statistics: 240 seeds

DA with Random MCBRD

DA with Random MCBRD

- Systematic errors induce internal compensations that enhance DA
- Random errors remove this effect (but don't make it worse either)

DA with Random MCBRD by Order

DA with Random MCBRD by Order

DA with Random MCBRD by Order

- Compensations are created by orders $a_2/b_2 a_5/b_5$
- Bit peculiar, closer investigation needed
- Overall, MCBRD seems to be acceptable, however, care needs to be taken as behaviour is not completely understood

Outline

- Acceptance of MCBRD
- Acceptance of MCBXF
- Acceptance of MCBXF with FRAS
- 6 Conclusions and Outlook

MCBXFA New Error Table

	MCBXFAH						MCBXFAV						
	ξ_M	ξ_R											
a_1	0	0	b_1	0	0	a_1	0	0	b_1	0	0		
a_2	0	2.887	b_2	0	2.887	a_2	0	2.887	b_2	0	2.887		
a_3	0	2.887	b_3	-16.65	2.887	a_3	20.12	2.887	b_3	0	2.887		
a_4	0	2.887	b_4	0	2.887	a_4	0	2.887	b_4	0	2.887		
a_5	0	2.887	b_5	-0.35	2.887	a_5	-3.04	2.887	b_5	0	2.887		
a_6	0	2.887	b_6	0	2.887	a_6	0	2.887	b_6	0	2.887		
a_7	0	2.887	b_7	0.98	2.887	a_7	-3.98	2.887	b_7	0	2.887		
a_8	0	0	b_8	0	0	a_8	0	0	b_8	0	0		
a_9	0	0	b_9	0.07	0	a_9	-0.62	0	b_9	0	0		
a_{10}	0	0	b_{10}	0	0	a_{10}	0	0	b_{10}	0	0		
a_{11}	0	0	b_{11}	4.3	0	a_{11}	0.02	0	b_{11}	0	0		
a_{12}	0	0	b_{12}	0	0	a_{12}	0	0	b_{12}	0	0		
a_{13}	0	0	b_{13}	0	0	a_{13}	0	0	b_{13}	0	0		
a_{14}	0	0	b_{14}	0	0	a_{14}	0	0	b_{14}	0	0		
a_{15}	0	0	b_{15}	0	0	a_{15}	0	0	b_{15}	0	0		

MCBXFB New Error Table

	MCBXFBH						MCBXFBV						
	ξ_M	ξ_R											
a_1	0	0	b_1	0	0	a_1	0	0	b_1	0	0		
a_2	0	2.887	b_2	0	2.887	a_2	0	2.887	b_2	0	2.887		
a_3	0	2.887	b_3	17.37	2.887	a_3	-10.33	2.887	b_3	0	2.887		
a_4	0	2.887	b_4	0	2.887	a_4	0	2.887	b_4	0	2.887		
a_5	0	2.887	b_5	2.49	2.887	a_5	-3.6	2.887	b_5	0	2.887		
a_6	0	2.887	b_6	0	2.887	a_6	0	2.887	b_6	0	2.887		
a_7	0	2.887	b_7	0.62	2.887	a_7	-3.26	2.887	b_7	0	2.887		
a_8	0	0	b_8	0	0	a_8	0	0	b_8	0	0		
a_9	0	0	b_9	-0.75	0	a_9	-0.58	0	b_9	0	0		
a_{10}	0	0	b_{10}	0	0	a_{10}	0	0	b_{10}	0	0		
a_{11}	0	0	b_{11}	3.6	0	a_{11}	0.12	0	b_{11}	0	0		
a_{12}	0	0	b_{12}	0	0	a_{12}	0	0	b_{12}	0	0		
a_{13}	0	0	b_{13}	0	0	a_{13}	0	0	b_{13}	0	0		
a_{14}	0	0	b_{14}	0	0	a_{14}	0	0	b_{14}	0	0		
a_{15}	0	0	b_{15}	0	0	a_{15}	0	0	b_{15}	0	0		

- Investigation of impact of b_2 errors on beta-beating
- Now feed-down from a_3/b_3 needs to be considered as well
- High statistics: 1000 seeds

F.F. Van der Veken

- High beta-beating, especially for feed-down which gives around 6%
- Still manageable
- As shown in previous presentations, feed-down is not responsible for decline in DA

- To estimate the impact on DA, we compare to nominal baseline
- Also compare impact of systematic vs random
- Errors for all other magnets are assigned (MCBRD: only systematic)
- High statistics: 240 seeds

- As was already known, DA drops drastically
- Fortunately random errors do not seem to worsen effect

DA with Random MCBXF by Order

DA with Random MCBXF by Order

DA with Random MCBXF by Order

- Strong confirmation that a_3/b_3 is worrisome order
- Other multipole orders are no problem
- Overall, MCBXF is not acceptable, hence solutions have to be found for the third order multipole specifications

Outline

- Acceptance of MCBRD
- Acceptance of MCBXF
- Acceptance of MCBXF with FRAS
 - 5 Conclusions and Outlook

Using FRAS

- If Full Remote Alignment System can be used for IT misalignments:
 - MCBXF becomes deterministic
 - with smaller reference strength
- See Riccardo's talk

F.F. Van der Veken

Beta-Beating due to MCBXF (FRAS)

F.F. Van der Veken

Beta-Beating due to MCBXF (FRAS)

- Beta-beating is halved
- Logical, as reference strength is also halved

DA with Random MCBXF (FRAS)

DA with Random MCBXF (FRAS)

DA with Random MCBXF (FRAS)

- Indeed, situation is improved
- As before, random errors do not really change the result
- For Beam 4, only half of drop is recovered
- But as now reference strength is deterministic, MCBXF can be potentially corrected

Outline

- Acceptance of MCBRD
- Acceptance of MCBXF
- Acceptance of MCBXF with FRAS
- **5** Conclusions and Outlook

Conclusions and Outlook

- MCBRD is seemingly onder control
- However extra investigation should be done to strengthen this result
- MCBXF is still a problem
- FRAS might offer a partial solution (also because then MCBXF might be corrected)
- TODO / In Progress:
 - Understanding compensations by MCBRD
 - Order-by-Order investigation of MCXBF with FRAS
 - MCBXF at high beta* and correction of MCBXF with random errors
 - Acceptance criteria for non-linear corrector package

Thank you for your attention!

F.F. Van der Veken

Backup Slides

F.F. Van der Veken

absolute maximum (maximum angle over all seeds)

individual seed lines (average over angles per seed)

average DA (average over angles and over seeds)

absolute minimum (minimum angle over all seeds)

www.cern.ch