

Issue with SixTrack Post-Processing

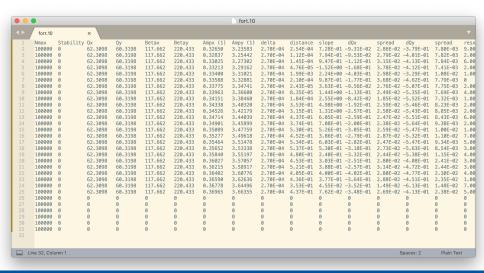
F.F. Van der Veken R. De Maria, M. Giovannozzi, M. Titze

Outline

- Description

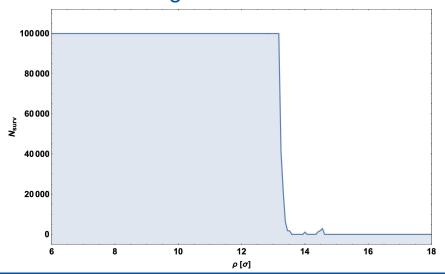
Stacking Bugs...

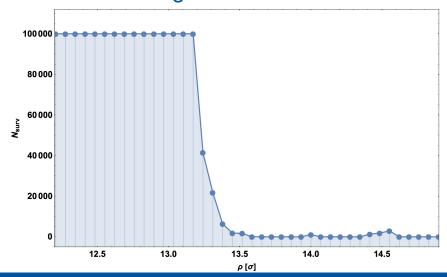
- Combination of two issues:
 - issue in SixTrack where quickly-lost particles are not stored
 - post-processing in SixDB (and common other tools) defines
 DA as first unstable particle instead of last stable
- In the presence of disconnected stable islands, this can lead to a (potentially severe) over-estimation of the DA



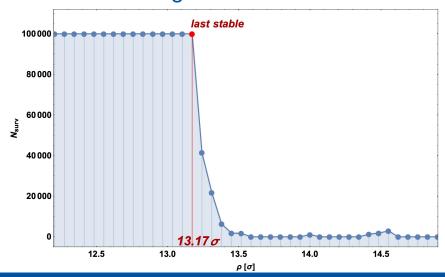
Zeroed-Out Lines in Fort.10

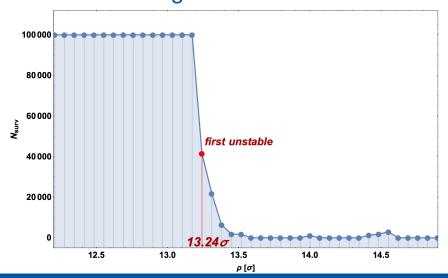
- SixTrack writes intermediate tracking data to file regularly (controlled by the writebin1 parameter in SixDesk)
- If particle lost, all info is lost as well, i.e. all columns in fort.10 are zero for the row corresponding to that particle.
- Well-known issue, workarounds are used

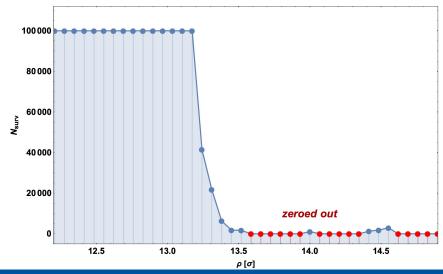

Zeroed-Out Lines in Fort.10

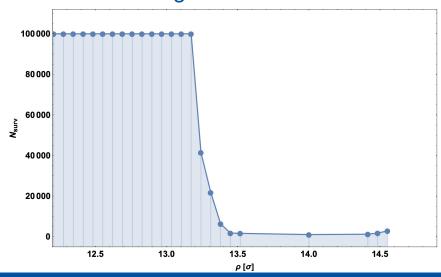


- DA is scanned over a polar grid:
 - angle-by-angle
 - in equal amplitude steps
- DA is defined as the phase-space volume that exhibits stable motion
- Hence, last stable particle per angle should be selected
- However, in SixDB the first unstable particle is used

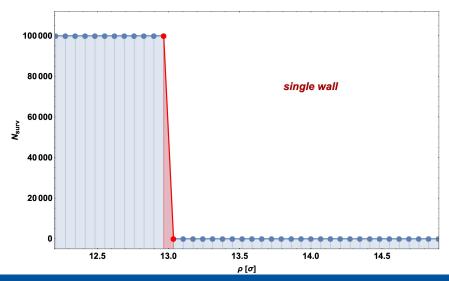






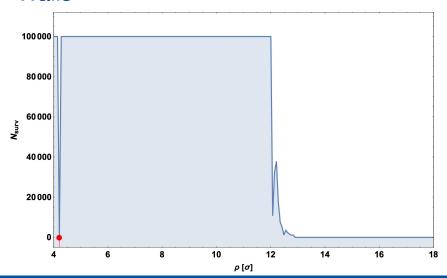


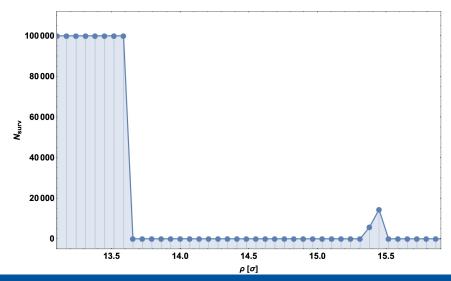
- Amplitude is calculated from the action as given in fort.10
- Zero entries have also zero action ⇒ no value for amplitude

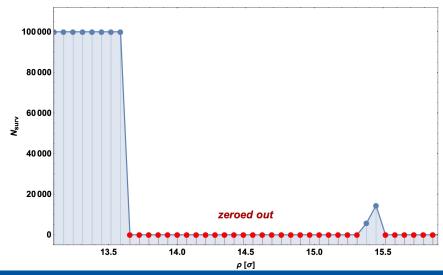




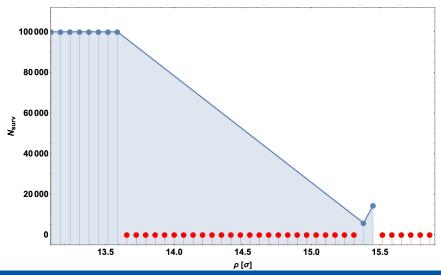
- \bullet Wall: particle stability drops from $N_{\rm max}$ to 0 in one amplitude step
- Three types:
 - Single Wall: all particles at higher amplitude are also lost
 - Regular Wall: some particles at higher amplitude survive (islands)
 - ullet Double Wall: only one particle lost, next amplitude step: back to N_{\max}
- Single walls are interesting for physics
- Regular walls are sensitive to issue
- Double walls are probably numerical error or software issue

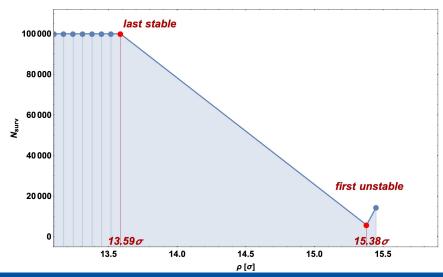


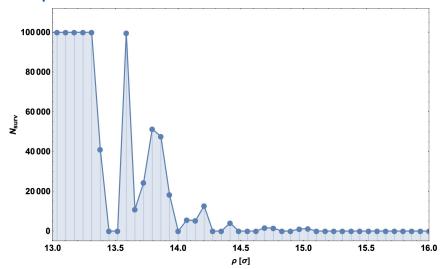




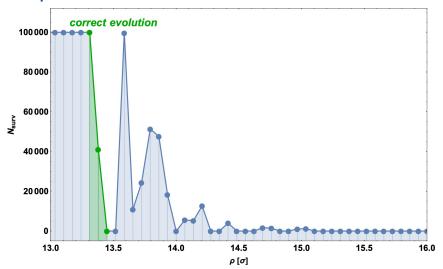
- Regular walls:
 - SixTrack zeros out all lost particles
 - SixDB takes first unstable, but this will be much further away
 - biggest issue
- Single walls:
 - SixDB deals with these walls automatically
 - though will assign last stable instead of first unstable
 - · inconsistency with other points
- Double walls:
 - SixDB deals with these walls automatically
 - because lost particle is removed



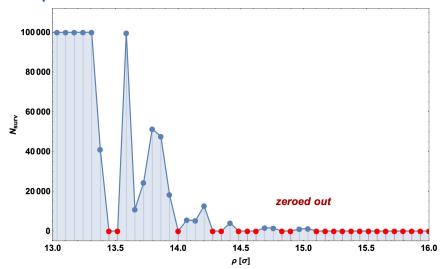


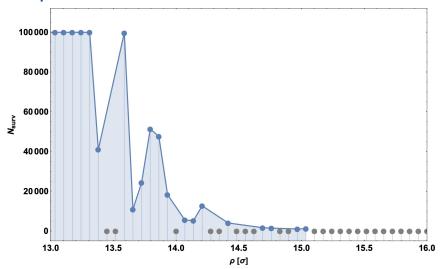


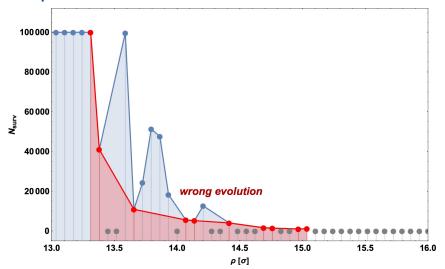
- For this example, overestimation of $1.79\sigma!$
- For this particular angle and seed
- Of course not every seed and angle have walls

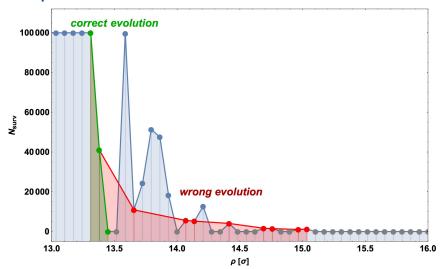


- So far, discussed situation for **final** DA (i.e. at $N_{\rm max}$ turns), where walls are defined as jump from $N_{\rm max}$ to 0
- But when looking at DA evolution, every jump to 0 is like a
 wall, because evolution should have stopped at first 0, but it
 will continue as long as there are islands









Outline

- 2 Fix

Fix in SixDB

- Riccardo implemented a quick fix in SixDB (latest version on GitHub)
- Will be implemented in SixDesk soon
- Comments:
 - only way to implement it consistently, was to use last stable particle as definition for DA
 - hence breaks backwards compatibility!
 (in most cases, DA goes down by one amplitude step)
 - single and regular walls are no longer an issue, but now double walls are a problem!
 - as the latter are expected to be a hardware/file system error, these should be manually found and that job resubmitted
 - · evolution of DA is not fixed yet

Verify Existing Studies

- CheckForWalls.sh on EOS, to test if studies are affected /eos/project/d/da-and-diffusion-studies/DA_Studies/Simulations/
 - Argument is *.db file, e.g.
 ./CheckForWalls.sh hl14_MCBXF_base+MCBXF_B4.db
 (first need to run DBtoCSV.sh to generate additional *.csv)
 - Script generates *.walls.csv that gives a list of walls by seed, angle, and amplitude
 - Single walls are tagged with -1, double walls with -2
 - Regular walls are tagged by next stable particle (start of island) as to estimate the impact

Verify Existing Studies

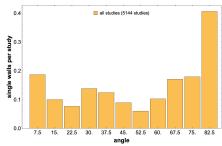
```
hl14 MCBXF base+MCBXF B4.walls.csv
   hl14 MCBXF base+MCBXF B4.walls.csv ×
  seed, angle, amp, next non zero amp # next non zero amp is −1 in
  case of a single wall, and -2 in case of a double wall
  4,67.5,9.10344827586207,-1
  10,67.5,9.86206896551724,-1
  13.67.5.9.24137931034483.-1
  16,52.5,4.13793103448276,-2
  30.82.5.10.6896551724138.10.8965517241379
  31,67.5,7.79310344827586,-1
  35.75.0.7.86206896551724.-1
  40.67.5.8.62068965517241.-1
  46,75.0,7.24137931034483,-1
  47.67.5.8.3448275862069.-1
  52,60.0,9.37931034482759,-1
  53.37.5.8.82758620689655.-1
  55.37.5.7.31034482758621.-1
  55,67.5,7.17241379310345,-1
  59.67.5.10.6206896551724.10.7586206896552
Line 1, Column 1
                                               Tab Size: 4
                                                               Plain Text
```

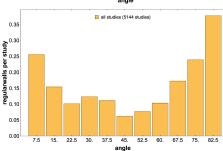

Verify Existing Studies

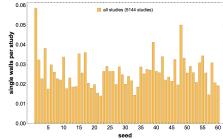
- Potential issues:
 - ullet walls are defined as a jump from $N_{
 m max}$ to 0
 - hence only recognises issues with final DA (not evolution)
 - bash seems to be less reliable (in particular paste command)... If no walls found, retry later to be sure

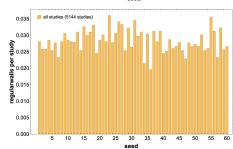
Outline

- Impact

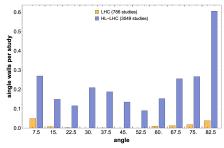


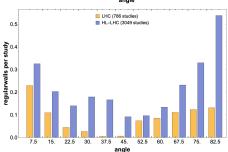

Impact on Previous Studies

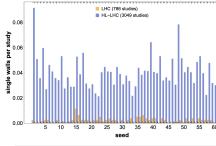

- Focus on impact on final DA (not evolution)
- Verified all *.db's on EOS (5 145 studies)
- Found 24 991 walls, of which
 - 12 164 single walls
 - 225 double walls
 - 12 602 regular (possibly problematic) walls
- Investigate distribution of walls for seed, angle, type
- Investigate overestimation of DA_{min} and DA_{av}

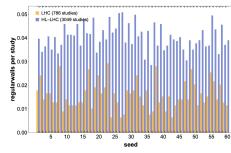


All Studies

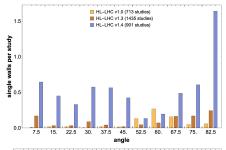


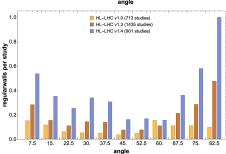


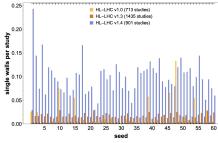


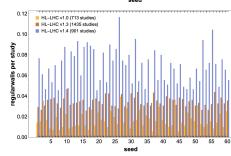


LHC vs HL-LHC

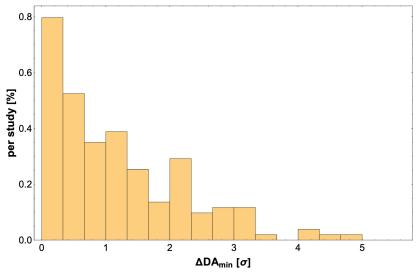






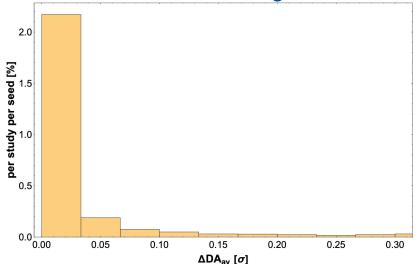


HL-LHC Optics



Walls in Previous Studies

- Most walls (both single and regular) in:
 - high angles
 - HL-LHC
 - optics v1.4
- Check impact on DA (only taking into account the effect of walls, not the difference last stable vs first unstable)



Overestimation of Minimum DA

Overestimation of Average DA

Impact on DA

- Impact on DA_{av} is negligible: around 2% of studies*seeds (a bit more than 1% of studies) have overestimation of 0.025σ
- Impact on DA_{min} is weak, with around 2% of studies having an overestimation of 0.5σ , and very few studies with a higher overestimation
- Those extreme cases are probably due to double walls (not yet implemented)

Conclusion

- Nasty bug was found due to combination of a specific feature in SixTrack and issue in SixDB
- Strong impact on DA evolution with turn (in presence of islands)
- Weak impact on final DA
- Fix implemented in SixDB (latest version on GitHub)
- Will be pushed to SixDesk
- Double walls still need to be taken into consideration

Thank you for your attention!

