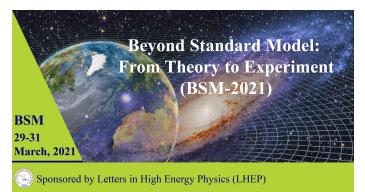
Weak gravity conjecture in an accelerating Universe

I. Antoniadis

LPTHE, Sorbonne University, CNRS Paris Institute for Theoretical Physics, KU Leuven



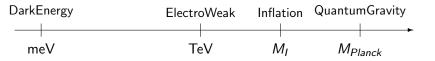
Universe evolution: based on positive cosmological constant

Dark Energy

simplest case: infinitesimal (tuneable) +ve cosmological constant

• Inflation (approximate de Sitter)

describe possible accelerated expanding phase of our universe



de Sitter spacetime

vacuum solution of Einstein equations with +ve cosmological constant and maximal symmetry: 10 isometries like flat space

hyperboloid from 5 dimensions: $-y_0^2 + \vec{y}^2 = \frac{1}{H^2}$ SO(4, 1) vs Poincaré E_4

 $R_{\mu\nu\lambda\rho} = H^2(g_{\mu\lambda}g_{\nu\rho} - g_{\mu\rho}g_{\nu\lambda})$ $R = 12H^2 = 4\Lambda$

Flat slicing: $ds^2 = -dt^2 + e^{2Ht} d\vec{x}^2$ exponential expansion

FRW with flat 3-space and scale factor $a(t) = e^{Ht}$

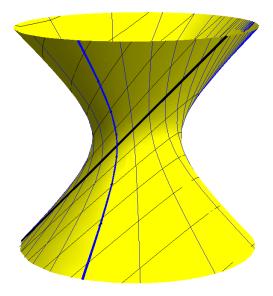
isometries: 3 space translations, 3 rotations, 1 scale, 3 special conformal

e.g. scale:
$$\vec{x} \rightarrow \omega^2 \vec{x}$$
 and $t \rightarrow t - \omega/H$

Closed slicing: $ds^2 = -dt^2 + \frac{1}{H^2}ch^2Ht d\Omega_3^2 \leftarrow \text{unit sphere } S^3$

Open slicing: $ds^2 = -dt^2 + \frac{1}{H^2}sh^2Ht dH_3^2 \leftarrow \text{unit hyperbolic } H^3$

de Sitter spacetime



$$ds^{2} = -(1 - H^{2}r^{2})dt^{2} + \frac{dr^{2}}{1 - H^{2}r^{2}} + r^{2}d\Omega_{2}^{2} \quad \leftarrow \text{ unit sphere } S^{2}$$

describes 1/4 of the spacetime

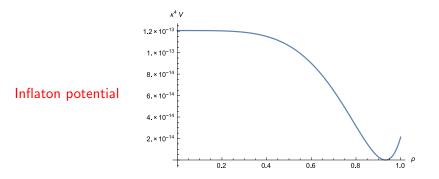
similarity with a black hole metric:

no singularity but cosmological horizon at $r = H^{-1} \equiv r_{C}$ [9] [11]

Inflation: theoretical paradigm consistent with cosmological observations

a small region of space becomes fast exponentially large \Rightarrow

explains homogeneity, isotropy and flatness problems



slow-roll region with V', V'' small compared to the de Sitter curvature

Swampland de Sitter conjecture

String theory: vacuum energy and inflation models

related to the moduli stabilisation problem

Difficulties to find dS vacua led to a conjecture:

$$rac{|
abla V|}{V} \geq c \quad ext{or} \quad \min(
abla_i
abla_j V) \leq -c' \quad ext{in Planck units}$$

with c, c' positive order 1 constants Ooguri-Palti-Shiu-Vafa '18 Dark energy: forbid dS minima but allow maxima Inflation: forbid standard slow-roll conditions

Assumptions: heuristic arguments, no quantum corrections

 \longrightarrow ongoing debate...

- Not all effective field theories can consistently coupled to gravity
- -anomaly cancellation is not sufficient
- consistent ultraviolet completion can bring non-trivial constraints
- those which do not, form the 'swampland'
- criteria \Rightarrow conjectures
- supported by arguments based on string theory and black-hole physics
- The first and most established example is the Weak Gravity Conjecture:
- gravity is the weakest force implying a minimal non-trivial charge

$$q \ge m/\sqrt{2}$$
 in Planck units $8\pi G = \kappa^2 = 1$

Arkani-Hamed, Motl, Nicolis, Vafa '06

Reissner-Nordstøm black hole

$$ds^{2} = -f(r)dt^{2} + \frac{dr^{2}}{f(r)} + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2})$$
$$f(r) = 1 - \frac{2M}{r} + \frac{Q^{2}}{r^{2}} \qquad M = \frac{m}{8\pi}, \ Q^{2} = \frac{q^{2}}{32\pi^{2}}$$

 Q^2 : repulsive electric energy, while -2M: attractive gravity force [5]

Two horizons at
$$r=r_{\pm}$$
 satisfying $f(r)=$ 0: $r_{\pm}=M\left(1\pm\sqrt{1-rac{Q^2}{M^2}}
ight)$

• $Q^2 < M^2$: two real roots with $0 < r_-$ (inner) $< r_+$ (outer horizon) r_- hides the singularity at r = 0, while between horizons t is space like

•
$$Q^2 = M^2$$
: $r_- = r_+ \Rightarrow$ extremal BH

electric and gravity forces are balanced

• $Q^2 > M^2$: complex roots, no horizon \Rightarrow naked singularity at r = 0the repulsive force is stronger than gravity and forbids BH horizons Existence of states with $Q^2 > M^2$ minimal non-trivial charge

- \Rightarrow Charged black holes can decay
- no BH remnants
- since naked singularities are forbidden by the Weak Cosmic Censorship
- Next: generalisation to de Sitter space using similar arguments

I.A.-Benakli '20

Reissner-Nordstøm black hole in de Sitter space [9]

$$ds^{2} = -f(r)dt^{2} + \frac{dr^{2}}{f(r)} + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2})$$

$$f(r) = 1 - \frac{2M}{r} + \frac{Q^{2}}{r^{2}} - \frac{\Lambda}{3}r^{2} \qquad M = \frac{m}{8\pi}, \ Q = \frac{q^{2}}{32\pi^{2}}, \ \Lambda = \frac{3}{l^{2}} = 3H^{2}$$

$$f(r) = 0 \Rightarrow 4 \text{ roots: one -ve (unphysical), one +ve, two +ve or complex}$$
Define $P(r) \equiv -r^{2}f(r) = l^{-2}r^{4} - r^{2} + 2Mr - Q^{2}$

$$\Rightarrow \text{ its discriminant } \Delta \propto -\frac{27}{l^{2}}(Ml)^{4} + (l^{2} + 36Q^{2})(Ml)^{2} - Q^{2}(l^{2} + 4Q^{2})^{2}$$

• $\Delta > 0 \Rightarrow 3$ positive roots: $0 < r_{-} < r_{+} < r_{C}$

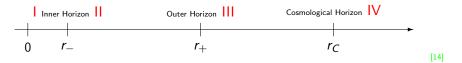
 r_C : cosmological horizon ($\rightarrow \infty$ when $\Lambda \rightarrow 0$)

•
$$\Delta = 0 \Rightarrow r_{-} = r_{+} < r_{C}$$
, or $r_{-} < r_{+} = r_{C}$

• $\Delta < 0 \Rightarrow r_{\pm}$ complex and $r_C > 0$, or $r_- > 0$ and r_+, r_C complex

Reissner-Nordstøm black hole in de Sitter space

$\Delta > 0 \Rightarrow 3$ Horizons 4 Regions



 Δ is quadratic polynomial of $M^2 I^2$ with roots

$$M_{\pm}^{2}(I,Q^{2}) = \frac{1}{54I} \left[I(I^{2} + 36Q^{2}) \pm (I^{2} - 12Q^{2})^{3/2} \right]$$

 $\Delta < 0$ outside the roots (for $\mathit{I}^2 \geq 12 \mathit{Q}^2$), or for $\mathit{I}^2 \leq 12 \mathit{Q}^2$

For $\Delta > 0 \Rightarrow$ four regions: $0 < r_{-} < r_{+} < r_{C}$

• Region IV: $r > r_C$

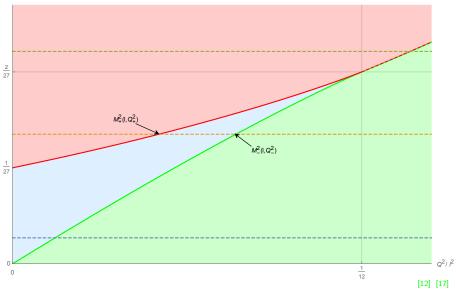
t space-like, the cosmological constant dominant over all forces

- Region III: $r_+ \le r \le r_C$ $f(r) \sim 1$ constant
- **Region II:** $r_{-} \leq r \leq r_{+}$ BH interior

t space-like, dominance of gravitational attraction

• **Region I:** $0 < r \le r_{-}$ dominance of electromagnetic repulsion

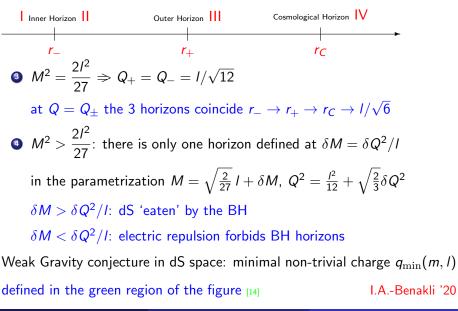
Define Q_{\pm} : $M^2_{\pm}(I, Q^2_{\pm}) = M^2$ $Q_+ \leq Q_-$



Comparison of forces

 $M^2 < \frac{l^2}{27}: Q_+ \text{ does not exist}$ As $Q \nearrow$, $Q < Q_{-}$ and $M > M_{-}(I, Q^{2}) \Rightarrow r_{-} \nearrow$, $r_{+} \searrow$, $r_{C} \nearrow$ Region II shrinks with $r_+ \rightarrow r_-$ As $Q > Q_{-}$ and $M^{2} < M^{2}_{-}(I, Q^{2}) \Rightarrow \Delta < 0$ and Region II disappears The repulsive electric force is stronger and forbids BH horizons ② $\frac{l^2}{27} \le M^2 \le \frac{2l^2}{27}$: 3 horizons ⇒ $Q \in [Q_+, Q_-], M \in [M_-, M_+]$ As $Q \searrow$ towards $Q_+ \Rightarrow r_- \searrow$, $r_+ \nearrow$ and $r_C \searrow$ Region III shrinks For $Q < Q_+$ Region III disappears and dS space is 'eaten' by the BH As $Q \nearrow$ towards $Q_{-} \Rightarrow r_{-} \nearrow$, $r_{+} \searrow$ and $r_{C} \nearrow$ Region II disappears For $Q > Q_{-}$ the electric force is strong and forbids again BH horizons

Comparison of forces



Weak gravity conjecture in dS space 14

• Small charge:
$$Q^2 \le \frac{l^2}{12} \left(q^2 \le \frac{\pi}{\Lambda G}\right)$$
:
 $M^2 < M_-^2(I, Q^2) = \frac{1}{54l} \left[l(l^2 + 36Q^2) - (l^2 - 12Q^2)^{3/2} \right]$
 \Rightarrow flat space limit: $Q^2 > M^2 + \frac{M^4}{l^2} + \mathcal{O}(1/l^4)$

• Large charge:
$$Q^2 \ge \frac{l^2}{12} \left(q^2 \ge \frac{\pi l^2}{3G}\right)$$
: $M^2 < \frac{3}{2} \frac{1}{l^2} \left(Q^2 + \frac{5}{36}l^2\right)^2$

 \Rightarrow strong curvature limit ($l \rightarrow 0$): $Q^2 > \sqrt{\frac{2}{3}} I M - \frac{5}{36} l^2$

independent of the Newton constant: $q > \left(\frac{32\pi^2}{3}\right)^{1/4}\sqrt{Im}$

Weak gravity conjecture in an accelerating Universe:

- existence of a state with charge larger than a minimal value generalising the flat space result $Q^2 > M^2$ in Planck units minimal charge depends on the mass and the Hubble constant
- small cosmological constant H < M (also $H < \frac{M_P}{\sqrt{12Q}}$) \Rightarrow power corrections to the flat result $Q^2 > M^2 + M^4 H^2$
- large cosmological constant \Rightarrow minimal charge² linear in mass $Q_{\min}^2 \sim M/H$ constraints for particle physics models of inflation