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Outline

– What?

Non-Lorentzian, Lagrangian gauge field theories with 4+ 8

(conformal)-supersymmeries (can enhance to 8+16), an

SU(1, 3) Conformal symmetry and topological charge

n =
1

8π2

!
tr(F ∧ F )

– So What?

This matches a 6D SCFT on conformally compactified

Minkowski space (Ω = − " Ω, Ω2 = −R−2)

ds2Mink =
−2dx+

"
dx− − 1

2Ωijx
idxj

#
+ dxidxi

cos2(x+/R)

∼= −2dx+(dx− − 1
2Ωijx

idxj) + dxidxi

x+ ∈ (−πR,πR) with n = Fourier mode number.



What?

6D CFT’s are not expected to have Lagrangian descriptions.

Nevertheless there are a variety of 6D multiplets [Bershoeff, van Proeyen,

Sezgin],[Ferrara, Sokachev],[Buican,Hayling,Papageorgakis] [Cordova, Dumitrescu, Intrilligator]

We reduce the abelian M5-brane on x+, find an action, make it

non-abelian and generalise. We consider:

◮ Tensor Multiplets (φ, H+
µνλ,λα) (α = 1, 2)

(φ, H+
µνλ,λα)

Null Reduction−−−−−−−−−→ (φ, A−, Ai, G
+
ij ,λα)

Adjoint valued with invariant inner-product ( , )
◮ Hyper-multiplets (Xα,χ), in any representation with

invariant inner product 〈 , 〉
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where m = 1, 2, ... labels the hyper-multiplets and

Fij = Fij −
1

2
Ω[i|kx

kFj]−

∇i = Di −
1

2
Ωijx

jD−

N.B. ∇i has torsion [∇i,∇j ] = −ΩijD−



These Lagrangians admit 4 + 8 (conformal-)supersymmetries

They have a topological conserved U(1) current

JT ∼ "tr(F ∧ F ) with associated charge

n =
1

8π2

!

R4

tr(F ∧ F )

There is an SU(1, 3) conformal symmetry which includes a

Lifshitz scaling x− → ζ2x−, xi → ζxi:

φ −→ ζ−2φ Xα
m −→ ζ−2Xα

m

A− −→ ζ−2A− Ai −→ ζAi

G+
ij −→ ζ−4G+

ij

as well as translations x− → x− + a− and

xi → xi + ai x− → x− + 1
2Ωija

ixj



Special cases:

1: If we take two hypermultiplets in the adjoint and impose

Xα
m = (Xα

m)∗ = εαβε
mnXβ

n χm = (χm)∗ = εmnχn.

then we double the supersymmetries to 8 + 16,

corresponding to the (2, 0) theory

2: If we set Ωij = 0 then the G+
ij imposes F = − " F .

– Path integral localises to quantum mechanics on the moduli

space of instantons[Mouland]

– The action admits a Galilean boost δx− = 0 , δxi = vix−

δA− = −viAi

δG+
ij = viF−j − vjF−i + εijklvkF−l



The SU(1, 3) conformal symmetry leads to a complex structure

zab = x−a − x−b +
1

2
Ωijx

i
ax

j
b +

i

4R
|xia − xib|2

and constrains the correlation functions:

〈O(1)
p1 . . .O(N)

pN
〉 = δ0,p1+···+pN

N(

a<b

(zabz̄ab)
−αab/2

)
zab
z̄ab

*pabR/N

×H

)
|zab||zcd|
|zac||zbd|

,
zabzbczca
z̄abz̄bcz̄ca

*

αab =
1

N − 2
(∆a +∆b)−

1

(N − 1)(N − 2)
(∆1 + ...+∆N )

where H is undetermined. In particular at 2-points H is a

constant and 3-points H = H(Arg(z12z23z31)).

– ∆a is the T eigenvalue

– pa is the P+ eigenvalue - a central extension of SU(1, 3)



So What?

Let us look at a 6D CFT on

ds2Mink = −2dx̂+dx̂− + δijdx̂
idx̂j

=
−2dx+

"
dx− − 1

2Ωijx
idxj

#
+ dxidxi

cos2(x+/R)

∼= −2dx+(dx− − 1
2Ωijx

idxj) + dxidxj

This CFT has an SO(2, 6) conformal group with generators

P̂µ M̂µν K̂µ D̂

Restricting to ∂+ = 0 breaks SO(2, 6) to the centrally extended

SU(1, 3) algebra that we had before (e.g. T = D̂ − M̂+−).



A 6D Minkowski space scalar operator Ô(x̂+, x̂−, x̂i) maps to

O(x+, x−, xi) = cos−∆(x+/2R)Ô(x̂+(x), x̂−(x), x̂i(x))

We can Fourier expand x+ ∈ (−πR,πR)

On(x
−, xi) =

1

2πR

! πR

−πR
dx+einx

+/RO(x+, x−, xi)

=
(−1)n

π

! ∞

−∞
du

(u− i)n+∆/2−1

(u+ i)n−∆/2+1
Ô(2Ru, x̂−(x), x̂i(x))

A key point is that this is invertable

Ô(x̂) =

)
4R2

4R2 + (x̂+)2

*∆/2 +

n∈Z

)
2R− ix̂+

2R+ ix̂+

*n

On(x
−, xi)



We can compute correlators from the 6D theory e.g. at 2-points

,
O(1)

n1
O(2)

−n2

-
=

(−1)n1+n2

π2

! ∞

−∞
d2u
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−
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i
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−
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i
2)〉
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1

(z12z̄12)
∆/2

)
z12
z̄12

*n1

And these indeed solve the 5D SU(1, 3) Ward identities for a

specific coefficient:

d(∆1, n1) = (−2R i)−∆1

)
n1 +

∆1
2 − 1

n1 − ∆1
2

*

We can also reduce 3-point functions to find the function H



Since this operator map is invertible we can also compute the

6D correlator if we know all the 5D ones:

〈Ô(1)(x̂1)Ô(2)(x̂2)〉 = cos∆
.
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−
12 + x̂i12x̂

i
12|−∆

and similarly for 3-points.



Relation to DLCQ:

– Consider a Zk ‘orbifold’ by restricting to modes n ∈ kZ.

– This corresponds to changing the coupling in the gauge

theory g2YM ∝ R/k

– Alternatively sending R, k → ∞ with R+ = R/k fixed sends

Ω → 0, reduces to QM on Instanton moduli space, and

hence leads to the DLCQ setup: x+ ∼ x+ + 2πR+

– N -point functions can be reduced: no spatial fall-off but the

oscillating part remains e.g. at 2-points [Aharony, Berkooz, Seiberg]

,
O(1),DCLQ

n O(2),DCLQ
−n

-
∝

"
x−12

#−∆
exp

)
in

2R+

|xi12|2

x−12

*



Conclusions

– Novel 5D gauge theories with 4/8+8/16 (conformal)

supersymmetries corresponding to (1,0)/(2,0) 6D SCFT’s

on conformally compactified Minkowski space.

– non-Lorentzian Liftshitz field theories with a (centrally

extended) SU(1, 3) conformal group and a KK-like tower of

states graded by instanton number

– Interesting in their own right but we explored how they can

capture the full 6D correlators

– M5-brane analogue of ABJM:

M2 : SU(4) +monopoles → SO(8)

M5 : SU(1, 3) + instantons → SO(2, 6)

– Offers a regularised and invertable DLCQ description



Thank You



In detail the non-zero commutators of the SU(1, 3) algebra are

[Mi+, Pj ] = −δijP+ − 1
2ΩijT − 2

RδijB + Ωikη
I
jkC

I

[T, P−] = −2P−

[T,K+] = 2K+

[K+, P−] = −2T

[P−,Mi+] = Pi

[Mi+,Mj+] = −1
2ΩijK+

[T, Pi] = −Pi

[T,Mi+] = Mi+

[Pi, Pj ] = −ΩijP−

[CI , CJ ] = −εIJKCK

Here B,CI , I = 1, 2, 3 are spatial rotations that preserve Ω and

P+ is a central extension.



Future Directions

– Try to perform computations in the 5D theory

– Find conditions for which 5D actions lift to 6D

– Understand the role of instanton operators

[NL,Papageogakis,Schmidt-Sommerfeld],[Tachikawa]

– Understand the F = − " F constraint

– Apply the conformal compactification to other dimensions

with known Lagrangians and maybe make contact with

other works [Beem,Lemos, Liendo, Rastelli, van Rees],[Baiguera,

Harmark,Wintergerst],[Harmark, Hartong, Menculini, Obers, Yan]


