Lorentzian Uses of Non-Lorentzian Theories

Neil Lambert
BSM 2021
Zewail City and Sabancı Universities
29 March 2021

2012.06869, 1912.02638 \bar{w} A. Lipstein, R. Mouland and P. Richmond 2011.06968, $2005.14331 \bar{w}$ with T. Orchard 1904.07547 \bar{w} A. Lipstein and P. Richmond 1904.05071 w R. Mouland $1808.02948 \bar{w}$ M. Owen

Outline

- What?

Non-Lorentzian, Lagrangian gauge field theories with 4+8 (conformal)-supersymmeries (can enhance to 8+16), an $S U(1,3)$ Conformal symmetry and topological charge

$$
n=\frac{1}{8 \pi^{2}} \int \operatorname{tr}(F \wedge F)
$$

- So What?

This matches a 6D SCFT on conformally compactified Minkowski space ($\Omega=-\star \Omega, \Omega^{2}=-R^{-2}$)

$$
\begin{aligned}
d s_{M i n k}^{2} & =\frac{-2 d x^{+}\left(d x^{-}-\frac{1}{2} \Omega_{i j} x^{i} d x^{j}\right)+d x^{i} d x^{i}}{\cos ^{2}\left(x^{+} / R\right)} \\
& \cong-2 d x^{+}\left(d x^{-}-\frac{1}{2} \Omega_{i j} x^{i} d x^{j}\right)+d x^{i} d x^{i}
\end{aligned}
$$

$x^{+} \in(-\pi R, \pi R)$ with $n=$ Fourier mode number.

What?

6D CFT's are not expected to have Lagrangian descriptions.

Nevertheless there are a variety of 6D multiplets [Bershoeff, van Proeyen,
Sezgin],[Ferrara, Sokachev],[Buican,Hayling,Papageorgakis] [Cordova, Dumitrescu, Intrilligator]

We reduce the abelian M5-brane on x^{+}, find an action, make it non-abelian and generalise. We consider:

- Tensor Multiplets $\left(\phi, H_{\mu \nu \lambda}^{+}, \lambda_{\alpha}\right)(\alpha=1,2)$

$$
\left(\phi, H_{\mu \nu \lambda}^{+}, \lambda_{\alpha}\right) \xrightarrow{\text { Null Reduction }}\left(\phi, A_{-}, A_{i}, G_{i j}^{+}, \lambda_{\alpha}\right)
$$

Adjoint valued with invariant inner-product (,)

- Hyper-multiplets $\left(X^{\alpha}, \chi\right)$, in any representation with invariant inner product \langle,

$$
\begin{aligned}
S= & \frac{1}{g_{Y M}^{2}} \int d x^{-} d^{4} x\left[\frac{1}{2}\left(F_{i-}, F_{i-}\right)+\frac{1}{2}\left(\mathcal{F}_{i j}, G_{i j}^{+}\right)-\frac{1}{2}\left(\nabla_{i} \phi, \nabla_{i} \phi\right)\right. \\
& -\left\langle\nabla_{i} X_{\alpha}{ }^{m}, \nabla_{i} X^{\alpha}{ }_{m}\right\rangle-\frac{1}{2}\left(\bar{\lambda}^{\alpha}, \gamma_{+} D_{-} \lambda_{\alpha}\right)+\frac{1}{2}\left(\bar{\lambda}^{\alpha}, \gamma_{i} \nabla_{i} \lambda_{\alpha}\right) \\
& -\frac{1}{2}\left\langle\bar{\chi}^{m}, \gamma_{+} D_{-} \chi_{m}\right\rangle+\frac{1}{2}\left\langle\bar{\chi}^{m}, \gamma_{i} \nabla_{i} \chi_{m}\right\rangle-\frac{i}{2}\left(\bar{\lambda}^{\alpha} \gamma_{+},\left[\phi, \lambda_{\alpha}\right]\right) \\
& \left.+\frac{i}{2}\left\langle\bar{\chi}^{m} \gamma_{+}, \phi\left(\chi_{m}\right)\right\rangle+i\left\langle\bar{\chi}^{m} \gamma_{+}, \lambda_{\alpha}\left(X^{\alpha}{ }_{m}\right)\right\rangle-i\left\langle\overline{\lambda^{\alpha}}\left(X_{\alpha}{ }^{m}\right), \gamma_{+} \chi_{m}\right\rangle\right]
\end{aligned}
$$

where $m=1,2, \ldots$ labels the hyper-multiplets and

$$
\begin{aligned}
\mathcal{F}_{i j} & =F_{i j}-\frac{1}{2} \Omega_{[i \mid k} x^{k} F_{j]-} \\
\nabla_{i} & =D_{i}-\frac{1}{2} \Omega_{i j} x^{j} D_{-}
\end{aligned}
$$

N.B. ∇_{i} has torsion $\left[\nabla_{i}, \nabla_{j}\right]=-\Omega_{i j} D_{-}$

These Lagrangians admit $4+8$ (conformal-)supersymmetries

They have a topological conserved $U(1)$ current
$J_{T} \sim \star \operatorname{tr}(F \wedge F)$ with associated charge

$$
n=\frac{1}{8 \pi^{2}} \int_{\mathbb{R}^{4}} \operatorname{tr}(F \wedge F)
$$

There is an $S U(1,3)$ conformal symmetry which includes a Lifshitz scaling $x^{-} \rightarrow \zeta^{2} x^{-}, x^{i} \rightarrow \zeta x^{i}$:

$$
\begin{array}{rr}
\phi & \longrightarrow \zeta^{-2} \phi
\end{array} \quad X_{m}^{\alpha} \longrightarrow \zeta^{-2} X_{m}^{\alpha}
$$

as well as translations $x^{-} \rightarrow x^{-}+a^{-}$and

$$
x^{i} \rightarrow x^{i}+a^{i} \quad x^{-} \rightarrow x^{-}+\frac{1}{2} \Omega_{i j} a^{i} x^{j}
$$

Special cases:

1: If we take two hypermultiplets in the adjoint and impose

$$
X_{\alpha}^{m}=\left(X_{m}^{\alpha}\right)^{*}=\varepsilon_{\alpha \beta} \varepsilon^{m n} X_{n}^{\beta} \quad \chi^{m}=\left(\chi_{m}\right)^{*}=\varepsilon^{m n} \chi_{n}
$$

then we double the supersymmetries to $8+16$, corresponding to the $(2,0)$ theory
2: If we set $\Omega_{i j}=0$ then the $G_{i j}^{+}$imposes $F=-\star F$.

- Path integral localises to quantum mechanics on the moduli space of instantons[Mouland]
- The action admits a Galilean boost $\delta x^{-}=0, \delta x^{i}=v^{i} x^{-}$

$$
\begin{aligned}
& \delta A_{-}=-v_{i} A_{i} \\
& \delta G_{i j}^{+}=v_{i} F_{-j}-v_{j} F_{-i}+\varepsilon_{i j k l} v_{k} F_{-l}
\end{aligned}
$$

The $S U(1,3)$ conformal symmetry leads to a complex structure

$$
z_{a b}=x_{a}^{-}-x_{b}^{-}+\frac{1}{2} \Omega_{i j} x_{a}^{i} x_{b}^{j}+\frac{i}{4 R}\left|x_{a}^{i}-x_{b}^{i}\right|^{2}
$$

and constrains the correlation functions:

$$
\begin{array}{r}
\left\langle\mathcal{O}_{p_{1}}^{(1)} \ldots \mathcal{O}_{p_{N}}^{(N)}\right\rangle=\delta_{0, p_{1}+\cdots+p_{N}} \prod_{a<b}^{N}\left(z_{a b} \bar{z}_{a b}\right)^{-\alpha_{a b} / 2}\left(\frac{z_{a b}}{\bar{z}_{a b}}\right)^{p_{a b} R / N} \\
\times H\left(\frac{\left|z_{a b}\right|\left|z_{c d}\right|}{\left|z_{a c}\right|\left|z_{b d}\right|}, \frac{z_{a b} z_{b c} z_{c a}}{\bar{z}_{a b} \bar{z}_{b c} \bar{z}_{c a}}\right) \\
\alpha_{a b}=\frac{1}{N-2}\left(\Delta_{a}+\Delta_{b}\right)-\frac{1}{(N-1)(N-2)}\left(\Delta_{1}+\ldots+\Delta_{N}\right)
\end{array}
$$

where H is undetermined. In particular at 2-points H is a constant and 3-points $H=H\left(\operatorname{Arg}\left(z_{12} z_{23} z_{31}\right)\right)$.
$-\Delta_{a}$ is the T eigenvalue

- p_{a} is the P_{+}eigenvalue - a central extension of $S U(1,3)$

So What?

Let us look at a 6D CFT on

$$
\begin{aligned}
d s_{\text {Mink }}^{2} & =-2 d \hat{x}^{+} d \hat{x}^{-}+\delta_{i j} d \hat{x}^{i} d \hat{x}^{j} \\
& =\frac{-2 d x^{+}\left(d x^{-}-\frac{1}{2} \Omega_{i j} x^{i} d x^{j}\right)+d x^{i} d x^{i}}{\cos ^{2}\left(x^{+} / R\right)} \\
& \cong-2 d x^{+}\left(d x^{-}-\frac{1}{2} \Omega_{i j} x^{i} d x^{j}\right)+d x^{i} d x^{j}
\end{aligned}
$$

This CFT has an $S O(2,6)$ conformal group with generators

$$
\hat{P}_{\mu} \quad \hat{M}_{\mu \nu} \quad \hat{K}_{\mu} \quad \hat{D}
$$

Restricting to $\partial_{+}=0$ breaks $S O(2,6)$ to the centrally extended $S U(1,3)$ algebra that we had before (e.g. $T=\hat{D}-\hat{M}_{+-}$).

A 6D Minkowski space scalar operator $\hat{\mathcal{O}}\left(\hat{x}^{+}, \hat{x}^{-}, \hat{x}^{i}\right)$ maps to

$$
\mathcal{O}\left(x^{+}, x^{-}, x^{i}\right)=\cos ^{-\Delta}\left(x^{+} / 2 R\right) \hat{\mathcal{O}}\left(\hat{x}^{+}(x), \hat{x}^{-}(x), \hat{x}^{i}(x)\right)
$$

We can Fourier expand $x^{+} \in(-\pi R, \pi R)$

$$
\begin{aligned}
\mathcal{O}_{n}\left(x^{-}, x^{i}\right) & =\frac{1}{2 \pi R} \int_{-\pi R}^{\pi R} d x^{+} e^{i n x^{+} / R} \mathcal{O}\left(x^{+}, x^{-}, x^{i}\right) \\
& =\frac{(-1)^{n}}{\pi} \int_{-\infty}^{\infty} d u \frac{(u-i)^{n+\Delta / 2-1}}{(u+i)^{n-\Delta / 2+1}} \hat{\mathcal{O}}\left(2 R u, \hat{x}^{-}(x), \hat{x}^{i}(x)\right)
\end{aligned}
$$

A key point is that this is invertable

$$
\hat{\mathcal{O}}(\hat{x})=\left(\frac{4 R^{2}}{4 R^{2}+\left(\hat{x}^{+}\right)^{2}}\right)^{\Delta / 2} \sum_{n \in \mathbb{Z}}\left(\frac{2 R-i \hat{x}^{+}}{2 R+i \hat{x}^{+}}\right)^{n} \mathcal{O}_{n}\left(x^{-}, x^{i}\right)
$$

We can compute correlators from the 6D theory e.g. at 2-points

$$
\begin{aligned}
\left\langle\mathcal{O}_{n_{1}}^{(1)} \mathcal{O}_{-n_{2}}^{(2)}\right\rangle= & \frac{(-1)^{n_{1}+n_{2}}}{\pi^{2}} \int_{-\infty}^{\infty} d^{2} u \prod_{a=1}^{2} \frac{\left(u_{a}-i\right)^{n_{a}+\Delta / 2-1}}{\left(u_{a}+i\right)^{n_{a}-\Delta / 2+1}} \\
& \times\left\langle\hat{\mathcal{O}}^{(1)}\left(2 R u_{1}, \hat{x}_{1}^{-}, \hat{x}_{1}^{i}\right) \hat{\mathcal{O}}^{(2)}\left(2 R u_{2}, \hat{x}_{2}^{-}, \hat{x}_{2}^{i}\right)\right\rangle \\
= & \delta_{n_{1},-n_{2}} d\left(\Delta_{1}, n_{1}\right) \hat{C}_{12} \frac{1}{\left(z_{12} \bar{z}_{12}\right)^{\Delta / 2}}\left(\frac{z_{12}}{\bar{z}_{12}}\right)^{n_{1}}
\end{aligned}
$$

And these indeed solve the $5 \mathrm{D} S U(1,3)$ Ward identities for a specific coefficient:

$$
d\left(\Delta_{1}, n_{1}\right)=(-2 R i)^{-\Delta_{1}}\binom{n_{1}+\frac{\Delta_{1}}{2}-1}{n_{1}-\frac{\Delta_{1}}{2}}
$$

We can also reduce 3-point functions to find the function H

Since this operator map is invertible we can also compute the 6D correlator if we know all the 5D ones:

$$
\begin{aligned}
& \left\langle\hat{\mathcal{O}}^{(1)}\left(\hat{x}_{1}\right) \hat{\mathcal{O}}^{(2)}\left(\hat{x}_{2}\right)\right\rangle=\cos ^{\Delta}\left(\frac{x_{1}^{+}}{2 R}\right) \cos ^{\Delta}\left(\frac{x_{2}^{+}}{2 R}\right)\left\langle\mathcal{O}\left(x_{1}\left(\hat{x}_{1}\right)\right) \mathcal{O}\left(x_{2}\left(\hat{x}_{2}\right)\right)\right\rangle \\
& =\cos ^{\Delta}\left(\frac{x_{1}^{+}}{2 R}\right) \cos ^{\Delta}\left(\frac{x_{2}^{+}}{2 R}\right) \sum_{n=\Delta / 2}^{\infty} e^{-i n x_{12}^{+} / R}\left\langle\mathcal{O}_{n}\left(x_{1}^{-}, x_{1}^{i}\right) \mathcal{O}_{-n}\left(x_{2}^{-}, x_{2}^{i}\right)\right\rangle \\
& =\hat{C}_{12}(-2 R i)^{-\Delta} \cos ^{\Delta}\left(\frac{x_{1}^{+}}{2 R}\right) \cos ^{\Delta}\left(\frac{x_{2}^{+}}{2 R}\right)\left(z_{12} \bar{z}_{12}\right)^{-\frac{\Delta}{2}} \\
& \quad \times \sum_{n=\Delta / 2}^{\infty} e^{-i n x_{12}^{+} / R}\binom{n+\frac{\Delta}{2}-1}{n-\frac{\Delta}{2}}\left(\frac{z_{12}}{\bar{z}_{12}}\right)^{n} \\
& =\hat{C}_{12}\left[\frac{2 R i\left(\bar{z}_{12} e^{i x_{12}^{+} / 2 R}-z_{12} e^{-i x_{12}^{+} / 2 R}\right)}{\cos \left(\frac{x_{1}^{+}}{2 R}\right) \cos \left(\frac{x_{+}^{+}}{2 R}\right)}\right]^{-\Delta} \\
& =\hat{C}_{12}\left|-2 \hat{x}_{12}^{+} \hat{x}_{12}^{-}+\hat{x}_{12}^{i} \hat{x}_{12}^{i}\right|^{-\Delta}
\end{aligned}
$$

and similarly for 3-points.

Relation to DLCQ:

- Consider a \mathbb{Z}_{k} 'orbifold' by restricting to modes $n \in k \mathbb{Z}$.
- This corresponds to changing the coupling in the gauge theory $g_{Y M}^{2} \propto R / k$
- Alternatively sending $R, k \rightarrow \infty$ with $R_{+}=R / k$ fixed sends $\Omega \rightarrow 0$, reduces to QM on Instanton moduli space, and hence leads to the DLCQ setup: $x^{+} \sim x^{+}+2 \pi R_{+}$
- N-point functions can be reduced: no spatial fall-off but the oscillating part remains e.g. at 2-points [Aharony, Berkooz, Seiberg]

$$
\left\langle\mathcal{O}_{n}^{(1), \mathrm{DCLQ}} \mathcal{O}_{-n}^{(2), \mathrm{DCLQ}}\right\rangle \propto\left(x_{12}^{-}\right)^{-\Delta} \exp \left(\frac{i n}{2 R_{+}} \frac{\left|x_{12}^{i}\right|^{2}}{x_{12}^{-}}\right)
$$

Conclusions

- Novel 5D gauge theories with 4/8+8/16 (conformal) supersymmetries corresponding to $(1,0) /(2,0)$ 6D SCFT's on conformally compactified Minkowski space.
- non-Lorentzian Liftshitz field theories with a (centrally extended) $S U(1,3)$ conformal group and a KK-like tower of states graded by instanton number
- Interesting in their own right but we explored how they can capture the full 6D correlators
- M5-brane analogue of ABJM:

$$
\begin{aligned}
& M 2: S U(4)+\text { monopoles } \rightarrow S O(8) \\
& M 5: S U(1,3)+\text { instantons } \rightarrow S O(2,6)
\end{aligned}
$$

- Offers a regularised and invertable DLCQ description

Thank You

In detail the non-zero commutators of the $S U(1,3)$ algebra are

$$
\begin{aligned}
{\left[M_{i+}, P_{j}\right] } & =-\delta_{i j} P_{+}-\frac{1}{2} \Omega_{i j} T-\frac{2}{R} \delta_{i j} B+\Omega_{i k} \eta_{j k}^{I} C^{I} \\
{\left[T, P_{-}\right] } & =-2 P_{-} \\
{\left[T, K_{+}\right] } & =2 K_{+} \\
{\left[K_{+}, P_{-}\right] } & =-2 T \\
{\left[P_{-}, M_{i+}\right] } & =P_{i} \\
{\left[M_{i+}, M_{j+}\right] } & =-\frac{1}{2} \Omega_{i j} K_{+} \\
{\left[T, P_{i}\right] } & =-P_{i} \\
{\left[T, M_{i+}\right] } & =M_{i+} \\
{\left[P_{i}, P_{j}\right] } & =-\Omega_{i j} P_{-} \\
{\left[C^{I}, C^{J}\right] } & =-\varepsilon^{I J K} C^{K}
\end{aligned}
$$

Here $B, C^{I}, I=1,2,3$ are spatial rotations that preserve Ω and P_{+}is a central extension.

Future Directions

- Try to perform computations in the 5D theory
- Find conditions for which 5D actions lift to 6D
- Understand the role of instanton operators
[NL,Papageogakis,Schmidt-Sommerfeld],[Tachikawa]
- Understand the $\mathcal{F}=-\star \mathcal{F}$ constraint
- Apply the conformal compactification to other dimensions with known Lagrangians and maybe make contact with other works [Beem,Lemos, Liendo, Rastelli, van Rees],[Baiguera,

