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2. Interior Volume of black hole

 Introduction to BH interiors.

a. In Flat/ Minkowski Space-time 

 In Minkowski spacetime the interior volume of spherically symmetric 
two-sphere “S” needs to choose a space like bound surface.

 For as sphere of radius R Area = πR , V = πR 1

 If there are many space-like bounded surfaces, then

a. ∑ lie on the same simultaneity surface as S.

b. ∑ is the largest spherically symmetric bounded surface of S.

   𝛿V = 0 and 𝑉 > 𝑉

 For a sphere in For a Sphere in curved space-time there are radial
space like curves of infinite length and radial time like curves equal to
proper time.



b. In curved spacetime

 In GR, the definition of simultaneity surface is not valid in curved

spacetime (1).

Schwarzschild geometry in Eddington Finkelstein coordinates

𝑑𝑠 = −𝑓(𝑟)𝑑𝑣 + 2𝑑𝑣𝑑𝑟 + 𝑟 𝑑Ω 2

Or

𝑑𝑠 = −𝑓(𝑟)�̇� + 2�̇��̇� 𝑑𝜆 + 𝑟 𝑑Ω 3

Where 𝑑Ω = 𝑑𝜃 + sin 𝜃𝑑𝜙 and the dot represents differentiation 

with respect to 𝜆.

For space-like hypersurface −𝑓(𝑟)�̇� + 2�̇��̇� > 0

which led us 𝑑𝑠 > 0

1. M. Christodoulou and C. Rovelli, Phys. Rev. D 91, no. 6, 064046 (2015), doi:10.1103/PhysRevD.91.064046



 The proper volume of the hypersurface is

𝑉 = 4𝜋∫ 𝑑𝜆 𝑟 𝑔 𝑑𝑥 𝑑𝑥
 

= 4𝜋 ∫ 𝑑𝜆 𝑟 −𝑓 𝑟  �̇� + 2�̇��̇�
 

4

 Where the auxiliary metric on the hypersurface is

𝑑𝑠 = 𝑟 −𝑓 𝑟 𝑣̇ + 2�̇��̇� 5

 Solving the eq. (4) we gets 

= 𝜆 = ∫   6

Where A is a constant 

 By Maximizing 𝜆 for 𝑣 ≫ 𝑚, the geodesic will spent maximum time along the radius from starting to ending 

points and �̇� = 0. So,  the auxiliary metric is 

𝑑𝑠 = −𝑟 𝑓(𝑟)
 

𝑑𝑣 7



The interior volume of spherical symmetric black hole is

𝑉 = 4𝜋 −𝑟 𝑓(𝑟 )
 

𝑣 = 4𝜋𝐴 𝑣 ,  𝐴 = m 8

Maximizing  as −𝑟 𝑓 𝑟
 

= 0 ⇒ 𝑟 = 𝑚 so,

the interior volume

𝑉 = 3 3
 

𝜋𝑚 𝑣 9

For charged black hole (2), r =
±

 

, the interior volume is 

𝑉 =   27𝑀 − 36𝑀 𝑞 + 8𝑞 + 9𝑀 9𝑀 − 8𝑞
 

− 8𝑀𝑞 9𝑀 − 8𝑞
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In d-dimensional Schwarzschild black hole (3, 4)    𝑟 = 𝑟 and the volume is

𝑉 = 𝐴 𝑟 𝑣 11

(2). S-Z Han, J-Z Yang, X. Y Wang and W. B Liu. DOI: 10.1007/s10773-018-3856-6
(3). N. Bhaumik and Bihas Ranjan Majhi work DOI: 10.1142/S0217751X18500112
(4). J-Z Yang, Wen-BiaoLiu ` DOI: 10.1016/j.physletb.2018.05.050



3. Volume in the interior of axially symmetric rotating BTZ BH

• The metric of (2+1)-dimensional rotating BTZ black hole is defined as

𝑑𝑠 = −𝑓 𝑟 𝑑𝑡 + + 𝑟 𝑁 𝑟 𝑑𝑡 + 𝑑𝜙 12

Where the lapse and shift functions are

𝑓 𝑟 = −𝑚 + + , 𝑁 = , 𝐽 ≤ 𝑚𝑙 , 

Λ = − is the cosmological constant, and 𝜙 is the period ranging 0 ≤ 𝜙 ≤ 2𝜋. black hole space-time, J, m,

and l are the azimuthal angular momentum, AdS mass and AdS radius corresponding to angular velocity Ω 𝑟
respectively.

• The mass 𝑚 and Bekenstein Hawking entropy 𝑆 of BTZ rotating black hole at horizon are

𝑚 = + , 𝑆 = 2𝜋𝑟 13



•At horizon, the lapse function vanishes so the inner and outer radii are

𝑟± = 1 ± 𝑋
 

, 𝑋 = 1 −
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The coordinates singularities for rotating BTZ black hole can be defined at = 1

•Hawking temperature at horizon can be define as

𝑇 =
( ) 

 
=   15

where the dash (') represents the derivative with respect to 𝑟.

• The angular velocity around the axis of rotation in its actual form can be defined as

𝑑𝜙 = Ω r 𝑑𝑡 =
𝐽

2𝑟
dt = −N 𝑟 𝑑𝑡

• The positive heat capacity due to axially symmetric angular momentum J and constant angular
velocity Ω are

𝐶 = 𝑇 =
 

, 𝐶 = 𝑇 = 4𝜋
 



• The metric of Eq. (12) becomes

𝑑𝑠 = −𝑓𝑑𝑣 + 2𝑑𝑣𝑑𝑟 + 𝑟 𝑁 𝑟 𝑑𝑡 + 𝑑𝜙 16

Or we can write as

𝑑𝑠 = −𝑓�̇� + 2�̇��̇� 𝑑𝜆 + 𝑟 𝑁 𝑟 𝑑𝑡 + 𝑑𝜙 17

Here λ is an arbitrary parameter to define the curve. 

• Using CR analogy the maximal volume in the interior of an axially symmetric rotating BTZ is found to be

𝑉 = 2𝜋 −𝑟 𝑓(𝑟 )
 

𝑣

Where using 𝑟 =

  

  18

Which is numerically found to be 𝑟 = 0.45𝑚

𝑉 = 𝜋𝜈 −9𝐽 + 3𝐽 + 2𝑙 (2 + 4 −
 

)𝑚 (−2 + 3𝑚
 

19

This equation shows that the interior volume of BH increases with Eddington time.



Figure : Plot of 𝑀𝑎𝑥 −𝑟 𝑓(𝑟 )
 

vs . The position of maximal hyper-surface in the interior of black 

hole maximal volume reaches to 0.45m at values of 𝑙 = −1 and J = 0.5



4. Entropy of massless scalar field and its evolution relation with 
Bekenstein Hawking entropy

• The interior entropy of massless scalar field 𝜙 in the interior volume of black hole bound by the 

maximal hypersurface 𝑟 = 𝑟 can be calculated by using WKB approximation. Where the massless 

scalar field is 𝜙 = exp 𝑖𝐸𝑇 exp [𝑖𝐼(𝜆, 𝜙)](5) So, using Klein Gordon equation we get

𝐸 −
̇ ̇ ̇

𝑝 − 𝑝 = 0 20

or

𝑝 = −𝑓 𝑟 �̇� + 2�̇��̇�
 

𝐸 − 𝑝
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Where, we used 

𝑃 =
𝜕𝐼

𝜕𝜆
,  𝑃 =

𝜕𝐼

𝜕𝜙

•Using general form of calculating the total number of quantum state in black hole, we found 

g E = ∫ 𝑑𝜆𝑑𝜙𝑑𝑃 𝑑𝑃
 

 
= 𝑉 22

B. Zhang, Phys. Rev. D 92, no. 8, 081501 (2015) doi:10.1103/PhysRevD.92.081501



• From which the Free energy can be calculated as

𝐹 𝛽 = ∫ ln 1 − exp −𝛽𝐸 𝑑𝑔 𝐸 = −
 

 
23

•where 𝜁 3 is Riemann Zeta Function. Finally, the entropy of the massless scalar field can be 
obtained

𝑆 = 𝛽 = = −9𝐽 + 3𝐽 + 2𝑙 (2 + 4 −
 

)𝑚 (−2 + 3𝑚
 

𝑣 24

• This equation shows the entropy of interior scalar quantum mode is also proportional the 
Eddington time and this characteristic could change the statistical quantities in the interior of BTZ 
black hole.



5. Hawking radiation and Differential Entropy

• If this is true then we could make a relation between the interior and exterior entropy by following
Parikh(6) statement for understanding the evaporation of rotating BTZ black hole. For this purpose,
let introduce two assumptions

Black hole radiations as black body radiations

Considering the radiation emission process as quasi static.

• The first assumption could lead us to use Boltzmann law as 

= −𝜎𝐴𝑇 ⇒ 𝑑𝑣 = 𝑑𝑚 25

Where 𝐴 = 𝜋𝑙 2𝑚 𝑋 + 1
  is the area of rotating BTZ black hole and 𝛽 is the inverse Hawking 

temperature. 

6. M. K. Parikh, Phys. Rev. D 73, 124021 (2006), doi:10.1103/PhysRevD.73.124021



•While the second one guarantees us to calculate the differential form of quantum mode entropy for 
a small interval of time i.e. ≪ 1. 

• Taking the differential form of quantum mode entropy and fixing these assumptions, we get 

𝑑𝑆 = − −9𝐽 + 3𝐽 + 2𝑙 (2 + 4 −
 

)𝑚 (−2 + 3𝑚
 

𝑑𝑚 26

• In our case the black hole is axially symmetric and no work is done on the horizon of black hole. 
This means that as the interior volume is increasing with Eddington time so, there will be a large 
space in the interior of black hole to store the information lost. Hence, the first law of black hole 
thermodynamics for a axially symmetric BTZ black hole  can be written as

𝑑𝑚 = + Ω 𝑑𝐽 27



So,

𝑑𝑆 = − −9𝐽 + 3𝐽 + 2𝑙 2 + 4 −
 

𝑚 (−2 + 3𝑚
 

+ Ω 𝑑𝐽 28

• This equation gives a direct relation between the two type of entropy with a disturbing term due to 
angular momentum. As the angular momentum is conserved, hence its distortion will be small at 
horizon and will be negligibly small at 𝑟 = 𝑟 = 0.45𝑚. So, we can ignore the term Ω 𝑑𝐽 during the 
evaporation phenomena. So,  the final relation between the two entropy could be written as 

29

Where 𝐹 𝑚, 𝐽 = −9𝐽 + 3𝐽 + 2𝑙 2 + 4 −
 

𝑚 (−2 + 3𝑚
 

•As similar to black hole quantum mode entropy is directly related to interior volume, for a (2+1)-
dimensional black hole could be maximized by the factor  −𝑟 𝑓(𝑟)

  . So we call quantum mode 
entropy as maximal entropy. 



5. Results
•Numerically, the position of this maximal hyper-

surface contributing to maximal interior volume is 
found at 𝑟 = 0.45𝑚

• The scalar quantum mode entropy is found related to 
Eddington time like higher dimensional black holes.

• The plot of 𝐹 𝑚, 𝐽 vs. mass of the black hole is 
plotted as shown in the figure.

• The plot shows the evolution relation as a function of 
black hole mass and it seems similar to the power 
function of a variable, when the power is fraction 
between 0 and 1.

• The plot shows that as the BTZ black hole mass m 
increases from 0, so the slop of curve also increases. Figure 3: Plot of evolution relation 𝐹 𝑚, 𝐽 vs. mass 𝑚

for rotating BTZ black hole.



•At the beginning, the BTZ black hole mass is seem to be constant for some increase in 

evolution relation or slowly increasing but after acquiring certain mass limit, the 

evolution relation increases with increase in black hole mass continuously without any 

divergence. 

• This work not only extends our earlier work idea to lower dimension space-time but 

also confirms the Non-Evaporational character of BTZ black holes.
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