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Introduction

• Gravity is at odd with other forces of nature. 

• It has a dimensionful coupling constant: Newton’s constant.

• It is a very weak force in comparison to the standard model interactions.

• For this reason, it is usually assumed by most particle physicists that the issue of 
quantum gravity can safely be ignored at low energy. 

• However, I will show you that quantum gravity matters!



Missing ingredient in the Standard Model: dark matter
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• Can gravity/quantum gravity account 
for the shortcomings of the standard 
model?

• For example, can it say anything 
about dark matter, inflation or the 
unification of forces?

• Gravity is weak but universal, what 
can we learn about the dark universe?



What is Dark Matter?

• No candidate in the Standard Model
• Primordial black holes are not ruled out, but difficult to 

produce them.
• New particle beyond the Standard Model, typically cold dark 

matter works better than warm for structure formation.
• Spin, mass, interactions (self and with the Standard Model) are 

unknown.
• Modified gravity: can be mapped to dark matter particles that 

are gravitationally coupled to the Standard Model.
• It must be a new particle.
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Effective action for 
quantum gravity
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The Hilbert-Einstein action

receives corrections when integrating out fluctuations of the graviton 
(and any other matter fields depending on the energy under 
consideration), one obtains:
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where R, Rµ⌫ and R
µ⌫⇢� are respectively the Ricci scalar, Ricci tensor and Riemann tensor

and µi are renormalization scales. Note that each of these structures are functions of the met-

ric and they contain second order derivatives. The e↵ective action can be seen as a derivative

expansion, in full analogy to chiral perturbation theory in quantum chromodynamics. It is

obtained by integrating out the graviton and massless matter fields (see e.g. [16]). The calcu-

lation is done at the one-loop level in perturbation theory using dimensional regularization,

the divergencies of the diagrams giving rise to the non-local terms of the type R log⇤R are

absorbed in the corresponding local terms R
2 and Rµ⌫R

µ⌫ . In the following, we drop the

total derivative ⇤R as it does not a↵ect the equations of motion. Note that the Riemann

tensor squared term Rµ⌫↵�R
µ⌫↵� can be eliminated using the Gauss-Bonnet identity: this

cannot be done though for the corresponding non-local term. It is worth emphasizing that

the e↵ective action could be constrained further if we imposed new symmetries such as con-

formal invariance, see e.g. [17,18], here we choose to stick to Einstein’s formulation of gravity

as the leading order term of our e↵ective action. We shall now describe the parameters of

this e↵ective action and describe its dynamical content.

1 The parameters of the e↵ective action and its dy-

namical content

The e↵ective action contains both dimensionful and dimensionless parameters. The most

familiar one is certainly the reduced Planck scale MP which is given by
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The non-local part of the EFT
• The Wilson coefficients of the non-local operators are universal 

predictions of quantum gravity:

• The Wilson coefficients of the local operators on the other hand are not 
calculable: this is the price to pay. 7

NB: they are
calculated using

dim-reg.

All numbers should be divided by 11520 𝜋2
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where v = 246 GeV is the Higgs boson’s expectation value and ⇠ is the non-minimal coupling

of the Higgs boson. The non-minimal coupling is a free parameter unless conformal invariance

is imposed. Measurements of the properties of the Higgs boson imply that |⇠| > 2.6 ⇥ 1015
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Scalar 5(6⇠ � 1)2 �2 2

Fermion �5 8 7

Vector �50 176 �26

Graviton 250 �244 424

Table 1: Coe�cients for di↵erent fields. Note that these coe�cients have been derived by

many di↵erent authors, see e.g. [7–9,12,18–22]. All numbers should be divided by 11520⇡2.

Here, ⇠ denotes the value of the non-minimal coupling for a scalar theory. All these coe�-

cients including those for the graviton are gauge invariant. It is well known that one needs to
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3 Production of gravitational waves: local theory
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Field content of the EFT
• By linearizing the EFT (or mapping it to the Einstein frame), one can 

easily identify the field content.
• Calculating 

• we find
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Masses of the new states
• The masses are given by the poles of the Green’s function.
• We find:

– Massless spin-2 field (classical graviton)
– Massive spin-2 field with a complex mass

- Massive spin-0 field with a complex mass

- Note that the poles are complex ones,  we can identify a mass and width

- the badly behaving ones can be eliminated by a proper choice of the contour 
integrals.

9

model independent predictions of quantum gravity, see e.g. [17] and references therein. They

are related to the number of fields that have been integrated out. The non-renormalizability

of the e↵ective action is reflected in the fact that we cannot predict the coe�cients ci which,

in this framework, have to be measured in experiments or observations. There will be new ci

appearing at every order in the curvature expansion performed when deriving this e↵ective

action and we thus would have to measure an infinite number of parameters. Despite this

fact, the e↵ective theory leads to falsifiable predictions as the coe�cients bi of non-local

operators are, as explained previously, calculable.

In [11,15], it was shown how to identify the new degrees of freedom by finding the poles of

the Green’s function obtained by varying the linearized version of the action given in Eq.(1)

with respect to the metric. Besides the usual massless pole, one finds two pair of complex

poles. The complex pole for the massive spin-2 object is given by
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graviton are known: b1 = 430/(11520⇡2), b2 = �1444/(11520⇡2) and b3 = 434/(11520⇡2).

The bi are thus small and unless the ci are large, the masses m2 and m0 will be close to the
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Lambert W function
In mathematics, the Lambert W function, also called the omega function or product
logarithm, is a set of functions, namely the branches of the inverse relation of the function
f(z) = zez, where ez is the exponential function, and z is any complex number. In other words

By substituting z0 = zez into the equation above, we get the defining equation for the W
function (and for the W relation in general):

for any complex number z0.

Since the function f is not injective, the relation W is multivalued (except at 0). If we restrict
attention to real-valued W, the complex variable z is then replaced by the real variable x, and

the relation is defined only for x ≥ −1
e  and is double-valued on (−1

e ,0). The additional

constraint W ≥ −1 defines a single-valued function W0(x). We have W0(0) = 0 and

W0(−1
e ) = −1. Meanwhile, the lower branch has W ≤ −1 and is denoted W−1(x). It decreases from W−1(−1

e ) = −1 to W−1(0−) = −∞.

It can be extended to the function z = xax using the identity

The Lambert W relation cannot be expressed in terms of elementary functions.[1] It is useful in combinatorics, for instance, in the enumeration of
trees. It can be used to solve various equations involving exponentials (e.g. the maxima of the Planck, Bose–Einstein, and Fermi–Dirac
distributions) and also occurs in the solution of delay differential equations, such as y′(t) = a y(t − 1). In biochemistry, and in particular enzyme
kinetics, a closed-form solution for the time-course kinetics analysis of Michaelis–Menten kinetics is described in terms of the Lambert W
function.
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The graph of W(x) for W > −4 and x < 6. The
upper branch with W ≥ −1 is the function W0
(principal branch), the lower branch with
W ≤ −1 is the function W−1.

Main branch of the Lambert W function in the
complex plane. Note the branch cut along the
negative real axis, ending at −1

e . In this
picture, the hue of a point z is determined by
the argument of W(z), and the brightness by
the absolute value of W(z).
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example Refs. !2,28"#. These efforts to solve the problem fall
into 2 broad classes: attempts to find a mechanism for radi-
cally reducing the quantum mechanical prediction for the
vacuum energy density, or attempts to find a mechanism for
reducing the gravitational coupling to the standard vacuum
energy. The latter attempts are particularly interesting from
the standpoint of this work. Beane !3" argued that in any
local effective quantum field theory, naturalness implies new
gravitational physics at length scales of about a millimeter
that would cut off shorter distance contributions to the
vacuum energy. Sundrum !4" proposed that the graviton is a
‘‘fat’’ object with a size of about Rvac and has been exploring
how this might reduce its coupling to the vacuum energy !5",
although it is not yet clear how self-consistent this is. This
scenario makes a definite prediction that gravity ‘‘shuts off’’
at length scales below about 100 $m. In the framework of a
Yukawa ISL violation, this corresponds to %!"1 with &
'0.1 mm.

III. APPARATUS

A. General principles

To test the ISL at smaller length scales than had been
studied before, we developed a new torsion-balance instru-
ment, shown schematically in Fig. 2, that used planar test
bodies rather than cylindrical !9" or spherical !10" bodies that
had been employed previously. Our test bodies were the
‘‘missing masses’’ of holes bored into cylindrically sym-
metrical plates. In each of the two first-generation experi-
ments reported here, the active component of the torsion
pendulum was a thin ring containing 10 cylindrical holes
equally spaced around the azimuth, and the pendulum was
suspended above a uniformly rotating, circular attractor disk
containing 10 similar holes. In the absence of the holes, the
disk’s gravity would pull directly down on the ring and could
not twist it. But because of the holes, the ring was twisted by
a torque N(()!")V(()/)( where V(() is the potential
energy of the ring in the field of the disk when the disk’s
holes are displaced by an angle ( with respect to those in the

pendulum. This torque oscillated 10 times for every revolu-
tion of the disk. V(() was not a simple sinusoidal function
of ( so that rotating the attractor at frequency * produced
torques at frequencies of 10* and its integer multiples. The
10* , 20* , and 30* torques, N10 , N20 , N30 , were measured
as functions of the vertical separation between the bottom of
the pendulum and the top of the attractor +higher harmonic
twists were greatly attenuated by the inertia of the pendulum
and did not provide useful signals#. By placing the signals at
high multiples of the rotation frequency, * , we reduced
many potential systematic errors. We minimized electrostatic
interactions between the attractor and pendulum by interpos-
ing a stiff conducting membrane between the attractor and
the pendulum and surrounding the pendulum with an almost
complete Faraday cage.
The experiments were turned into approximate null mea-

surements by attaching a second, thicker, disk to the bottom
of each attractor. This disk also had 10 equally-spaced holes
bored into it, but the holes were rotated by 18 degrees com-
pared to those in the upper disk. The dimensions of these
thicker and larger-diameter holes were chosen so that the
10* Newtonian torque on the pendulum from the upper at-
tractor holes was essentially cancelled by the 10* Newton-
ian torque from the lower holes. On the other hand, torques
from a short-range interaction with a length-scale less than
the thickness of the upper attractor disk could not be can-
celled because the lower attractor was too far from the pen-
dulum ring. The 20* and 30* Newtonian torques were re-
duced much less substantially than the Newtonian 10*
torque.
Data were taken at separations ranging from s

!10.77 mm to s!137 $m, where s is the distance from the
top of the attractor to the bottom of the pendulum. The sig-
natures distinguishing conventional gravity from new short-
range physics were

+1# A characteristic shape of the Newtonian 10* torque
N10
G . The cancellation of N10

G was a strong function of s.
In Experiment I, N10

G was exactly cancelled at s
,2 mm, undercancelled for s#2 mm and overcan-
celled for s$2 mm. On the other hand, for ranges of
interest the Yukawa torque N10

Y was a monotonically de-
creasing function of s. As a result, the exact location of
the zero-crossing was very sensitive to any violation of
the ISL. In Experiment II, the cancellation occurred at
s,3.3 mm.

+2# A relatively high harmonic content of the Newtonian
torque. N20

G and N30
G were comparable to N10

G because N10
G

was highly cancelled while N20
G and N30

G torques were
not. On the other hand, N20

Y and N30
Y will be much less

important than N10
Y .

The predicted Newtonian, Yukawa and power-law torques
are shown as functions of s in Fig. 3.
We inferred the harmonic components of the torque from

the pendulum twist which we measured by reflecting a laser
beam from a mirror attached to the pendulum body. These
measured torques were then compared to calculations of the
expected Newtonian and possible Yukawa and power-law ef-

FIG. 2. +Color online# Torsion pendulums and rotating attractors
used in Experiments I +left# and II +right#. The active components
are shaded. For clarity, we show an unrealistically large vertical
separation between the pendulums and attractors, and omit the con-
ducting membranes and attractor drive mechanisms.
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Quantum gravitational correction 
to Newton’s Law

• Quantum gravitational corrections to the 
Newtonian potential of a point mass

• In the absence of accidental fine 
cancellations between both Yukawa 
terms, the current bounds imply:                                                 
m0 , m2 > (0.03 cm)−1 = 6.6 ×10−13 GeV. 

Submillimeter tests of the gravitational inverse-square law

C. D. Hoyle, D. J. Kapner, B. R. Heckel, E. G. Adelberger, J. H. Gundlach, U. Schmidt,* and H. E. Swanson
Department of Physics, Box 351560, University of Washington, Seattle, Washington 98195-1560, USA
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Motivated by a variety of theories that predict new effects, we tested the gravitational 1/r2 law at separations
between 10.77 mm and 137 #m using two different 10-fold azimuthally symmetric torsion pendulums and
rotating 10-fold symmetric attractors. Our work improves upon other experiments by up to a factor of about
100. We found no deviation from Newtonian physics at the 95% confidence level and interpret these results as
constraints on extensions of the standard model that predict Yukawa or power-law forces. We set a constraint
on the largest single extra dimension !assuming toroidal compactification and that one extra dimension is
significantly larger than all the others" of R*$160 #m, and on two equal-sized large extra dimensions of
R*$130 #m. Yukawa interactions with !%!&1 are ruled out at 95% confidence for '&197 #m. Extra-
dimensions scenarios stabilized by radions are restricted to unification masses M*&3.0 TeV/c2, regardless of
the number of large extra dimensions. We also provide new constraints on power-law potentials V(r)(r!k

with k between 2 and 5 and on the )5 couplings of pseudoscalars with m$10 meV/c2.

DOI: 10.1103/PhysRevD.70.042004 PACS number!s": 04.80.Cc, 04.80.!y

I. INTRODUCTION

A. Background

Until a few years ago, it was widely assumed that the
Newtonian inverse square law !ISL" should be valid for
length scales from infinity to roughly the Planck length RP
"!G*/c3"1.6#10!35 m, at which scale quantum effects
must become important. After all, the usual argument went,
the exponent 2 in the force law simply reflects the fact that
we live in a 3-dimensional world. A wide variety of recent
theoretical speculations, motivated in part by string-theory
considerations, have raised the possibility that fundamentally
new phenomena could occur at length scales below 1 mm.
Many of these speculations are driven by the two so-called
hierarchy problems of gravity:
The gauge hierarchy problem. Gravity is extraordinarily

weak compared to the other fundamental forces. The Planck
mass MP"!*c/G"1.2#1016 TeV/c2 is huge compared to
the electroweak scale MEW+1 TeV/c2. It has been argued
,1- that the true Planck mass, M* , could be as low as
1 TeV/c2 if some of the ‘‘extra’’ space dimensions de-
manded by string-theory are ‘‘large’’ compared to the Planck
length. It is possible that the size of some of the ‘‘large extra
dimensions’’ could be large enough to alter the gravitational
Gauss law, so that gravity would become anomalously strong
in an experimentally accessible regime ,1-.
The cosmological constant problem. The observed gravi-

tating vacuum-energy density is vanishingly small compared
to the predictions of quantum mechanics. The gravitating
energy density .vac+0.7.c , inferred from a wide variety of
astrophysical observations ,2-, is at least 1060 times smaller
than the predicted zero-point energy for a cutoff of MP . The
observed energy density corresponds to a length scale Rvac
"!,4*c/.vac/0.1 mm and an energy of !,4(*c)3.vac
/2 meV that may have fundamental significance ,3-. It has
been suggested that the apparent inability of gravity to ‘‘see’’

the vacuum energy could be explained if the effective theory
of gravity had a cutoff of +1 meV ,4,5-, so that gravity
would effectively ‘‘shut off’’ at length scales less than Rvac .
Experimental tests of the gravitational ISL also probe cer-

tain speculations about non-gravitational physics. The stan-
dard model of particle physics cannot be complete and many
ideas for extending it predict very-low-mass scalar or vector
bosons that could produce short-range exchange forces that
would appear as violations of the ISL !see, for example, an
extensive summary in Ref. ,6-".
The desire to test a basic law in a previously inaccessible,

but very interesting, regime motivated the work we report
here. Some of the work we report in this paper has already
appeared in Letter form ,7-. This paper includes additional
experimental work and an improved analysis; it supercedes
Ref. ,7-.

B. Parametrizations

It is now customary to interpret experimental tests of the
ISL as setting bounds on a possible Yukawa addition to the
familiar 1/r Newtonian potential

V!r ""!G
m1m2

r ,1$%e!r/'- , !1"

where % is a dimensionless strength parameter and ' a
length scale. The Yukawa potential is, of course, the static
limit of the interaction from exchange of a boson of mass
m"*/(c') in which case % is proportional to the squared
product of the appropriate coupling constants. This Yukawa
form is obviously appropriate for the boson-exchange forces
mentioned above. It is also a good approximation to the ef-
fects one expects from large extra dimensions until the sepa-
ration of the interacting bodies becomes comparable to or
smaller than the size of the large extra dimensions ,8-.
The ISL can also be violated by power-law potentials,

which we parametrize as*Currently at Physikalisches Institut, Heidelberg, Germany.
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Naively, kµ⌫ appears to be a ghost, we will however argue that it is to be since as a massive

spin-2 field that couples with a negative coupling constant MP to matter. The masses of

fields can be identified by studying the poles of this expression. The massive modes appear

as pairs of complex poles in the propagator. A careful reader will have noticed the minus

sign in front of the massive spin-2 mode. This is the well known ghost due to the the term

Rµ⌫R
µ⌫ . However, the corresponding state is purely classical and it does not lead to any

obvious pathology. The is simply a repulsive classical force. We will show that the emission

of this massive spin-2 wave leads to the production of wave with positive energy. This state

simply e↵ectively couples with a negative Newton’s constant to matter. It is crucial to

appreciate that this mode is purely classical and should not be quantized as it is obtained

by integrating out the quantum fluctuations of the graviton from the original action.

Using Eq.(2), it is straightforward to calculate the leading second order in curvature

quantum gravitational corrections to Newton’s potential of a point mass m. We find:
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where W (x) is the Lambert function. This e↵ective Newtonian potential is a generalization

of Stelle’s classical result [3], it includes the non-local operators as well as the local ones and

thus contains all the quantum gravitational corrections at second order in curvature. As

emphasized already, the masses correspond to pairs of complex poles in the green’s functions

of the massive spin-2 k
µ⌫ and spin-0 � states. The masses may be complex depending on

the values of the parameters ci, bi and µ, in other words they may contain a width. The

3

where s is the pendulum-to-attractor separation The torque is
proportional to the derivative !V/!" so that for a given
torque sensitivity and smallest separation smin , we expect the
constraints to have the asymptotic form

log#$%&'!3 log %"smin /%; $69&

and an asymptotic slope on a log(#) vs log(%) plot of

d log#

d log %
#!3!

smin
%

$70&

which is satisfied by our constraints shown in Fig. 34. On the
other hand, for %$d , the cancellation from the lower plate

reduces the signal from the Yukawa force and the constraints
eventually weaken with increasing % .
Our constraints improved upon the previous results shown

in Fig. 1 by a factor of up to (104, and on more recent
results )32,33* shown in Fig. 34 by up to a factor of almost
102. Our experiments are the only tests to date that reach
gravitational sensitivity for length scales less than 500 +m.
In particular, Yukawa interactions with !#!,1 are excluded
at 95% confidence for %,197 +m.

D. Constraints on power-law interactions

We constrained power-law violations of the ISL by fitting
our combined data set with a function that contained the
Newtonian term and a single power-law term. This procedure
was carried out for power-law potentials with k#2, 3, 4, and
5. The results are listed in Table XIV together with con-
straints from previous ISL tests given in Ref. )34*.

E. Constraints on couplings of massive pseudoscalars

Second-order exchange of massive pseudoscalars was
constrained by fitting the combined data set with a function
containing the only the Newtonian and massive pseudoscalar
terms. The results are listed in Table XV.

IX. SOME IMPLICATIONS OF THE RESULTS

A. Extra-dimension scenarios

The most basic constraint from this work is an upper limit
on the maximum size of an extra dimension. If we assume
that one extra dimension is much larger than all the others,

TABLE XIII. 95% confidence level constraints on Yukawa in-
teractions from the combined data set.

% $mm& # !#!

0.010 (!4.7%6.4)&109 1.0&1010

0.025 (!7.4%10.4)&104 1.6&105

0.050 (!2.2%7.9)&102 8.8&102

0.10 (0.2%1.8)&101 1.8&101

0.25 (0.9%4.0)&10!1 4.3&10!1

0.50 (1.0%4.5)&10!2 4.8&10!2

1.00 (0.1%1.1)&10!2 1.1&10!2

1.50 (!1.8%7.2)&10!3 7.9&10!3

2.50 (!5.1%5.9)&10!3 1.0&10!2

5.00 (!7.3%6.7)&10!3 1.3&10!2

10.0 (!0.7%19)&10!3 1.8&10!2

FIG. 34. $Color online& Yukawa constraints from our combined
data set as well as from other work )9–12,32,33*. The area above
the heavy curves is excluded at the 95% confidence level. Predicted
ISL violating effects from ‘‘extra dimensions’’ )1*, from dilaton
)15*, moduli )16* and radion )18* exchange, and from a conjectured
solution )4* of the cosmological constant $vacuum energy& problem
are shown as fainter lines.

TABLE XIV. 68% confidence constraints on power-law poten-
tials of the form given in Eq. $2& from this work and from previous
work tabulated in Ref. )34*.

k !-k!$this work& !-k!$previous work&

2 3.6&10!3 1.3&10!3 )9*
3 2.8&10!3 1.3&10!2 )9*
4 2.9&10!3 1.3&10!1 )10*
5 2.3&10!3 2.1&10!1 )10*

TABLE XV. 95% confidence upper bounds on !.(%)! where %
#//(mc) and m is the pseudoscalar mass.

% )mm* mc2 )meV* !.(%)!

0.02 9.85 6.2&108

0.05 3.94 2.6&103

0.10 1.97 2.8&101

0.20 0.985 1.24
0.50 0.394 8.7&10!2

1.0 0.197 2.5&10!2

2.0 0.0985 1.1&10!2

3.0 0.0657 8.0&10!3

5.0 0.0394 6.4&10!3

10.0 0.00197 5.5&10!3
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Summary of bounds on the EFT parameters
• We can describe any theory of quantum gravity below the Planck 

scale using effective field theory techniques:

• Planck scale
• LC~10-12 GeV; cosmological constant.
• M★> few TeVs from QBH searches at LHC and cosmic rays.
• Dimensionless coupling constants x, c1, c2

– c1 and c2 <1061 [xc, Hsu and Reeb (2008)]

R2 inflation requires c1=5.5 × 108 (Faulkner et al. astro-ph/0612569]).
– x < 2.6 × 1015 [xc & Atkins, 2013]

Higgs inflation requires x~104.
11



Can quantum gravity account for dark matter?

• If the massive spin-0 and spin-2 fields are components of the 
dark matter content of the universe nowadays, their masses have 
to be such that none of their partial decay widths enables these 
fields to decay faster than the current age of the universe.

• From the requirement that the lifetime of the spin-0 field is 
longer than current age of the universe, we can thus get a bound 
on c2 using the gravitational decay width. 

• We find 

and thus and a similar bound on
12

If the massive spin-0 and spin-2 fields are components of the dark matter content of the

universe nowadays, their masses have to be such that none of these partial decay widths

should enable these fields to decay faster than the current age of the universe. From the

requirement that the lifetime of the spin-0 � is longer than current age of the universe, we

can thus get a bound on c2 using the gravitational decay width. We find

⌧ = 1/� = 7.2⇥ 10�17
q

c
3
2 GeV�1

> 13.77⇥ 109y (19)

and thus c2 > 4.4⇥ 1038. The same reasoning leads to a similar bound on 3c1 + c2. We can

then deduce a maximal mass for the dark matter candidate, M0 < 0.16 GeV. Note that Eöt-

Wash [18] implies c2 < 1061, we thus have a bound 4.4⇥1038 < c2 < 1061 and 1⇥10�12 GeV <

M0 < 0.16 GeV. Again a similar bound applies to the combination 3c1 + c2 and thus to M2.

Clearly such light dark matter candidates could not decay to the massive gauge bosons of

the standard model, its charged leptons such as the electron or the quarks. They could

however decay to gluons, photons and potentially neutrinos. The decay to photons might

be of astrophysical relevance and could be observable by gamma-ray experiments.

While we have established that quantum gravity provides two new candidates for dark

matter, it remains to investigate their production mechanism. Thermal production is a pos-

sibility, but we would have to consider all higher order operators as we would need to consider

temperatures larger than the Planck mass T � MP since these objects are gravitationally

coupled to all matter fields. Also we may not want to involve temperatures above the in-

flation scale which we know is at most 1014 GeV. The weakness of the Planck-suppressed

coupling hints at the possibility of out-of-equilibrium thermal production as argued in [22].

However, the mass range allowed for the dark matter particles within that framework is given

by TeV< mDM < 1011 GeV [22] and it is not compatible with our ranges for the masses

of our candidates. The fact that our dark matter candidates are light points towards the

vacuum misalignment mechanism, see e.g. [23]. Indeed, in an expanding universe both � and

k have an e↵ective potential in which they oscillate. The amount of dark matter produced

by this mechanism becomes simply a randomly chosen initial condition for the value of the

field in our patch of the universe.

In summary, we have shown that gravity, when quantized, provides new dark matter

candidates. As these fields must live long enough to still be around in today’s universe their

masses must be light otherwise they would have decayed long ago. It is quite possible that

gravity can account for all of dark matter in the form of primordial black holes and the new

fields discussed in this paper without the need for new physics.

Acknowledgments: The work of XC is supported in part by the Science and Technology
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Quantum Gravity as Dark Matter

• Note that the Eöt-Wash experiment implies c2 < 1061.

• We thus find a  bound: 

4.4×1038 < c2 < 1061 or  1×10−12 GeV < m0 < 0.16 GeV. 

• A similar bound applies to the combination 3c1 + c2 and thus to 
m2. 
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Production of QG Dark Matter

• The fact that our dark matter candidates are light points towards 
the vacuum misalignment mechanism.

• Indeed, in an expanding universe both the spin-0 and spin-2 
fields have an effective potential in which they oscillate. 

• The amount of dark matter produced by this mechanism 
becomes simply a randomly chosen initial condition for the 
value of the field in our patch of the universe. 

• Quantum gravity could thus easily account for dark matter, 
maybe in conjunction with primordial black holes.
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Hidden sector and Dark Matter: 
quantum gravity matters

• Let’s assume that there is a hidden sector with spin 0, ½,1 or 2 
fields with potential feeble interactions with the Standard 
Model fields.

• The model is described by

• with 
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1 Introduction

A strong evidence for physics beyond the standard model of particle physics comes from the ob-
servation that 75% of the matter balance of our universe cannot be accounted for by the standard
model. Some form of non-luminous matter must exist. Despite being the most abundant form of
matter, embarrassingly little is known about dark matter and a wide range of masses and couplings
to the standard model particles are still possible. In this paper, we focus on ultralight and very
weakly coupled scalar and pseudoscalar dark matter models which have recently received a fair
share of attention and for which a large part of the parameter space can now be probed experimen-
tally [1, 2, 4–15,65].

In particular experiments that search for oscillations in the fundamental constants resulting from
the coupling of scalar or pseudoscalar dark matter with the standard model [16–24] have a great
potential of testing such models in the mass range m� 2 [10�16, 10�23]eV. The optimal sensitivity
of such experiments typically lies around 10�22 eV, and the bounds on the sensitivity are set by
the fact that the oscillation frequency is proportional to the mass of the scalar field. Masses of the
order m� ⇠ 10�16 eV correspond to oscillation times of the order T ⇠ 10 s, while masses of the
order m� ⇠ 10�23 eV correspond to oscillation times of the order T ⇠ 10 yr.

In this paper we follow the line of arguments put forward in refs. [25, 26] based on quantum
gravity to put further theoretical bounds on such searches. In particular, we exploit the fact that
dark matter will always couple gravitationally to the standard model. Therefore quantum gravity
will generate e↵ective interactions between the standard model and the hidden sector. This fact
together with current experimental bounds restricts the mass range for such weakly interacting
light particles considerably. While this is the case for singlet scalar fields, we show that this is not
the case if there are new forces in the dark matter sector.

2 Interactions Generated by Quantum Gravity

For any dark matter model we can write the following e↵ective action.

S = SEH +

Z p
|g| (LSM + LDM + Lint) d

4x, (1)

where the standard model Lagrangian and the dark matter sector Lagrangian can be written as

LSM =
X

i

ci OSM,i, (2)

LDM =
X

j

cj ODM,j , (3)

where ci, cj are dimensionless Wilson coe�cients. Interactions between the standard model particles
and those of the dark matter section can be introduced via a Lagrangian

Lint =
X

k

ck Oint,k, (4)

where again ck are dimensionless Wilson coe�cients.
Besides the “particle physics” interactions induced by the operator Oint,k, there will be some

gravitational interaction between the two sectors. Indeed, since both the standard model and the
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Quantum Gravity generates portals
• Gravity is universal.

• For every OSM,i and ODM,j, perturbative quantum gravity will generate the 
additional interactions:

• These are strongly suppressed effects.

• However, nonperturbative effects can be much more relevant.

• Non-perturbative quantum gravity effects could generate effective operators 
of any dimension. 

• However, any such operator must be suppressed by the scale of quantum 
gravity as such interactions must vanish in the limit where MP→ ∞, i.e.
when gravity decouples. 
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hidden sector couple to gravity, gravity will generate operators connecting the two sectors whether
there is an interaction operator Oint,k at tree level or not.

For every OSM,i and ODM,j , perturbative quantum gravity will generate the additional interac-
tions M�4

P
OSM,i ODM,j . We thus have

Lint =
X

k

ck Oint,k +
X

i,j

ci,j
M4

P

OSM,i ODM,j , (5)

where MP is the reduced Planck scale, which is the scale of quantum gravity and where ci,j are Wil-
son coe�cients of order unity. It is clear from eq. (5) that the interactions generated by perturbative
quantum gravity are suppressed by the reduced Planck scale to the fourth power. Therefore these
interactions are not expected to be measurable in any contemporary or near future experiment.
Hence, perturbative quantum gravity cannot yet provide any constraints to dark matter models.

Non-perturbative quantum gravity, on the other hand, can constrain dark matter models. Using
the same argument, namely that everything couples to gravity as it is universal, one can deduce
that non-perturbative quantum gravity e↵ects could generate e↵ective operators of any dimension.
However any such operator must be suppressed by the scale of quantum gravity as such interactions
must vanish in the limit where MP ! 1, i.e. when gravity decouples. We thus expect quantum
gravity induced e↵ective interactions to be of the form

X

n�0

X

k

c̃n,k OQG,n,k =
X

n�0

X

k

c̃n,k
Mn

P

OQG,n,k, (6)

where OQG,n has mass-dimension 4 and OQG,n has mass-dimension n+ 4.
As the Wilson coe�cients c̃d,k depend on the ultra-violet completion of quantum gravity, one

might be inclined to conclude that no predictions can be made until such a theory is known.
However, experience with e↵ective field theories, see discussion in [25, 26], shows that sensible
predictions on the order of magnitude of the Wilson coe�cients can be made. Quite generically,
Wilson coe�cients are expected to be of order one, if the scale of the physics generating the
interaction is known and properly normalized. In particular, there is no reason to expect an
exponential suppression as it is sometimes claimed. For example, it has been shown that there is
no exponential suppression in the production of quantum black holes in high energy collisions of
particles [27].

In the case of quantum gravity, it is known that the scale of quantum gravity is dynamical.
Naively, one might expect that the scale is the reduced Planck scale MP = 2.435 ⇥ 1018 GeV.
However it is now well understood that the scale at which quantum gravitational interactions
become relevant is MP

p
160⇡/N with N = 1/3NS + NF + 4NV where NS , NF and NV are

respectively the number of real scalar fields, Weyl fermions and vector bosons in the model [28–31].
For the standard model, this is very close to the naive reduced Planck scale. Once the suppression
scale for these operators has been properly defined there is no reason to expect a further suppression
via smaller than unity Wilson coe�cients. Furthermore, as we are considering non-perturbative
physics, the Wilson coe�cients will not be suppressed by loop factors or small coupling constants
to some power. Note that the scale of quantum gravity cannot be larger than the reduced Planck
scale as adding more fields to the theory can only lead to a lower scale of quantum gravity. We
are thus being as conservative as possible by taking the scale of quantum gravity to be the reduced
Planck scale.

2



• Non-perturbative quantum gravity

• Note dimension four operator must be exponentially suppressed

• We thus get additional quantum contribution to all interactions whether there are 
already interactions between the hidden sector and the Standard Model or not:

17

hidden sector couple to gravity, gravity will generate operators connecting the two sectors whether
there is an interaction operator Oint,k at tree level or not.

For every OSM,i and ODM,j , perturbative quantum gravity will generate the additional interac-
tions M�4

P
OSM,i ODM,j . We thus have

Lint =
X

k

ck Oint,k +
X

i,j

ci,j
M4

P

OSM,i ODM,j , (5)

where MP is the reduced Planck scale, which is the scale of quantum gravity and where ci,j are Wil-
son coe�cients of order unity. It is clear from eq. (5) that the interactions generated by perturbative
quantum gravity are suppressed by the reduced Planck scale to the fourth power. Therefore these
interactions are not expected to be measurable in any contemporary or near future experiment.
Hence, perturbative quantum gravity cannot yet provide any constraints to dark matter models.

Non-perturbative quantum gravity, on the other hand, can constrain dark matter models. Using
the same argument, namely that everything couples to gravity as it is universal, one can deduce
that non-perturbative quantum gravity e↵ects could generate e↵ective operators of any dimension.
However any such operator must be suppressed by the scale of quantum gravity as such interactions
must vanish in the limit where MP ! 1, i.e. when gravity decouples. We thus expect quantum
gravity induced e↵ective interactions to be of the form

X

n�0

X

k

c̃n,k OQG,n,k =
X

n�0

X

k

c̃n,k
Mn

P

OQG,n,k, (6)

where OQG,n has mass-dimension 4 and OQG,n has mass-dimension n+ 4.
As the Wilson coe�cients c̃d,k depend on the ultra-violet completion of quantum gravity, one

might be inclined to conclude that no predictions can be made until such a theory is known.
However, experience with e↵ective field theories, see discussion in [25, 26], shows that sensible
predictions on the order of magnitude of the Wilson coe�cients can be made. Quite generically,
Wilson coe�cients are expected to be of order one, if the scale of the physics generating the
interaction is known and properly normalized. In particular, there is no reason to expect an
exponential suppression as it is sometimes claimed. For example, it has been shown that there is
no exponential suppression in the production of quantum black holes in high energy collisions of
particles [27].

In the case of quantum gravity, it is known that the scale of quantum gravity is dynamical.
Naively, one might expect that the scale is the reduced Planck scale MP = 2.435 ⇥ 1018 GeV.
However it is now well understood that the scale at which quantum gravitational interactions
become relevant is MP

p
160⇡/N with N = 1/3NS + NF + 4NV where NS , NF and NV are

respectively the number of real scalar fields, Weyl fermions and vector bosons in the model [28–31].
For the standard model, this is very close to the naive reduced Planck scale. Once the suppression
scale for these operators has been properly defined there is no reason to expect a further suppression
via smaller than unity Wilson coe�cients. Furthermore, as we are considering non-perturbative
physics, the Wilson coe�cients will not be suppressed by loop factors or small coupling constants
to some power. Note that the scale of quantum gravity cannot be larger than the reduced Planck
scale as adding more fields to the theory can only lead to a lower scale of quantum gravity. We
are thus being as conservative as possible by taking the scale of quantum gravity to be the reduced
Planck scale.

2

We can now combine the quantum gravitational e↵ective interactions with the non-gravitational
interactions between the standard model and the dark matter sector. These can be written as

X

k

ck Oint,k =
X

n�0

X

k

cn,k
⇤n
n,k

Oint,n,k, (7)

where ⇤n,k is the energy scale associated with this e↵ective operator. Comparing these two we find
that non-gravitationally induced e↵ective operators between the standard model and the hidden
sector are corrected by gravitationally induced operators. Therefore, excluding all operators of
dimension less than 4, we can write down an interaction Lagrangian of the form

Lint =
X

n�0

X

k

 
cn,k
⇤n
n,k

+
c̃n,k
Mn

P

!
Oint,n,k

=
X

n�0

X

k

cn,k
⇤n
n,k


1 +

c̃n,k
cn,k

✓
⇤n,k

MP

◆n�
Oint,n,k. (8)

As both c̃n,k and cn,k are expected to be of order 1, we find that the quantum gravitational
interactions dominate, if ⇤n,k > MP. Note that cn,k could contain further loop suppression factors
if the corresponding operators are generated perturbatively, but this does not change our analysis,
the important point is that as we are considering nonperturbative quantum gravitational e↵ects,
there are no loop suppression factors in c̃n,k.

Experiments looking for weakly interacting dark matter put bounds on the interaction strength
cn,k/⇤n

n,k. For some operators with n  2 these bounds have reached the Planck scale, i.e. cn,kMn
P
&

⇤n
n,k. Therefore, since cn,k, c̃n,k = O(1), it is possible to exclude various models without probing

more feeble interactions. In particular, if one operator can be excluded up to the Planck scale for
a certain mass range, quantum gravity will exclude the existence of the scalar or pseudoscalar field
for this mass range. This follows from the fact that quantum gravity will generate all possible, i.e.
allowed by gauge symmetries, operators at the Planck scale.

3 Scalar and Pseudoscalar Dark Matter

In this section we discuss the consequences of the argument from the previous section for some
specific scalar and pseudoscalar dark matter models. The most relevant models involving spinless
dark matter are dimension 4 operators. However, it is expected that the Wilson coe�cients of
dimension four operators must be exponentially suppressed by a factor e�MP/µ, as such quantum
gravity induced operators should vanish in the limit MP ! 1, i.e., when gravity decouples. Here
µ is a renormalization scale.

The next most relevant operators for a spinless dark matter boson coupling to the standard
model are dimension 5 operators. An example is an operator of the form

O1 =
c1
⇤1

�Fµ⌫F
µ⌫ , (9)

where � is the scalar dark matter field, and Fµ⌫ is the electromagnetic field tensor. The results
from the Eöt-Wash torsion pendulum experiment that searches for fifth forces [32–40] lead to the
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Hidden Sector Scalar Field
• Dimension 5 operator

• Independently of c1 from Eöt-Wash:
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following bound1
c1
⇤1

. M�1

P
if m� . 3 · 10�3 eV (10)

and slightly stronger bounds for lower masses. Moreover atomic spectroscopy measurements [41,42]
put even tighter bounds on such an interaction for masses m� . 10�18 eV, however these bounds
rely on the assumption that the scalar field is the unique component of the dark matter sector.

As argued above, quantum gravity will lead to an additional contribution

O1,QG =

✓
c1
⇤1

+
c̃1
MP

◆
�Fµ⌫F

µ⌫ , (11)

with c̃1 ⇠ O(1) as argued before. Therefore the current bounds exclude this interaction for all
masses m�  3 ⇥ 10�3eV. The resulting bounds on this interaction are summarized in figure 1,
which can be compared2 to figure 31.1 in ref. [43].

Moreover, since quantum gravity generates interactions between all the particles of the standard
model and the scalar field. Any scalar field with a mass below 3 ⇥ 10�3eV would generate a
Planck scale gravitational operator, which has not been detected by the Eöt-Wash experiment.
Therefore the derived bound does not exclusively apply to models containing the non-gravitationally
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Hidden Sector Pseudoscalar
• Dimension 5 operator

• Magnetometry measurements:
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correction

O2,QG =

✓
c2
⇤2

+
c̃2
MP

◆
aGµ⌫G̃

µ⌫ , (12)

where c̃2 ⇠ O(1) and Gµ⌫ is the usual gluonic field strength and G̃µ⌫ its dual. Magnetometry
measurements [23] constrain the strength of this interaction by

c2
⇤2

+
c̃2
MP

. M�1

P
if ma . 5 · 10�21 eV. (13)

Therefore, any dark matter model containing scalar axion-like fields of masses ma . 10�21 eV
is excluded. The result for this particular interaction are summarized in figure 2, which can be
compared to figure 4 in ref. [23] and figure 31.5 in ref. [43]. Note that this bound assumes that all
of dark matter is described by the axion-like-particle a. It is possible to relax this bound if dark
matter has multiple components.

On the other hand, for interactions of the form

O3,QG =

✓
c3
⇤3

+
c̃3
MP

◆
aFµ⌫ F̃

µ⌫ , (14)

with c̃3 ⇠ O(1), the bounds are much weaker3. Therefore, there is still a large parameter space to
explore. However, the bound (13) excludes axion like particles with masses below 10�21 eV, because
of the universality of gravity: one cannot have the interaction aFµ⌫ F̃µ⌫ without the interaction
aGµ⌫G̃µ⌫ .

Furthermore, there is no reason why parity symmetry would be preserved by quantum gravita-
tional interactions, see e.g. [61,62]. Indeed, it is not a gauge interaction. In this case, the operators

O4 =
c̃4
MP

aGµ⌫G
µ⌫ , (15)

and

O5 =
c̃5
MP

aFµ⌫F
µ⌫ , (16)

which are parity violating will be generated. As before we expect c̃4 ⇠ O(1) and c̃5 ⇠ O(1). These
operators lead to a Yukawa-type interaction and thus to a fifth force. Therefore, if quantum gravity
violates parity, axion-like-particle with masses ma . 3⇥ 10�3 eV are excluded. As shown in figure
3, this reduces the parameter space for axion models massively.

Another possible interaction of a spinless dark matter boson coupling to the standard model is
a dimension 6 interaction of the form

O6,QG =

✓
c6
⇤2

6

+
c̃6
M2

P

◆
�2 Fµ⌫F

µ⌫ , (17)

which does not distinguish between scalars and pseudoscalars, as parity is automatically conserved.
Again we have c̃6 ⇠ O(1). Atomic spectroscopy measurements [18, 22] constrain the strength of
this interaction by

c6
⇤2

6

+
c̃6
M2

P

. M�2

P
if m� . 2 · 10�22 eV. (18)

3cf. Figure 31.4 in ref. [43].
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Gauged scalar field
• To avoid bound from quantum gravity, one needs to impose a gauge 

symmetry in the hidden sector:

• From requirement that the field is DM, one excludes: 
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constant. A change of the hyperfine constant within the last Hubble time, implies the existence of a
scalar field with a very light mass of the order of the present Hubble scale H = 10�33 eV [64]. This
is ruled out because of quantum gravity. If a time variation of the hyperfine constant is observed,
we can safely conclude that it is not due to such a scalar field or dark matter.

Also, it had already been pointed out that the axion is not a valid solution to the strong CP
problem of quantum chromodynamics because quantum gravitational e↵ects would destabilize its
potential [61, 62], our results imply that the quantum chromodynamics axion is ruled out for most
of its parameter range because of quantum gravity if parity is, as expected, violated by quantum
gravitational e↵ects.

Obviously there is a well known mechanism to avoid the bound from the Eöt-Wash experiment
namely the screening mechanism. However, if the masses of light scalar fields were screened by
the matter density on Earth thereby increasing their masses on Earth, they would also be heavy
for atomic clocks and quantum sensor experiments based on Earth and would thus not lead to the
usual signatures mimicking a time variation of fundamental constants. Interestingly, this could be
probed by putting atomic clocks or quantum sensor experiments on a satellite where the screening
mechanism would be ine�cient.

While we focussed thus far on scalar and pseudoscalar fields which are singlets under gauge
symmetries, it is possible to avoid some of the bounds from quantum gravity discussed above if we
consider scalar or pseudoscalar fields that are gauged under some new gauge group, as gauge sym-
metries are preserved by quantum gravity. In that case, the only relevant operators are dimension
6 ones of the type

O7,QG =

✓
c7
⇤2

7

+
c̃7
M2

P

◆
� · �Fµ⌫F

µ⌫ , (19)

where � is a scalar or pseudoscalar field gauged under some new gauge group of the dark matter
sector and � · � is a scalar under that gauge symmetry. We find

c7
⇤2

7

+
c̃7
M2

P

. M�2

P
if m� . 2 · 10�22 eV. (20)

in which case we can only exclude massesm� . 10�22 eV for scalar and pseudoscalar fields (orm� .
10�21 eV if we use the bound from galaxy formation, quasar lensing and stellar streams [46–51]).
If atomic clocks or quantum sensor experiments were to discover such scalar or pseudoscalar fields,
they would not only have discovered dark matter but also proven the existence of a new gauge force
in the dark matter sector. The results are summarized in figure 5. For quintessence fields, the e↵ect
would be of order (��/MP)2 and thus more suppressed than usually assumed.
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constant. A change of the hyperfine constant within the last Hubble time, implies the existence of a
scalar field with a very light mass of the order of the present Hubble scale H = 10�33 eV [64]. This
is ruled out because of quantum gravity. If a time variation of the hyperfine constant is observed,
we can safely conclude that it is not due to such a scalar field or dark matter.

Also, it had already been pointed out that the axion is not a valid solution to the strong CP
problem of quantum chromodynamics because quantum gravitational e↵ects would destabilize its
potential [61, 62], our results imply that the quantum chromodynamics axion is ruled out for most
of its parameter range because of quantum gravity if parity is, as expected, violated by quantum
gravitational e↵ects.

Obviously there is a well known mechanism to avoid the bound from the Eöt-Wash experiment
namely the screening mechanism. However, if the masses of light scalar fields were screened by
the matter density on Earth thereby increasing their masses on Earth, they would also be heavy
for atomic clocks and quantum sensor experiments based on Earth and would thus not lead to the
usual signatures mimicking a time variation of fundamental constants. Interestingly, this could be
probed by putting atomic clocks or quantum sensor experiments on a satellite where the screening
mechanism would be ine�cient.

While we focussed thus far on scalar and pseudoscalar fields which are singlets under gauge
symmetries, it is possible to avoid some of the bounds from quantum gravity discussed above if we
consider scalar or pseudoscalar fields that are gauged under some new gauge group, as gauge sym-
metries are preserved by quantum gravity. In that case, the only relevant operators are dimension
6 ones of the type

O7,QG =
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c̃7
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µ⌫ , (19)

where � is a scalar or pseudoscalar field gauged under some new gauge group of the dark matter
sector and � · � is a scalar under that gauge symmetry. We find

c7
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7

+
c̃7
M2
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. M�2

P
if m� . 2 · 10�22 eV. (20)

in which case we can only exclude massesm� . 10�22 eV for scalar and pseudoscalar fields (orm� .
10�21 eV if we use the bound from galaxy formation, quasar lensing and stellar streams [46–51]).
If atomic clocks or quantum sensor experiments were to discover such scalar or pseudoscalar fields,
they would not only have discovered dark matter but also proven the existence of a new gauge force
in the dark matter sector. The results are summarized in figure 5. For quintessence fields, the e↵ect
would be of order (��/MP)2 and thus more suppressed than usually assumed.
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Quantum Gravity also leads to DM 
decay!

• Quantum gravity operators will lead to a decay of DM particles. 

• We can thus get an upper bound on their masses to insure stability with 
respect to the age of the universe.

• Together with previous bounds we get a mass range for singlet dark matter 
particles.

• Singlet scalar fields:

• Singlet pseudoscalars
– Parity conserving quantum gravity:

– Parity violating quantum gravity:
22

where � is the scalar dark matter field, and Fµ⌫ is the electromagnetic field tensor. We note that
there are solid arguments showing that the Wilson coe�cient c1 is of order one [21].

The results from the Eöt-Wash torsion pendulum experiment that searches for fifth forces [10–18]
imply that m� & 10�3 eV [19–21]. The same operator can lead to the decay of the dark matter
scalar [28, 29] with a decay width � ⇠ m3

�/(4⇡M
2
P ) and lead to an upper bound m� . 107eV from

the requirement that the dark matter candidate lives long enough to still be present in today’s
universe. Quantum gravity thus enables to restrict the mass of any singlet scalar particle to be in
the range:

10�3eV . m� . 107eV, (2)

independently of its potential non-gravitational couplings to Standard Model particles or self-
interactions. Note that these bounds would not apply to a gauged scalar field as only dimension
six operators would be generated by quantum gravity. In that case, one has m� & 10�22eV [21],
and the upper bound disappears.

The same bound applies to the mass of a pseudo-scalar dark matter candidate, an axion like
particle, a if quantum gravity violates parity (and time reversal invariance) [21]

10�3eV . ma . 107eV. (3)

On the other hand, if quantum gravity preserves parity, we have to consider the operator

Oa =
ca
MP

a F̃µ⌫F
µ⌫ . (4)

For an axion-like-particle, we then find [21,28]

10�21eV . ma . 107eV, (5)

for parity conserving quantum gravity. The upper bound comes from the requirement that the
particle is long-lived in comparison to the age of the universe and the lower bound is derived from
magnetometry searches [21, 30].

For spin 1/2 fermions  , quantum gravity leads to an upper bound on the mass of the dark
matter candidate [28, 29, 31] as it could decay to the Standard Model fields, while a lower bound
comes from the Pauli exclusion principle. We consider the operator [28, 29]:

O =
c 
MP

 ̄H̃† /DL, (6)

where H is the Higgs doublet of the Standard Model with H̃ = �i�2H⇤. This operator implies
that the singlet right-handed fermion  can decay to an o↵-shell Z boson and a neutrino, the
Z boson then decays to two light fermions. Requiring that the fermion singlet lives long enough
to still be present today imposes an upper bound on its mass. One finds m < 1010eV using
� = v2G2

Fm
5
 /(192⇡

3M2
P ) where GF is the Fermi constant and v = 246 GeV the electroweak

vacuum expectation value.
Since fermions cannot be in the same state, only a limited amount of fermions can be present in

a galaxy with momenta below the escape velocity. Together with the assumption that the fermions
must account for the observed dark matter density in a typical galaxy this leads to a lower bound
on the mass of the fermions [32–34]. The bounds on the mass of the dark fermion are then given
by

102eV . m . 1010eV. (7)

2
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• For spin ½ fields, we find an upper bound on the mass from the operator

• while the Fermi-Dirac statistics leads to the famous Tremaine and Gunn lower 
bound on the mass of DM spinors.

• For spin 1 fields, we get an upper bound on the mass of vectors from

• and the lower bound comes from the requirement that the de Broglie 
wavelength fits into the smallest known type of galaxies:

• The spin-2 case is very similar to the spin 0 case and we find:
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The lower bound holds for the Standard Model, but it can be relaxed by assuming multicomponent
dark matter [35].

We now consider a vector boson dark matter V µ. The well studied dimension four operator
Fµ⌫Bµ⌫ , where Fµ⌫ is the field strength of the hypercharge photon of the Standard Model and
Bµ⌫ that of the dark photon, while generated by quantum gravity, is expected to be exponentially
suppressed [21,29]. Within the Standard Model, the only dimension five gauge invariant operator is
given by cV,5M

�1
P V µ( ̄RiH̃†�µL) but after electroweak symmetry breaking, this simply accounts

for a shift of the photon field. The next operators are of mass dimension 6 cV,6M
�2
P Vµ(H†D⌫H)Fµ⌫

or M�2
P ( ̄�µ⌫H̃† /DL)Bµ⌫ . These operators lead to dimension five operators after electroweak sym-

metry breaking but there is a chiral suppression v/MP . The only useful dimension five operator
involves the production of a graviton hµ⌫

OV =
cV
MP

hµ↵F
µ
⌫B

⌫↵ , (8)

which enables the decay of a vector dark matter to a photon and a graviton. This operator exists
in the Standard Model with the vector boson replaced by a Z-boson [36]. It is straightforward to
estimate the decay width of the V boson, one finds � ⇠ c2V m

3
V /M

2
P and we can thus find an upper

bound on the mass of a vector dark matter particle from the requirement that it is still around in
today’s universe. We find mV < 107 eV. We can get a lower bound on its mass if we assume that
all of dark matter is described by a vector particle. As for a scalar field, see e.g. [37] for a recent
review, the requirement that the boson’s de Broglie wavelength does not exceed the dark matter
halo size of the smallest dwarf galaxies gives a lower bound on its mass mV > 10�22 eV. We thus
find

10�22eV . mV . 107eV. (9)

Using the results developed in [20], it is straightforward to see that for a massive spin-2 field
dark matter field, one obtains similar bounds for its mass to that of a singlet scalar field dark matter
candidate:

10�3eV . m2 . 107eV. (10)

In this letter, we have shown that a few very well motivated theoretical concepts based on quan-
tum gravity and spin-statistics enable to constrain the masses of low spin dark matter candidates.
Quantum gravity generates operators that will lead to a decay of all dark matter candidates that
are represented by fields that are not gauged or prevented by Lorentz invariance from decaying
to Standard Model particles. This lead to an upper bound on their masses. If these dark matter
candidates are bosons, they will mediate a fifth force and we can apply bounds from the Eöt-Wash
experiment which provide a lower bound on their masses. In the case of fermion dark matter
candidates, the lower bound comes from the spin-statistics theorem.

We would like to stress that our bounds are orders of magnitude estimates. We argue that
because we are dealing with non-perturbative quantum gravity, the only relevant coupling constant
should be the Planck mass. It is however conceivable that there is a further suppression of some of
the Wilson coe�cients which could involve coupling constants of the Standard Model. For example,
c� could contain a factor g2/(4⇡) where g is the hyperfine coupling constant of the U(1) group of
the Standard Model or c could be proportional to the electron Yukawa coupling which is of the
order of 10�5. Clearly, this would impact our bounds. Here, we made the strong assumption that
the dimension five operators are of pure quantum gravitational origin.

Finally, as explained already, we emphasize that these bounds will not apply to hidden sector
fields that are gauged under some gauge symmetry whether this is a continuous or discrete gauge
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Conclusions
• We have discussed a conservative effective action for quantum 

gravity within usual QFTs such as the standard model or GUT.

• EFT techniques lead to predictions which can be confronted to 
data.

• This progress in quantum gravity enables phenomenological 
applications, e.g. dark matter.

• One cannot ignore quantum gravity, even at low energy! It could 
explain dark matter.

• We derived bounds on the masses of singlet DM particles.
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