Gravitino Thermal Production

Vassilis C. Spanos

National and Kapodistrian
University of Athens

BSM-202I: From Theory to Experiment

[Helmut Eberl, Ioannis Gialamas, VCS, arXiv 20I0.1462I (to appear in PRD)]

Outline

- Gravitino as DM
- Background of the calculation
- The setup of the calculation
- Result and cosmological consequences
- Summary

Gravitino as DM

- Gravitino is the $\mathbf{s = 3 / 2}$ superpartner of graviton. Naturally is in the spectrum of any SUGRA model [Ellis, Hagelin, Nanopoulos, Olive, Srednicki (1983), Khlopov, Linde (1984)]
* The "classic" freeze-in DM candidate particle
- Naturally escapes all the direct and indirect DM searches
- Can be produced non-thermally: (i) inflaton decays [Giudice, Riotto,Tkachev (I999); Kallosh, Kofman, Linde, Van Proeyen (2000); Nilles, Peloso, Sorbo (2001), Endo, Kawasaki, Takahashi, Yanagida (2006)] (ii) decays from unstable particles, eg NLSP decays in GDM models [Cyburt, Ellis, Field, Olive,VSC (2006); Kawasaki, Kohri, Moroi, Yotsuyanagi (2008)]
- In the later case the BBN constraints should be applied [Cyburt, Ellis, Field, Luo, Olive,VSC (2012)]
- In any case the thermal gravitino production rate is vital to apply cosmological constraints

Background of the calculation

- Effective theory of light gravitinos, only I/2 goldstino components, [Ellis, Kim, Nanopoulos (I984); Moroi, Murayama, Yamagushi, Kawasaki (I993, I994)]
- Use of Braaten, Pisarksi, Yuan method, including 3/2 components [Ellis, Nanopoulos, Olive, Rey (I996); Bolz, Buchmuller, Plumacher, Brandenburg (1998,200I); Pradler, Steffen (2007)]
- Full I-loop beyond HTL approximation [Rychkov, Strumia (2007)]
- Our calculation: corrections of errors and proper parametrisation of the result [Eberl, Gialamas, VCS, arXiv 2010.14621 (to appear in PRD)]

The setup of the calculation

The Braaten-Yuan prescription

$$
\gamma=\gamma| |_{\text {hard }}^{k^{*}<k}+\left.\gamma\right|_{\text {soft }} ^{k^{*}>k}
$$

where $\quad g T \ll k^{*} \ll T \quad$ assuming $\quad g \ll 1$

Hard part is calculated from squared matrix elements

$$
|\mathcal{M}(a b \rightarrow c \widetilde{G})|^{2}
$$

Soft part is calculated from Imaginary part of the gravitino self-energy

$$
\left.\gamma\right|_{\text {hard }} ^{k^{*}<k}=A_{\text {hard }}+B \ln \left(\frac{T}{k^{*}}\right) \quad \text { and }\left.\quad \gamma\right|_{\text {soft }} ^{k^{*}>k}=A_{\mathrm{soft}}+B^{\prime} \ln \left(\frac{k^{*}}{m_{\text {thermal }}}\right)
$$

Thus

$$
\begin{aligned}
& \gamma_{\mathrm{BY}}=\frac{3 \zeta(3)}{16 \pi^{3}} \frac{T^{6}}{M_{\mathrm{P}}^{2}} \sum_{N=1}^{3} c_{N}^{\prime} g_{N}^{2}\left(1+\frac{m_{\lambda_{N}}^{2}}{3 m_{3 / 2}^{2}}\right) \ln \left(\frac{k_{N}^{\prime}}{g_{N}}\right) \\
& c_{N}^{\prime}=(11,27,72) \quad, k_{N}^{\prime}=(1.266,1.312,1.271) \quad \text { [Pradler, Steffen (2007)] }
\end{aligned}
$$

Analytical result, but valid only for $g \ll 1$
where $\left.\quad \gamma\right|_{\text {soft }}$ is calculated in the Hard Thermal Loop (HTL) approx

The condition $g(T) \ll 1$ is not satisfied in the whole temperature range especially if $g=g_{3}$

Beyond the HTL approx

Calculate the full I-loop gravitino self-energy beyond
HTL approximation

- Calculate the so-called subtracted part of the $|\mathcal{M}|^{2}{ }^{[R y y h k o v}$,

Strumia (2007)]

The subtracted part of the squared amplitude is this that cannot be part of the gravitino self-energy

For example if $X: g g \rightarrow \tilde{g} \widetilde{G}$

which is part of
(D-graph)
where thick lines denote resumed thermal propagators

$$
\text { Thus } \quad \gamma_{3 / 2}=\gamma_{\text {sub }}+\gamma_{\mathrm{D}}+\gamma_{\mathrm{top}}
$$

X	process	$\left\|\mathcal{M}_{X, \text { full }}\right\|^{2}$	$\left\|\mathcal{M}_{X, \text { sub }}\right\|^{2}$
A	$g g \rightarrow \tilde{g} \widetilde{G}$	$4 C_{3}\left(s+2 t+2 t^{2} / s\right)$	$-2 s C_{3}$
B	$g \tilde{g} \rightarrow g \widetilde{G}$	$-4 C_{3}\left(t+2 s+2 s^{2} / t\right)$	$2 t C_{3}$
C	$\tilde{q} g \rightarrow q \widetilde{G}$	$2 s C_{3}^{\prime}$	0
D	$g q \rightarrow \tilde{q} \widetilde{G}$	$-2 t C_{3}^{\prime}$	0
E	$\tilde{q} q \rightarrow g \widetilde{G}$	$-2 t C_{3}^{\prime}$	0
F	$\tilde{g} \tilde{g} \rightarrow \tilde{g} \widetilde{G}$	$8 C_{3}\left(s^{2}+t^{2}+u^{2}\right)^{2} /(s t u)$	0
G	$q \tilde{g} \rightarrow q \widetilde{G}$	$-4 C_{3}^{\prime}\left(s+s^{2} / t\right)$	0
H	$\tilde{q} \tilde{g} \rightarrow \tilde{q} \widetilde{G}$	$-2 C_{3}^{\prime}\left(t+2 s+2 s^{2} / t\right)$	0
I	$q \tilde{q} \rightarrow \tilde{g} \widetilde{G}$	$-4 C_{3}^{\prime}\left(t+t^{2} / s\right)$	0
J	$\tilde{q} \tilde{q} \rightarrow \tilde{g} \widetilde{G}$	$2 C_{3}^{\prime}\left(s+2 t+2 t^{2} / s\right)$	0

Squared matrix elements for gravitino production in $S U(3)_{c}$ in terms of $g_{3}^{2} Y_{3} / M_{\mathrm{P}}^{2}$
$Y_{3}=1+m_{\tilde{g}}^{2} /\left(3 m_{3 / 2}^{2}\right), C_{3}=24$ and $C_{3}^{\prime}=48$

$$
\begin{aligned}
& \left|\mathcal{M}_{X, \text { full }}\right|^{2}=\left|\mathcal{M}_{X, s}+\mathcal{M}_{X, t}+\mathcal{M}_{X, u}+\mathcal{M}_{X, x}\right|^{2} \\
& \left|\mathcal{M}_{X, D}\right|^{2}=\left|\mathcal{M}_{X, s}\right|^{2}+\left|\mathcal{M}_{X, t}\right|^{2}+\left|\mathcal{M}_{X, u}\right|^{2}
\end{aligned}
$$

$$
\left|\mathcal{M}_{X, \text { sub }}\right|^{2}=\left|\mathcal{M}_{X, \text { full }}\right|^{2}-\left|\mathcal{M}_{X, D}\right|^{2}
$$

$\gamma_{\text {sub }}$

$$
\gamma=\frac{1}{(2 \pi)^{8}} \int \frac{\mathrm{~d}^{3} \mathbf{p}_{a}}{2 E_{a}} \frac{\mathrm{~d}^{3} \mathbf{p}_{b}}{2 E_{b}} \frac{\mathrm{~d}^{3} \mathbf{p}_{c}}{2 E_{c}} \frac{\mathrm{~d}^{3} \mathbf{p}_{\widetilde{G}}}{2 E_{\widetilde{G}}}|\mathcal{M}|^{2} f_{a} f_{b}\left(1 \pm f_{c}\right) \times \delta^{4}\left(P_{a}+P_{b}-P_{c}-P_{\widetilde{G}}\right) \quad f_{B \mid F}=\frac{1}{e^{\frac{E}{T}} \mp 1}
$$

$\left|\mathcal{M}_{A, \text { sub }}\right|^{2}+\left|\mathcal{M}_{B, \text { sub }}\right|^{2}=\frac{g_{N}^{2}}{M_{\mathrm{P}}^{2}}\left(1+\frac{m_{\lambda_{N}}^{2}}{3 m_{3 / 2}^{2}}\right) C_{N}(-s+2 t) \quad$ as taken from the Table with the amplitudes

Performing numerical integration

$$
\begin{aligned}
& \gamma_{\mathrm{sub}}=\frac{T^{6}}{M_{\mathrm{P}}^{2}} \sum_{N=1}^{3} g_{N}^{2}\left(1+\frac{m_{\lambda_{N}}^{2}}{3 m_{3 / 2}^{2}}\right) C_{N}\left(-\mathcal{C}_{\mathrm{BBF}}^{s}+2 \mathcal{C}_{\mathrm{BFB}}^{t}\right) \\
& \mathcal{C}_{\mathrm{BBF}}^{s}=0.25957 \times 10^{-3} \\
& \mathcal{C}_{\mathrm{BFB}}^{t}=-0.13286 \times 10^{-3} .
\end{aligned}
$$

γ_{D}

$$
\begin{aligned}
& \Pi^{<}(P)=\frac{1}{16 M_{P}^{2}} \sum_{N=1}^{3} n_{N}\left(1+\frac{m_{\lambda_{N}}^{2}}{3 m_{3 / 2}^{2}}\right) \int \frac{\mathrm{d}^{4} K}{(2 \pi)^{4}} \operatorname{Tr}\left[\not P\left[\not K, \gamma^{\mu}\right]^{*} S^{<}(Q)\left[K K, \gamma^{\nu}\right]^{*} D_{\mu \nu}^{<}(K)\right] \\
& { }^{*} S^{<}(Q)=\frac{f_{F}\left(q_{0}\right)}{2}\left[\left(\gamma_{0}-\gamma \cdot \mathbf{q} / q\right) \rho_{+}(Q)+\left(\gamma_{0}+\gamma \cdot \mathbf{q} / q\right) \rho_{-}(Q)\right] \\
& { }^{*} D_{\mu \nu}^{<}(K)=f_{B}\left(k_{0}\right)\left[\Pi_{\mu \nu}^{T} \rho_{T}(K)+\Pi_{\mu \nu}^{L} \frac{k^{2}}{K^{2}} \rho_{L}(K)+\xi \frac{K_{\mu} K_{\nu}}{K^{4}}\right]
\end{aligned}
$$

$$
\begin{aligned}
\gamma_{D}= & \int \frac{\mathrm{d}^{3} \mathbf{p}}{2 p_{0}(2 \pi)^{3}} \Pi^{<}(p) \\
\gamma_{\mathrm{D}}= & \frac{1}{4(2 \pi)^{5} M_{\mathrm{P}}^{2}} \sum_{N=1}^{3} n_{N}\left(1+\frac{m_{\lambda_{N}}^{2}}{3 m_{3 / 2}^{2}}\right) \int_{0}^{\infty} \mathrm{d} p \int_{-\infty}^{\infty} \mathrm{d} k_{0} \int_{0}^{\infty} \mathrm{d} k \int_{|k-p|}^{k+p} \mathrm{~d} q k f_{B}\left(k_{0}\right) f_{F}\left(q_{0}\right) \\
& \times\left[\rho_{L}(K) \rho_{-}(Q)(p-q)^{2}\left((p+q)^{2}-k^{2}\right)+\rho_{L}(K) \rho_{+}(Q)(p+q)^{2}\left(k^{2}-(p-q)^{2}\right)\right. \\
& +\rho_{T}(K) \rho_{-}(Q)\left(k^{2}-(p-q)^{2}\right)\left(\left(1+k_{0}^{2} / k^{2}\right)\left(k^{2}+(p+q)^{2}\right)-4 k_{0}(p+q)\right) \\
& \left.+\rho_{T}(K) \rho_{+}(Q)\left((p+q)^{2}-k^{2}\right)\left(\left(1+k_{0}^{2} / k^{2}\right)\left(k^{2}+(p-q)^{2}\right)-4 k_{0}(p-q)\right)\right]
\end{aligned}
$$

$$
\gamma_{\text {top }}=\frac{T^{6}}{M_{\mathrm{P}}^{2}} 72 \mathcal{C}_{\mathrm{BBF}}^{s} \lambda_{t}^{2}\left(1+\frac{A_{t}^{2}}{3 m_{3 / 2}^{2}}\right) \quad \mathcal{C}_{\mathrm{BBF}}^{s}=0.25957 \times 10^{-3}
$$

Result and cosmological consequences

$\gamma_{\mathrm{sub}}+\gamma_{\mathrm{D}}=\frac{3 \zeta(3)}{16 \pi^{3}} \frac{T^{6}}{M_{\mathrm{P}}^{2}} \sum_{N=1}^{3} c_{N} g_{N}^{2}\left(1+\frac{m_{\lambda_{N}}^{2}}{3 m_{3 / 2}^{2}}\right) \ln \left(\frac{k_{N}}{g_{N}}\right)$

Gauge group	c_{N}	k_{N}
$U(1)_{Y}$	41.937	0.824
$S U(2)_{L}$	68.228	1.008
$S U(3)_{c}$	21.067	6.878

Gravitino abundance

$$
Y_{3 / 2}(T) \simeq \frac{\gamma_{3 / 2}\left(T_{\mathrm{reh}}\right)}{H\left(T_{\mathrm{reh}}\right) n_{\mathrm{rad}}\left(T_{\mathrm{reh}}\right)} \frac{g_{* s}(T)}{g_{* s}\left(T_{\mathrm{reh}}\right)}
$$

$$
\Omega_{\mathrm{DM}} h^{2}=\frac{\rho_{3 / 2}\left(t_{0}\right) h^{2}}{\rho_{\mathrm{cr}}}=\frac{m_{3 / 2} Y_{3 / 2}\left(T_{0}\right) n_{\mathrm{rad}}\left(T_{0}\right) h^{2}}{\rho_{\mathrm{cr}}} \simeq 1.33 \times 10^{24} \frac{m_{3 / 2} \gamma_{3 / 2}\left(T_{\mathrm{reh}}\right)}{T_{\mathrm{reh}}^{5}}
$$

Summary

* Gravitino is natural candidate in SUGRA models for DM.
\& We calculated the gravitino thermal production rate beyond the HTL approximation.
* ${ }^{\text {k }}$ Assuming $m_{1 / 2}>750 \mathrm{GeV}$ (\sim LHC current bound), for the maximum value of $T_{\text {reh }} \sim 10^{9} \mathrm{GeV}$, we get $\mathrm{m}_{3 / 2} \sim 550 \mathrm{GeV}$. If $\mathrm{T}_{\text {reh }} \sim 10^{8} \mathrm{GeV}$ for the same $\mathrm{m}_{3 / 2}$, $\mathrm{m}_{1 / 2} \sim 3-4 \mathrm{TeV}$.
s. No-thermal gravitinos should be taken into account, but for this a particular inflation model has to assumed.

