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Gravitino as DM
Gravitino is the s=3/2 superpartner of graviton. Naturally is in the spectrum of 

any SUGRA model [Ellis, Hagelin, Nanopoulos, Olive, Srednicki (1983), Khlopov, Linde (1984)]  

The “classic” freeze-in DM candidate particle   

Naturally escapes all the direct and indirect DM searches

 Can be produced non-thermally: (i) inflaton decays [Giudice, Riotto, Tkachev (1999); Kallosh, Kofman, 

Linde, Van Proeyen (2000); Nilles, Peloso, Sorbo (2001), Endo, Kawasaki, Takahashi, Yanagida (2006)] (ii) decays from unstable 

particles, eg NLSP decays in GDM models [Cyburt, Ellis, Field, Olive, VSC (2006); Kawasaki, Kohri, Moroi, 

Yotsuyanagi (2008)]

In the later case the BBN constraints should be applied [Cyburt, Ellis, Field, Luo, Olive, VSC (2012)]

In any case the thermal gravitino production rate is vital to apply cosmological 

constraints 



Background of the calculation

Effective theory of light gravitinos, only 1/2 goldstino 
components, [Ellis, Κim, Nanopoulos (1984); Moroi, Murayama, Yamagushi, Kawasaki (1993,1994)]  

Use of Braaten, Pisarksi, Yuan method, including 3/2 
components [Ellis, Nanopoulos, Olive, Rey (1996); Bolz, Buchmuller, Plumacher, Brandenburg 

(1998,2001); Pradler, Steffen (2007)]   

Full 1-loop beyond HTL approximation  [Rychkov, Strumia (2007)]

 Our calculation: corrections of errors and proper 
parametrisation of the result [Eberl, Gialamas,  VCS, arXiv 2010.14621 (to appear in PRD)]



The setup of the calculation

The Braaten-Yuan prescription   

Hard part is calculated from squared matrix elements 
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FIG. 3. The cosmologically accepted 3� regions for the gravitino thermal abundance, for various values of the m1/2 between
750 GeV and 4 TeV. The trilinear coupling At has been ignored and the top Yukawa coupling is �t = 0.7.
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2
P is the critical energy density. H0 = 100h km/(sMpc) is the Hubble constant and T0 = 2.725K

the cosmic microwave background temperature today. The entropy degrees of freedom at the associated temperatures
are g⇤s(T0) = 43/11 and g⇤s(Treh) = 915/4. The last number equals to the e↵ective energy degrees of freedom for
H(Treh) in the MSSM too. Fig. 3 illustrates the 3� regions resulting from (19), for various values of m1/2. In this
figure the trilinear coupling At has been ignored and the top Yukawa coupling is �t = 0.7, as previously. As before,
gauge coupling unification is assumed, as well as a universal gaugino mass m1/2 at the GUT scale.

For large gravitino mass the reheating temperature is m1/2 independent, as the characteristic factor m2
�N

/(3m2
3/2)

becomes negligible for m1/2 ⌧ m3/2. Assuming that m1/2 & 750 GeV, as it is suggested by the recent LHC
data [52, 53] on gluino searches, from Fig. 3 we infer that for maximum Treh ' 109 GeV the corresponding gravitino
mass is m3/2 ' 550 GeV. Allowing for a reheating temperature an order of magnitude smaller, Treh ' 108 GeV, for
the same gravitino mass, m1/2 can go up to 3� 4 TeV.

Conclusions.– In this Letter we have calculated the gravitino thermal abundance, using the full one-loop thermally
corrected gravitino self-energy. Having rectified the main analytical formulae for the gravitino production rate, we
have computed it numerically without approximation. We o↵er a simple and useful parametrization of our final result.
In the context of minimal supergravity models, assuming gaugino mass unification, we have updated the bounds on
the reheating temperature for certain gravitino masses. In particular, saturating the current LHC gluino mass limit
mg̃ & 2100 GeV, we find that a maximum reheating temperature Treh ' 109 GeV is compatible to a gravitino mass
m3/2 ' 500� 600 GeV.

It should be noted that, trying to constrain the reheating temperature by applying the cosmological data on gravitino
DM scenarios, illuminates us whether thermal leptogenesis is a possible mechanism for generating baryon asymmetry
or not. Successful thermal leptogenesis requires high temperature, Treh & 2 ⇥ 109 GeV [54–56], which is marginally
bigger than the maximum reheating temperature obtained in our model using the lowest m1/2 mass demonstrated
in the recent LHC data [52, 53]. In any case, there are many alternative models for baryogenesis. In addition, as it
has been pointed out before, the thermal gravitino abundance is in general a part of the whole DM density and the
inclusion of other components will a↵ect the phenomenological analysis.

� = �|hard + �|soft (20)

|M(a b ! c eG)|2 (21)

Soft part is calculated from Imaginary part of the  gravitino self-energy 
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Analytical result, but valid only for 
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FIG. 3. The cosmologically accepted 3� regions for the gravitino thermal abundance, for various values of the m1/2 between
750 GeV and 4 TeV. The trilinear coupling At has been ignored and the top Yukawa coupling is �t = 0.7.

' 1.33⇥ 1024
m3/2 �3/2(Treh)

T
5
reh

, (19)

where ⇢cr = 3H2
0M

2
P is the critical energy density. H0 = 100h km/(sMpc) is the Hubble constant and T0 = 2.725K

the cosmic microwave background temperature today. The entropy degrees of freedom at the associated temperatures
are g⇤s(T0) = 43/11 and g⇤s(Treh) = 915/4. The last number equals to the e↵ective energy degrees of freedom for
H(Treh) in the MSSM too. Fig. 3 illustrates the 3� regions resulting from (19), for various values of m1/2. In this
figure the trilinear coupling At has been ignored and the top Yukawa coupling is �t = 0.7, as previously. As before,
gauge coupling unification is assumed, as well as a universal gaugino mass m1/2 at the GUT scale.

For large gravitino mass the reheating temperature is m1/2 independent, as the characteristic factor m2
�N

/(3m2
3/2)

becomes negligible for m1/2 ⌧ m3/2. Assuming that m1/2 & 750 GeV, as it is suggested by the recent LHC
data [52, 53] on gluino searches, from Fig. 3 we infer that for maximum Treh ' 109 GeV the corresponding gravitino
mass is m3/2 ' 550 GeV. Allowing for a reheating temperature an order of magnitude smaller, Treh ' 108 GeV, for
the same gravitino mass, m1/2 can go up to 3� 4 TeV.

Conclusions.– In this Letter we have calculated the gravitino thermal abundance, using the full one-loop thermally
corrected gravitino self-energy. Having rectified the main analytical formulae for the gravitino production rate, we
have computed it numerically without approximation. We o↵er a simple and useful parametrization of our final result.
In the context of minimal supergravity models, assuming gaugino mass unification, we have updated the bounds on
the reheating temperature for certain gravitino masses. In particular, saturating the current LHC gluino mass limit
mg̃ & 2100 GeV, we find that a maximum reheating temperature Treh ' 109 GeV is compatible to a gravitino mass
m3/2 ' 500� 600 GeV.

It should be noted that, trying to constrain the reheating temperature by applying the cosmological data on gravitino
DM scenarios, illuminates us whether thermal leptogenesis is a possible mechanism for generating baryon asymmetry
or not. Successful thermal leptogenesis requires high temperature, Treh & 2 ⇥ 109 GeV [54–56], which is marginally
bigger than the maximum reheating temperature obtained in our model using the lowest m1/2 mass demonstrated
in the recent LHC data [52, 53]. In any case, there are many alternative models for baryogenesis. In addition, as it
has been pointed out before, the thermal gravitino abundance is in general a part of the whole DM density and the
inclusion of other components will a↵ect the phenomenological analysis.
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where is calculated in the Hard Thermal Loop (HTL) approx 

The condition is not satisfied in the whole temperature range
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Beyond the HTL approx

Calculate the full 1-loop gravitino self-energy beyond 

HTL approximation

Calculate the so-called subtracted part of the |M|2  [Rychkov, 

Strumia (2007)]

The subtracted part of the squared  amplitude is this that cannot

be part of the gravitino self-energy 
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This process is named F in Table 1 in [? ].
There are three Feynman diagrams, with a g propagator in the s-channel (1), t-channel (2) and u-channel (3), all
connected by crossing symmetries. Here one has to be careful because M2 gets an additional minus sign from the
fermionic statistics.

M1 = � gs

4MPs
fabcv̄(k2)�µu(k1)ū(p1)�

⇢[/k1 + /k2, �
µ]v⇢(p2) , (27)

M2 =
gs

4MPt
fabcū(p1)�µu(k1)v̄(k2)�

⇢[/p1 � /k1, �
µ]v⇢(p2) , (28)

M3 = � gs

4MPu
fabcū(p1)�µu(k2)v̄(k1)�

⇢[/k2 � /p1, �
µ]v⇢(p2) . (29)

3. Amplitudes for gg ! g̃ eG

gaµ

gbν

g̃c

˜Gρ

gcλ
+

gaµ g̃c

˜Gρgbν

g̃b + g̃a

gaµ

gbν
˜Gρ

g̃c

+

˜Gρ
gbν

gaµ g̃c

FIG. 4. Feynman graphs for the process gg ! g̃ eG .

This process is named A in Table 1 in [? ].
There are four Feynman diagrams, (1): with the four-point interaction, (2): with a g propagator in the s-channel,
(3): a g̃ propagator in the t-channel, and (4): a g̃ propagator in the u-channel,

M1 = � gs

4MP

fabcū(p1)�
⇢[�µ

, �
⌫ ]v⇢(p2)✏µ(k1)✏⌫(k2) . (30)
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2
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ū(p1)�
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fabc

u�m
2

g̃
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ηa

η̄b

g̃c

˜Gρ

gcµ
+

η̄b

gcµ

ηa g̃c

˜Gρ

FIG. 5. Feynman graphs with FP-ghosts in the ⇠ = 1 gauge for the process A.

For the ⇠ = 1 gauge we also need the matrix elements with the incoming FP-ghosts for the gluon. There are two
graphs possible,

M⌘ =
gs

4MP

fabcū(p1)�
⇢[/k1 + /k2, /k2]v⇢(p2) , (34)

related to 

which is part of 

3

processes A and B. Noting that in [26] the subtracted part
for the processes H and J is also non-zero, we assume that
the authors had used the squark-squark-gluino-goldstino
Feynman rule as given in [22], where a factor �5 is indeed
missing. In contrast we are using the correct Feynman
rule as given in [27].

To calculate the subtracted rate for the processes a b !
c eG, we use the general form

� =
1

(2⇡)8

Z
d3pa

2Ea

d3pb

2Eb

d3pc

2Ec

d3peG
2EeG

|M|2 fa fb (1± fc)

⇥ �
4(Pa + Pb � Pc � PeG) ,

(6)
where the fi stands for the usual Bose and Fermi statis-
tical densities

fB|F =
1

e
E
T ⌥ 1

. (7)

In the temperature range of interest all particles but the
gravitino are in thermal equilibrium. For the gravitino
the statistical factor feG is negligible. Thus 1 � feG ' 1,
as it is already used in (6). Furthermore, backward
reactions are neglected. In addition, the simplification
1± fc ' 1 is usually applied, making the analytic calcu-
lation of (6) possible. In our case there is no such reason.
We keep the factor 1 ± fc and consequently we proceed
calculating the subtracted rate numerically [36].

The contribution of the processes A and B, for each
gauge group, can be read from Table I as

|MA,sub|2+|MB,sub|2 =
g
2
N

M
2
P

 
1 +

m
2
�N

3m2
3/2

!
CN (�s+2t) .

(8)
In (8) a factor 1/2 is already included for the process A
due to the 2 identical incoming particles. Substituting
(8) in (6), the subtracted rate is obtained as

�sub =
T
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(9)

The numerical factors, calculated by using the
Cuba library [37], are Cs

BBF = 0.25957 ⇥ 10�3 and
Ct

BFB = �0.13286⇥10�3
. The subscripts B and F specify

if the particles are bosons or fermions respectively and
the superscripts determine if the squared amplitude is
proportional to s or t. It is easy to see that our result for
the subtracted part unlike in [26] is negative. This is not
unphysical, since the total rate and not the subtracted
one is bound to be positive.

The D�graph contribution.– As it has been discussed
above, Eq. (3) describes the relation between the
D�graph and the sum of the squared amplitudes for

G~ G~K

QP

g~

g

FIG. 1. The one-loop thermally corrected gravitino self-
energy (D�graph) for the case of SU(3)c. The thick gluon
and gluino lines denote resummed thermal propagators. In
our calculation we have taken also into account the equiva-
lent in SU(2)L and U(1)Y .

the s, t, and u channels. In the D�graph contribu-
tion we will implement the resummed thermal correc-
tions to the gauge boson and gaugino propagators [38].
Although in Fig. 1 the gluino-gluon thermal loop is dis-
played, the contributions of all the gauge groups have
been included in our analysis. The momentum flow used
to calculate the D�graph can be depicted in Fig. 1. That
is eG(P ) ! g(K) + g̃(Q), with P = (p, p, 0, 0) , K =
(k0, k cos ✓k, k sin ✓k, 0) and Q = (q0, q cos ✓q, q sin ✓q, 0),
where ✓k,q are the polar angles of the corresponding 3-
momenta k,q in spherical coordinates.

The non-time-ordered gravitino self-energy ⇧<(P ) can
be expressed in terms of the thermally resummed gaugino
⇤
S
<(Q) and gauge boson ⇤

D
<
µ⌫(K) propagators as [21,

26]

⇧<(P ) =
1

16M2
P

3X

N=1

nN
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m
2
�N

3m2
3/2

!Z
d4K

(2⇡)4
Tr
⇥
/P [ /K, �

µ] ⇤S<(Q)[ /K, �
⌫ ] ⇤D<

µ⌫(K)
⇤
, (10)

where

⇤
S
<(Q) =

fF (q0)

2
[(�0 � � · q/q) ⇢+(Q) + (�0 + � · q/q) ⇢�(Q)] ,

⇤
D

<
µ⌫(K) = fB(k0)


⇧T

µ⌫ ⇢T (K) +⇧L
µ⌫

k
2

K2
⇢L(K) + ⇠

KµK⌫

K4

�
, (11)

with ⇠ being the gauge parameter, taken ⇠ = 1 [35] in our calculation and nN = {1, 3, 8}. ⇧L
µ⌫ , ⇧

T
µ⌫ , ⇢L,T and ⇢± are

the longitudinal, the transverse projectors and the spectral densities for the bosons and fermions, respectively. To

where thick lines denote resumed thermal propagators 
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TABLE I. Squared matrix elements for gravitino production
in SU(3)c in terms of g23 Y3/M

2
P assuming massless particles,

Y3 = 1 +m2
g̃/(3m

2
3/2), C3 = 24 and C0

3 = 48.

X process |MX,full|2 |MX,sub|2

A gg ! g̃ eG 4C3(s+ 2t+ 2t2/s) �2sC3

B gg̃ ! g eG �4C3(t+ 2s+ 2s2/t) 2tC3

C q̃g ! q eG 2sC0
3 0

D gq ! q̃ eG �2tC0
3 0

E q̃q ! g eG �2tC0
3 0

F g̃g̃ ! g̃ eG 8C3(s
2 + t2 + u2)2/(stu) 0

G qg̃ ! q eG �4C0
3(s+ s2/t) 0

H q̃g̃ ! q̃ eG �2C0
3(t+ 2s+ 2s2/t) 0

I qq̃ ! g̃ eG �4C0
3(t+ t2/s) 0

J q̃q̃ ! g̃ eG 2C0
3(s+ 2t+ 2t2/s) 0

The setup.– As the gravitino is the superpartner of the
graviton, its interactions are suppressed by the inverse
of the reduced Planck mass MP = (8⇡G)�1/2. Hence,
the dominant contributions to its production, in leading
order of the gauge group couplings, are processes of the
form a b ! c eG, where eG stands for gravitino and a, b, c
can be three superpartners or one superpartner and two
SM particles. The possible processes and the correspond-
ing squared amplitudes in SU(3)c are given in Table I,
where for their denotation by the letters A to J we follow
the “historical” notation of [14]. In SU(3)c the particles
a, b and c could be gluons g, gluinos g̃, quarks q or/and
squarks q̃. Analogous processes happen in SU(2)L or
U(1)Y , where the gluino mass mg̃ ⌘ M3 becomes M2 or
M1, respectively. In the factor YN ⌘ 1 +m

2
�N

/(3m2
3/2),

where m�N = {M1,M2,M3} and m3/2 is the gravitino
mass, the unity is related to the 3/2 gravitino compo-
nents and the rest to the 1/2 goldstino part. For the
calculation of the spin 3/2 part in the amplitudes, fol-
lowing [26], we have employed the gravitino polarization
sum

⇧3/2
µ⌫ (P ) =

X

i=±3/2

 (i)
µ  

(i)
⌫ = �1

2
�µ /P�⌫ � /Pgµ⌫ , (1)

where  µ is the gravitino spinor and P its momentum.
As in [26], for the goldstino spin 1/2 part the non-
derivative approach is used [18, 27]. The result for the full
squared amplitude has been proved to be the same, either
in the derivative or the non-derivative approach [34].

The Casimir operators in Table I are CN =P
a,b,c |fabc|2 = N(N2 � 1) = {0, 6, 24} and C

0
N =

P�
a,i,j |T a

ij |2 = {11, 21, 48}, where
P�

a,i,j denotes the sum

over all involved chiral multiplets and group indices. fabc

and T
a are the group structure constants and generators,

respectively. Processes A, B and F are not present in

U(1)Y because C1 = 0. The masses for the particles a,
b and c are assumed to be zero. In the third column of
Table I we present for each process the square of the full
amplitude, which is the sum of individual amplitudes,

|MX,full|2 = |MX,s +MX,t +MX,u +MX,x|2 , (2)

where the indices s, t, u indicate the diagrams which
are generated by the exchange of a particle in the corre-
sponding channel and the index x stands for the diagram
involving a quartic vertex. The so-called D�graph, fol-
lowing the terminology of [26], is illustrated in Fig. 1 for
the case of the gluino-gluon loop. Its contribution is the
sum of the squared amplitudes for the s, t and u channel
graphs,

|MX,D|2 = |MX,s|2 + |MX,t|2 + |MX,u|2 , (3)

plus 1 ! 2 processes. This can be understood, by apply-
ing the optical theorem. Hence, from the imaginary part
of the loop graphs one computes the sum of the decays
(1 ! 2) and the scattering amplitudes (2 ! 2). In our
case, we use resummed thermal propagators for the gauge
boson and gaugino and by applying cutting rules one sees
that D�graph describes both the scattering amplitudes
appearing in (3) and decay amplitudes.
The subtracted part of the squared amplitudes is the

di↵erence between the full amplitudes (2) and the ampli-
tudes already included in the D�graph (3), that is

|MX,sub|2 = |MX,full|2 � |MX,D|2 . (4)

For the processes B, F, G and H the corresponding
amplitudes are IR divergent. For this reason we fol-
low the more elegant method comprising the separa-
tion of the total scattering rate into two parts, the sub-
tracted and the D�graph part. It is worth to mention
that for the processes with incoming or/and outgoing
gauge bosons, we have checked explicitly the gauge in-
variance for |MX,full|2. On the other hand, we note that
|MX,sub|2 is gauge dependent [35].
To sum up, the gravitino production rate �3/2 con-

sists of three parts: (i) the subtracted rate �sub (ii) the
D�graph contribution �D and (iii) the top Yukawa rate
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�3/2 = �sub + �D + �top . (5)

Below, these three contributions are discussed in detail.
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we present the so-called subtracted part (4), which is
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=

X:

(D-graph)

2

TABLE I. Squared matrix elements for gravitino production
in SU(3)c in terms of g23 Y3/M

2
P assuming massless particles,

Y3 = 1 +m2
g̃/(3m

2
3/2), C3 = 24 and C0

3 = 48.

X process |MX,full|2 |MX,sub|2

A gg ! g̃ eG 4C3(s+ 2t+ 2t2/s) �2sC3

B gg̃ ! g eG �4C3(t+ 2s+ 2s2/t) 2tC3

C q̃g ! q eG 2sC0
3 0

D gq ! q̃ eG �2tC0
3 0

E q̃q ! g eG �2tC0
3 0

F g̃g̃ ! g̃ eG 8C3(s
2 + t2 + u2)2/(stu) 0

G qg̃ ! q eG �4C0
3(s+ s2/t) 0

H q̃g̃ ! q̃ eG �2C0
3(t+ 2s+ 2s2/t) 0

I qq̃ ! g̃ eG �4C0
3(t+ t2/s) 0

J q̃q̃ ! g̃ eG 2C0
3(s+ 2t+ 2t2/s) 0

The setup.– As the gravitino is the superpartner of the
graviton, its interactions are suppressed by the inverse
of the reduced Planck mass MP = (8⇡G)�1/2. Hence,
the dominant contributions to its production, in leading
order of the gauge group couplings, are processes of the
form a b ! c eG, where eG stands for gravitino and a, b, c
can be three superpartners or one superpartner and two
SM particles. The possible processes and the correspond-
ing squared amplitudes in SU(3)c are given in Table I,
where for their denotation by the letters A to J we follow
the “historical” notation of [14]. In SU(3)c the particles
a, b and c could be gluons g, gluinos g̃, quarks q or/and
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of the loop graphs one computes the sum of the decays
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di↵erence between the full amplitudes (2) and the ampli-
tudes already included in the D�graph (3), that is
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tracted and the D�graph part. It is worth to mention
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amplitude, which is the sum of individual amplitudes,
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are generated by the exchange of a particle in the corre-
sponding channel and the index x stands for the diagram
involving a quartic vertex. The so-called D�graph, fol-
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the case of the gluino-gluon loop. Its contribution is the
sum of the squared amplitudes for the s, t and u channel
graphs,
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ing the optical theorem. Hence, from the imaginary part
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(1 ! 2) and the scattering amplitudes (2 ! 2). In our
case, we use resummed thermal propagators for the gauge
boson and gaugino and by applying cutting rules one sees
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low the more elegant method comprising the separa-
tion of the total scattering rate into two parts, the sub-
tracted and the D�graph part. It is worth to mention
that for the processes with incoming or/and outgoing
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variance for |MX,full|2. On the other hand, we note that
|MX,sub|2 is gauge dependent [35].
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U(1)Y because C1 = 0. The masses for the particles a,
b and c are assumed to be zero. In the third column of
Table I we present for each process the square of the full
amplitude, which is the sum of individual amplitudes,

|MX,full|2 = |MX,s +MX,t +MX,u +MX,x|2 , (2)

where the indices s, t, u indicate the diagrams which
are generated by the exchange of a particle in the corre-
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II. The setup

As the gravitino is the superpartner of the graviton, its interactions are suppressed by the inverse of the reduced
Planck mass MP = (8⇡G)�1/2. Hence, the dominant contributions to its production, in leading order of the gauge
group couplings, are processes of the form a b ! c eG, where eG stands for gravitino and a, b, c can be three superpartners
or one superpartner and two SM particles. The possible processes and the corresponding squared amplitudes in SU(3)c
are given in Table I, where for their denotation by the letters A to J we follow the “historical” notation of [? ]. In
SU(3)c the particles a, b and c could be gluons g, gluinos g̃, quarks q or/and squarks q̃. Analogous processes
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), where m�N = {M1,M2,M3} and m3/2 is the gravitino mass, the unity is related to the

3/2 gravitino components and the rest to the 1/2 goldstino part. For the calculation of the spin 3/2 part in the
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where the indices s, t, u indicate the diagrams which are generated by the exchange of a particle in the corresponding
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the sum of the squared amplitudes for the s, t and u channel graphs,
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processes A and B. Noting that in [26] the subtracted part
for the processes H and J is also non-zero, we assume that
the authors had used the squark-squark-gluino-goldstino
Feynman rule as given in [22], where a factor �5 is indeed
missing. In contrast we are using the correct Feynman
rule as given in [27].

To calculate the subtracted rate for the processes a b !
c eG, we use the general form

� =
1

(2⇡)8

Z
d3pa

2Ea

d3pb

2Eb

d3pc

2Ec

d3peG
2EeG

|M|2 fa fb (1± fc)

⇥ �
4(Pa + Pb � Pc � PeG) ,

(6)
where the fi stands for the usual Bose and Fermi statis-
tical densities

fB|F =
1

e
E
T ⌥ 1

. (7)

In the temperature range of interest all particles but the
gravitino are in thermal equilibrium. For the gravitino
the statistical factor feG is negligible. Thus 1 � feG ' 1,
as it is already used in (6). Furthermore, backward
reactions are neglected. In addition, the simplification
1± fc ' 1 is usually applied, making the analytic calcu-
lation of (6) possible. In our case there is no such reason.
We keep the factor 1 ± fc and consequently we proceed
calculating the subtracted rate numerically [36].

The contribution of the processes A and B, for each
gauge group, can be read from Table I as

|MA,sub|2+|MB,sub|2 =
g
2
N

M
2
P

 
1 +

m
2
�N

3m2
3/2

!
CN (�s+2t) .

(8)
In (8) a factor 1/2 is already included for the process A
due to the 2 identical incoming particles. Substituting
(8) in (6), the subtracted rate is obtained as

�sub =
T

6

M
2
P

3X

N=1

g
2
N

 
1 +

m
2
�N

3m2
3/2

!
CN

�
�Cs

BBF + 2 Ct
BFB

�
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(9)

The numerical factors, calculated by using the
Cuba library [37], are Cs

BBF = 0.25957 ⇥ 10�3 and
Ct

BFB = �0.13286⇥10�3
. The subscripts B and F specify

if the particles are bosons or fermions respectively and
the superscripts determine if the squared amplitude is
proportional to s or t. It is easy to see that our result for
the subtracted part unlike in [26] is negative. This is not
unphysical, since the total rate and not the subtracted
one is bound to be positive.

The D�graph contribution.– As it has been discussed
above, Eq. (3) describes the relation between the
D�graph and the sum of the squared amplitudes for

G~ G~K

QP

g~

g

FIG. 1. The one-loop thermally corrected gravitino self-
energy (D�graph) for the case of SU(3)c. The thick gluon
and gluino lines denote resummed thermal propagators. In
our calculation we have taken also into account the equiva-
lent in SU(2)L and U(1)Y .

the s, t, and u channels. In the D�graph contribu-
tion we will implement the resummed thermal correc-
tions to the gauge boson and gaugino propagators [38].
Although in Fig. 1 the gluino-gluon thermal loop is dis-
played, the contributions of all the gauge groups have
been included in our analysis. The momentum flow used
to calculate the D�graph can be depicted in Fig. 1. That
is eG(P ) ! g(K) + g̃(Q), with P = (p, p, 0, 0) , K =
(k0, k cos ✓k, k sin ✓k, 0) and Q = (q0, q cos ✓q, q sin ✓q, 0),
where ✓k,q are the polar angles of the corresponding 3-
momenta k,q in spherical coordinates.

The non-time-ordered gravitino self-energy ⇧<(P ) can
be expressed in terms of the thermally resummed gaugino
⇤
S
<(Q) and gauge boson ⇤

D
<
µ⌫(K) propagators as [21,

26]

⇧<(P ) =
1

16M2
P

3X

N=1
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(2⇡)4
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⌫ ] ⇤D<

µ⌫(K)
⇤
, (10)

where

⇤
S
<(Q) =

fF (q0)

2
[(�0 � � · q/q) ⇢+(Q) + (�0 + � · q/q) ⇢�(Q)] ,

⇤
D

<
µ⌫(K) = fB(k0)
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µ⌫ ⇢T (K) +⇧L
µ⌫

k
2

K2
⇢L(K) + ⇠

KµK⌫

K4

�
, (11)

with ⇠ being the gauge parameter, taken ⇠ = 1 [35] in our calculation and nN = {1, 3, 8}. ⇧L
µ⌫ , ⇧

T
µ⌫ , ⇢L,T and ⇢± are

the longitudinal, the transverse projectors and the spectral densities for the bosons and fermions, respectively. To
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with ⇠ being the gauge parameter, taken ⇠ = 1 [35] in our calculation and nN = {1, 3, 8}. ⇧L
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processes A and B. Noting that in [26] the subtracted part
for the processes H and J is also non-zero, we assume that
the authors had used the squark-squark-gluino-goldstino
Feynman rule as given in [22], where a factor �5 is indeed
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1± fc ' 1 is usually applied, making the analytic calcu-
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BBF = 0.25957 ⇥ 10�3 and
Ct

BFB = �0.13286⇥10�3
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proportional to s or t. It is easy to see that our result for
the subtracted part unlike in [26] is negative. This is not
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one is bound to be positive.

The D�graph contribution.– As it has been discussed
above, Eq. (3) describes the relation between the
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FIG. 1. The one-loop thermally corrected gravitino self-
energy (D�graph) for the case of SU(3)c. The thick gluon
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our calculation we have taken also into account the equiva-
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Although in Fig. 1 the gluino-gluon thermal loop is dis-
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been included in our analysis. The momentum flow used
to calculate the D�graph can be depicted in Fig. 1. That
is eG(P ) ! g(K) + g̃(Q), with P = (p, p, 0, 0) , K =
(k0, k cos ✓k, k sin ✓k, 0) and Q = (q0, q cos ✓q, q sin ✓q, 0),
where ✓k,q are the polar angles of the corresponding 3-
momenta k,q in spherical coordinates.
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is eG(P ) ! g(K) + g̃(Q), with P = (p, p, 0, 0) , K =
(k0, k cos ✓k, k sin ✓k, 0) and Q = (q0, q cos ✓q, q sin ✓q, 0),
where ✓k,q are the polar angles of the corresponding 3-
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processes A and B. Noting that in [26] the subtracted part
for the processes H and J is also non-zero, we assume that
the authors had used the squark-squark-gluino-goldstino
Feynman rule as given in [22], where a factor �5 is indeed
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gravitino are in thermal equilibrium. For the gravitino
the statistical factor feG is negligible. Thus 1 � feG ' 1,
as it is already used in (6). Furthermore, backward
reactions are neglected. In addition, the simplification
1± fc ' 1 is usually applied, making the analytic calcu-
lation of (6) possible. In our case there is no such reason.
We keep the factor 1 ± fc and consequently we proceed
calculating the subtracted rate numerically [36].
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Although in Fig. 1 the gluino-gluon thermal loop is dis-
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is eG(P ) ! g(K) + g̃(Q), with P = (p, p, 0, 0) , K =
(k0, k cos ✓k, k sin ✓k, 0) and Q = (q0, q cos ✓q, q sin ✓q, 0),
where ✓k,q are the polar angles of the corresponding 3-
momenta k,q in spherical coordinates.
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energy (D�graph) for the case of SU(3)c. The thick gluon
and gluino lines denote resummed thermal propagators. In
our calculation we have taken also into account the equiva-
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the s, t, and u channels. In the D�graph contribu-
tion we will implement the resummed thermal correc-
tions to the gauge boson and gaugino propagators [38].
Although in Fig. 1 the gluino-gluon thermal loop is dis-
played, the contributions of all the gauge groups have
been included in our analysis. The momentum flow used
to calculate the D�graph can be depicted in Fig. 1. That
is eG(P ) ! g(K) + g̃(Q), with P = (p, p, 0, 0) , K =
(k0, k cos ✓k, k sin ✓k, 0) and Q = (q0, q cos ✓q, q sin ✓q, 0),
where ✓k,q are the polar angles of the corresponding 3-
momenta k,q in spherical coordinates.
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with ⇠ being the gauge parameter, taken ⇠ = 1 [35] in our calculation and nN = {1, 3, 8}. ⇧L
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the longitudinal, the transverse projectors and the spectral densities for the bosons and fermions, respectively. To
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TABLE I. Squared matrix elements for gravitino production
in SU(3)c in terms of g23 Y3/M

2
P assuming massless particles,

Y3 = 1 +m2
g̃/(3m

2
3/2), C3 = 24 and C0

3 = 48.

X process |MX,full|2 |MX,sub|2

A gg ! g̃ eG 4C3(s+ 2t+ 2t2/s) �2sC3

B gg̃ ! g eG �4C3(t+ 2s+ 2s2/t) 2tC3

C q̃g ! q eG 2sC0
3 0

D gq ! q̃ eG �2tC0
3 0

E q̃q ! g eG �2tC0
3 0

F g̃g̃ ! g̃ eG 8C3(s
2 + t2 + u2)2/(stu) 0

G qg̃ ! q eG �4C0
3(s+ s2/t) 0

H q̃g̃ ! q̃ eG �2C0
3(t+ 2s+ 2s2/t) 0

I qq̃ ! g̃ eG �4C0
3(t+ t2/s) 0

J q̃q̃ ! g̃ eG 2C0
3(s+ 2t+ 2t2/s) 0

The setup.– As the gravitino is the superpartner of the
graviton, its interactions are suppressed by the inverse
of the reduced Planck mass MP = (8⇡G)�1/2. Hence,
the dominant contributions to its production, in leading
order of the gauge group couplings, are processes of the
form a b ! c eG, where eG stands for gravitino and a, b, c
can be three superpartners or one superpartner and two
SM particles. The possible processes and the correspond-
ing squared amplitudes in SU(3)c are given in Table I,
where for their denotation by the letters A to J we follow
the “historical” notation of [14]. In SU(3)c the particles
a, b and c could be gluons g, gluinos g̃, quarks q or/and
squarks q̃. Analogous processes happen in SU(2)L or
U(1)Y , where the gluino mass mg̃ ⌘ M3 becomes M2 or
M1, respectively. In the factor YN ⌘ 1 +m

2
�N

/(3m2
3/2),

where m�N = {M1,M2,M3} and m3/2 is the gravitino
mass, the unity is related to the 3/2 gravitino compo-
nents and the rest to the 1/2 goldstino part. For the
calculation of the spin 3/2 part in the amplitudes, fol-
lowing [26], we have employed the gravitino polarization
sum

⇧3/2
µ⌫ (P ) =

X

i=±3/2

 (i)
µ  

(i)
⌫ = �1

2
�µ /P�⌫ � /Pgµ⌫ , (1)

where  µ is the gravitino spinor and P its momentum.
As in [26], for the goldstino spin 1/2 part the non-
derivative approach is used [18, 27]. The result for the full
squared amplitude has been proved to be the same, either
in the derivative or the non-derivative approach [34].

The Casimir operators in Table I are CN =P
a,b,c |fabc|2 = N(N2 � 1) = {0, 6, 24} and C

0
N =

P�
a,i,j |T a

ij |2 = {11, 21, 48}, where
P�

a,i,j denotes the sum

over all involved chiral multiplets and group indices. fabc

and T
a are the group structure constants and generators,

respectively. Processes A, B and F are not present in

U(1)Y because C1 = 0. The masses for the particles a,
b and c are assumed to be zero. In the third column of
Table I we present for each process the square of the full
amplitude, which is the sum of individual amplitudes,

|MX,full|2 = |MX,s +MX,t +MX,u +MX,x|2 , (2)

where the indices s, t, u indicate the diagrams which
are generated by the exchange of a particle in the corre-
sponding channel and the index x stands for the diagram
involving a quartic vertex. The so-called D�graph, fol-
lowing the terminology of [26], is illustrated in Fig. 1 for
the case of the gluino-gluon loop. Its contribution is the
sum of the squared amplitudes for the s, t and u channel
graphs,

|MX,D|2 = |MX,s|2 + |MX,t|2 + |MX,u|2 , (3)

plus 1 ! 2 processes. This can be understood, by apply-
ing the optical theorem. Hence, from the imaginary part
of the loop graphs one computes the sum of the decays
(1 ! 2) and the scattering amplitudes (2 ! 2). In our
case, we use resummed thermal propagators for the gauge
boson and gaugino and by applying cutting rules one sees
that D�graph describes both the scattering amplitudes
appearing in (3) and decay amplitudes.
The subtracted part of the squared amplitudes is the

di↵erence between the full amplitudes (2) and the ampli-
tudes already included in the D�graph (3), that is

|MX,sub|2 = |MX,full|2 � |MX,D|2 . (4)

For the processes B, F, G and H the corresponding
amplitudes are IR divergent. For this reason we fol-
low the more elegant method comprising the separa-
tion of the total scattering rate into two parts, the sub-
tracted and the D�graph part. It is worth to mention
that for the processes with incoming or/and outgoing
gauge bosons, we have checked explicitly the gauge in-
variance for |MX,full|2. On the other hand, we note that
|MX,sub|2 is gauge dependent [35].
To sum up, the gravitino production rate �3/2 con-

sists of three parts: (i) the subtracted rate �sub (ii) the
D�graph contribution �D and (iii) the top Yukawa rate
�top,

�3/2 = �sub + �D + �top . (5)

Below, these three contributions are discussed in detail.

The subtracted rate.– In the fourth column of Table I
we present the so-called subtracted part (4), which is
the sum of the interference terms among the four types
of diagrams (s, t, u, x), plus the x-diagram squared, for
each process. The subtracted part is non-zero only for the
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TABLE I. Squared matrix elements for gravitino production
in SU(3)c in terms of g23 Y3/M

2
P assuming massless particles,

Y3 = 1 +m2
g̃/(3m

2
3/2), C3 = 24 and C0

3 = 48.

X process |MX,full|2 |MX,sub|2

A gg ! g̃ eG 4C3(s+ 2t+ 2t2/s) �2sC3

B gg̃ ! g eG �4C3(t+ 2s+ 2s2/t) 2tC3

C q̃g ! q eG 2sC0
3 0

D gq ! q̃ eG �2tC0
3 0

E q̃q ! g eG �2tC0
3 0

F g̃g̃ ! g̃ eG 8C3(s
2 + t2 + u2)2/(stu) 0

G qg̃ ! q eG �4C0
3(s+ s2/t) 0

H q̃g̃ ! q̃ eG �2C0
3(t+ 2s+ 2s2/t) 0

I qq̃ ! g̃ eG �4C0
3(t+ t2/s) 0

J q̃q̃ ! g̃ eG 2C0
3(s+ 2t+ 2t2/s) 0

The setup.– As the gravitino is the superpartner of the
graviton, its interactions are suppressed by the inverse
of the reduced Planck mass MP = (8⇡G)�1/2. Hence,
the dominant contributions to its production, in leading
order of the gauge group couplings, are processes of the
form a b ! c eG, where eG stands for gravitino and a, b, c
can be three superpartners or one superpartner and two
SM particles. The possible processes and the correspond-
ing squared amplitudes in SU(3)c are given in Table I,
where for their denotation by the letters A to J we follow
the “historical” notation of [14]. In SU(3)c the particles
a, b and c could be gluons g, gluinos g̃, quarks q or/and
squarks q̃. Analogous processes happen in SU(2)L or
U(1)Y , where the gluino mass mg̃ ⌘ M3 becomes M2 or
M1, respectively. In the factor YN ⌘ 1 +m

2
�N

/(3m2
3/2),

where m�N = {M1,M2,M3} and m3/2 is the gravitino
mass, the unity is related to the 3/2 gravitino compo-
nents and the rest to the 1/2 goldstino part. For the
calculation of the spin 3/2 part in the amplitudes, fol-
lowing [26], we have employed the gravitino polarization
sum

⇧3/2
µ⌫ (P ) =

X

i=±3/2

 (i)
µ  

(i)
⌫ = �1

2
�µ /P�⌫ � /Pgµ⌫ , (1)

where  µ is the gravitino spinor and P its momentum.
As in [26], for the goldstino spin 1/2 part the non-
derivative approach is used [18, 27]. The result for the full
squared amplitude has been proved to be the same, either
in the derivative or the non-derivative approach [34].

The Casimir operators in Table I are CN =P
a,b,c |fabc|2 = N(N2 � 1) = {0, 6, 24} and C

0
N =

P�
a,i,j |T a

ij |2 = {11, 21, 48}, where
P�

a,i,j denotes the sum

over all involved chiral multiplets and group indices. fabc

and T
a are the group structure constants and generators,

respectively. Processes A, B and F are not present in

U(1)Y because C1 = 0. The masses for the particles a,
b and c are assumed to be zero. In the third column of
Table I we present for each process the square of the full
amplitude, which is the sum of individual amplitudes,

|MX,full|2 = |MX,s +MX,t +MX,u +MX,x|2 , (2)

where the indices s, t, u indicate the diagrams which
are generated by the exchange of a particle in the corre-
sponding channel and the index x stands for the diagram
involving a quartic vertex. The so-called D�graph, fol-
lowing the terminology of [26], is illustrated in Fig. 1 for
the case of the gluino-gluon loop. Its contribution is the
sum of the squared amplitudes for the s, t and u channel
graphs,

|MX,D|2 = |MX,s|2 + |MX,t|2 + |MX,u|2 , (3)

plus 1 ! 2 processes. This can be understood, by apply-
ing the optical theorem. Hence, from the imaginary part
of the loop graphs one computes the sum of the decays
(1 ! 2) and the scattering amplitudes (2 ! 2). In our
case, we use resummed thermal propagators for the gauge
boson and gaugino and by applying cutting rules one sees
that D�graph describes both the scattering amplitudes
appearing in (3) and decay amplitudes.
The subtracted part of the squared amplitudes is the

di↵erence between the full amplitudes (2) and the ampli-
tudes already included in the D�graph (3), that is

|MX,sub|2 = |MX,full|2 � |MX,D|2 . (4)

For the processes B, F, G and H the corresponding
amplitudes are IR divergent. For this reason we fol-
low the more elegant method comprising the separa-
tion of the total scattering rate into two parts, the sub-
tracted and the D�graph part. It is worth to mention
that for the processes with incoming or/and outgoing
gauge bosons, we have checked explicitly the gauge in-
variance for |MX,full|2. On the other hand, we note that
|MX,sub|2 is gauge dependent [35].
To sum up, the gravitino production rate �3/2 con-

sists of three parts: (i) the subtracted rate �sub (ii) the
D�graph contribution �D and (iii) the top Yukawa rate
�top,

�3/2 = �sub + �D + �top . (5)

Below, these three contributions are discussed in detail.

The subtracted rate.– In the fourth column of Table I
we present the so-called subtracted part (4), which is
the sum of the interference terms among the four types
of diagrams (s, t, u, x), plus the x-diagram squared, for
each process. The subtracted part is non-zero only for the
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compute the production rate related to the D�graph �D, we will use its definition [39]
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where q0 = p� k0 .

The spectral functions ⇢L,T and ⇢± can be found in
Eqs. (3.7) in [26]. The thermally corrected one-loop
self-energy for gauge bosons, scalars and fermions that
we have used in calculating these spectral functions,
can be found in [42–47]. Comparing (13) with the
corresponding analytical result given in Eqs. (4.6) and
(4.7) in [26], one can notice that they di↵er on the overall
factor and on the number of independent phase-space
integrations. Our analytical result has been checked
using various frames for the momenta flow into the loop.

The top Yukawa rate.– The production rate resulting
from the top-quark Yukawa coupling �t is given by [26]

�top =
T

6

M
2
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72 Cs
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t
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2
t

3m2
3/2

!
, (14)

where At is the trilinear stop supersymmetry breaking
soft parameter and Cs

BBF = 0.25957 ⇥ 10�3. Since this
contribution stems from the process squark-squark !
higgsino-gravitino, only the numerical factor Cs

BBF is in-
volved.

TABLE II. The values of the constants cN and kN that
parametrize our result (15) for the subtracted and the
D�graph part. Each line corresponds to the particular gauge
group, U(1)Y , SU(2)L or SU(3)c.

Gauge group cN kN
U(1)Y 41.937 0.824
SU(2)L 68.228 1.008
SU(3)c 21.067 6.878

The parameterization of the result.– Following [6] we
parametrize the results (9) and (13) using the gauge cou-

FIG. 2. The gravitino production rates divided by YN T 6/M2
P.

The solid curves represent in order, the total rate (black) given
by (5), the SU(3)c (red), SU(2)L (blue) and U(1)Y (green)
rates given by (15) and the top Yukawa rate (purple) given
by (14). The upper dashed curve is the total production rate
obtained in [26]. The top Yukawa coupling �t has been taken
equal to 0.7 so that our result can be directly compared with
that in [26].
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where the constants cN and kN depend on the gauge
group and their values are given in Table II. In Fig. 2 we
summarize our numerical results for the gravitino pro-
duction rates divided by YN T

6
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2
P. Especially, for the

case of the top Yukawa contribution, in YN the m
2
�N

has
to be replaced by A

2
t . The colored solid curves repre-

sent the SU(3)c (red), SU(2)L (blue) and U(1)Y (green)
rates given by (15) and the top Yukawa rate (purple)
given by (14), while the black solid curve is the total re-
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corresponding analytical result given in Eqs. (4.6) and
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we have used in calculating these spectral functions,
can be found in [42–47]. Comparing (13) with the
corresponding analytical result given in Eqs. (4.6) and
(4.7) in [26], one can notice that they di↵er on the overall
factor and on the number of independent phase-space
integrations. Our analytical result has been checked
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TABLE I. Squared matrix elements for gravitino production
in SU(3)c in terms of g23 Y3/M

2
P assuming massless particles,

Y3 = 1 +m2
g̃/(3m

2
3/2), C3 = 24 and C0

3 = 48.

X process |MX,full|2 |MX,sub|2

A gg ! g̃ eG 4C3(s+ 2t+ 2t2/s) �2sC3

B gg̃ ! g eG �4C3(t+ 2s+ 2s2/t) 2tC3

C q̃g ! q eG 2sC0
3 0

D gq ! q̃ eG �2tC0
3 0

E q̃q ! g eG �2tC0
3 0

F g̃g̃ ! g̃ eG 8C3(s
2 + t2 + u2)2/(stu) 0

G qg̃ ! q eG �4C0
3(s+ s2/t) 0

H q̃g̃ ! q̃ eG �2C0
3(t+ 2s+ 2s2/t) 0

I qq̃ ! g̃ eG �4C0
3(t+ t2/s) 0

J q̃q̃ ! g̃ eG 2C0
3(s+ 2t+ 2t2/s) 0

The setup.– As the gravitino is the superpartner of the
graviton, its interactions are suppressed by the inverse
of the reduced Planck mass MP = (8⇡G)�1/2. Hence,
the dominant contributions to its production, in leading
order of the gauge group couplings, are processes of the
form a b ! c eG, where eG stands for gravitino and a, b, c
can be three superpartners or one superpartner and two
SM particles. The possible processes and the correspond-
ing squared amplitudes in SU(3)c are given in Table I,
where for their denotation by the letters A to J we follow
the “historical” notation of [14]. In SU(3)c the particles
a, b and c could be gluons g, gluinos g̃, quarks q or/and
squarks q̃. Analogous processes happen in SU(2)L or
U(1)Y , where the gluino mass mg̃ ⌘ M3 becomes M2 or
M1, respectively. In the factor YN ⌘ 1 +m

2
�N

/(3m2
3/2),

where m�N = {M1,M2,M3} and m3/2 is the gravitino
mass, the unity is related to the 3/2 gravitino compo-
nents and the rest to the 1/2 goldstino part. For the
calculation of the spin 3/2 part in the amplitudes, fol-
lowing [26], we have employed the gravitino polarization
sum

⇧3/2
µ⌫ (P ) =

X

i=±3/2

 (i)
µ  

(i)
⌫ = �1

2
�µ /P�⌫ � /Pgµ⌫ , (1)

where  µ is the gravitino spinor and P its momentum.
As in [26], for the goldstino spin 1/2 part the non-
derivative approach is used [18, 27]. The result for the full
squared amplitude has been proved to be the same, either
in the derivative or the non-derivative approach [34].

The Casimir operators in Table I are CN =P
a,b,c |fabc|2 = N(N2 � 1) = {0, 6, 24} and C

0
N =

P�
a,i,j |T a

ij |2 = {11, 21, 48}, where
P�

a,i,j denotes the sum

over all involved chiral multiplets and group indices. fabc

and T
a are the group structure constants and generators,

respectively. Processes A, B and F are not present in

U(1)Y because C1 = 0. The masses for the particles a,
b and c are assumed to be zero. In the third column of
Table I we present for each process the square of the full
amplitude, which is the sum of individual amplitudes,

|MX,full|2 = |MX,s +MX,t +MX,u +MX,x|2 , (2)

where the indices s, t, u indicate the diagrams which
are generated by the exchange of a particle in the corre-
sponding channel and the index x stands for the diagram
involving a quartic vertex. The so-called D�graph, fol-
lowing the terminology of [26], is illustrated in Fig. 1 for
the case of the gluino-gluon loop. Its contribution is the
sum of the squared amplitudes for the s, t and u channel
graphs,

|MX,D|2 = |MX,s|2 + |MX,t|2 + |MX,u|2 , (3)

plus 1 ! 2 processes. This can be understood, by apply-
ing the optical theorem. Hence, from the imaginary part
of the loop graphs one computes the sum of the decays
(1 ! 2) and the scattering amplitudes (2 ! 2). In our
case, we use resummed thermal propagators for the gauge
boson and gaugino and by applying cutting rules one sees
that D�graph describes both the scattering amplitudes
appearing in (3) and decay amplitudes.
The subtracted part of the squared amplitudes is the

di↵erence between the full amplitudes (2) and the ampli-
tudes already included in the D�graph (3), that is

|MX,sub|2 = |MX,full|2 � |MX,D|2 . (4)

For the processes B, F, G and H the corresponding
amplitudes are IR divergent. For this reason we fol-
low the more elegant method comprising the separa-
tion of the total scattering rate into two parts, the sub-
tracted and the D�graph part. It is worth to mention
that for the processes with incoming or/and outgoing
gauge bosons, we have checked explicitly the gauge in-
variance for |MX,full|2. On the other hand, we note that
|MX,sub|2 is gauge dependent [35].
To sum up, the gravitino production rate �3/2 con-

sists of three parts: (i) the subtracted rate �sub (ii) the
D�graph contribution �D and (iii) the top Yukawa rate
�top,

�3/2 = �sub + �D + �top . (5)

Below, these three contributions are discussed in detail.

The subtracted rate.– In the fourth column of Table I
we present the so-called subtracted part (4), which is
the sum of the interference terms among the four types
of diagrams (s, t, u, x), plus the x-diagram squared, for
each process. The subtracted part is non-zero only for the
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FIG. 9. The D�graph contribution divided by Y3 T
6/M2

P for the SU(3)c gauge group. The upper dashed curve is the cont-pole
contribution, the dotted one in the middle is the cont-cont contribution and the dotdashed is the pole-pole one.

VI. The D�graph contribution

As it has been discussed above, Eq. (3) describes the relation between the D�graph and the sum of the
squared amplitudes for the s, t, and u channels. In the D�graph contribution we will implement the resummed
thermal corrections to the gauge boson and gaugino propagators 3. Although in Fig. 1 the gluino-gluon ther-
mal loop is displayed, the contributions of all the gauge groups have been included in our analysis. The mo-
mentum flow used to calculate the D�graph can be depicted in Fig. 1. That is eG(P ) ! g(K) + g̃(Q), with
P = (p, p, 0, 0) , K = (k0, k cos ✓k, k sin ✓k, 0) and Q = (q0, q cos ✓q, q sin ✓q, 0), where ✓k,q are the polar angles of
the corresponding 3-momenta k,q in spherical coordinates.

The non-time-ordered gravitino self-energy ⇧<(P ) can be expressed in terms of the thermally resummed gaugino
⇤
S
<(Q) and gauge boson ⇤
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<
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(K) propagators as [? ? ]
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with ⇠ being the gauge parameter, taken ⇠ = 1 in our calculation and nN = {1, 3, 8}. ⇧L

µ⌫
, ⇧T

µ⌫
, ⇢L,T and ⇢± are the

longitudinal, the transverse projectors and the spectral densities for bosons and fermions, respectively. To compute
the production rate related to the D�graph �D, we will use its definition [? ]

�D =

Z
d3p

2p0(2⇡)3
⇧<(p) (78)

and after appropriate manipulations we obtain

�D =
1

4(2⇡)5M2

P

3X

N=1

nN

 
1 +

m
2

�N

3m2

3/2

!Z 1

0

dp

Z 1

�1
dk0

Z 1

0

dk

Z
k+p

|k�p|
dq k fB(k0) fF (q0)

⇥
h
⇢L(K) ⇢�(Q) (p� q)2

�
(p+ q)2 � k

2
�
+ ⇢L(K) ⇢+(Q) (p+ q)2

�
k
2 � (p� q)2

�

3 Like in [? ] using the gravitino polarization sum (1), we nullify the corresponding quark-squark D�graph.

12

FIG. 9. The D�graph contribution divided by Y3 T
6/M2

P for the SU(3)c gauge group. The upper dashed curve is the cont-pole
contribution, the dotted one in the middle is the cont-cont contribution and the dotdashed is the pole-pole one.

VI. The D�graph contribution

As it has been discussed above, Eq. (3) describes the relation between the D�graph and the sum of the
squared amplitudes for the s, t, and u channels. In the D�graph contribution we will implement the resummed
thermal corrections to the gauge boson and gaugino propagators 3. Although in Fig. 1 the gluino-gluon ther-
mal loop is displayed, the contributions of all the gauge groups have been included in our analysis. The mo-
mentum flow used to calculate the D�graph can be depicted in Fig. 1. That is eG(P ) ! g(K) + g̃(Q), with
P = (p, p, 0, 0) , K = (k0, k cos ✓k, k sin ✓k, 0) and Q = (q0, q cos ✓q, q sin ✓q, 0), where ✓k,q are the polar angles of
the corresponding 3-momenta k,q in spherical coordinates.

The non-time-ordered gravitino self-energy ⇧<(P ) can be expressed in terms of the thermally resummed gaugino
⇤
S
<(Q) and gauge boson ⇤

D
<

µ⌫
(K) propagators as [? ? ]

⇧<(P ) =
1

16M2

P

3X

N=1

nN

 
1 +

m
2

�N

3m2

3/2

!Z
d4K

(2⇡)4
Tr
h
/P [ /K, �

µ] ⇤S<(Q)[ /K, �
⌫ ] ⇤D<

µ⌫
(K)

i
, (76)

where
⇤
S
<(Q) =

fF (q0)

2

⇥
(�0 � � · q/q) ⇢+(Q) + (�0 + � · q/q) ⇢�(Q)

⇤
,

⇤
D

<

µ⌫
(K) = fB(k0)


⇧T

µ⌫
⇢T (K) +⇧L

µ⌫

k
2

K2
⇢L(K) + ⇠

KµK⌫

K4

�
, (77)

with ⇠ being the gauge parameter, taken ⇠ = 1 in our calculation and nN = {1, 3, 8}. ⇧L

µ⌫
, ⇧T

µ⌫
, ⇢L,T and ⇢± are the

longitudinal, the transverse projectors and the spectral densities for bosons and fermions, respectively. To compute
the production rate related to the D�graph �D, we will use its definition [? ]

�D =

Z
d3p

2p0(2⇡)3
⇧<(p) (78)

and after appropriate manipulations we obtain

�D =
1

4(2⇡)5M2

P

3X

N=1

nN

 
1 +

m
2

�N

3m2

3/2

!Z 1

0

dp

Z 1

�1
dk0

Z 1

0

dk

Z
k+p

|k�p|
dq k fB(k0) fF (q0)

⇥
h
⇢L(K) ⇢�(Q) (p� q)2

�
(p+ q)2 � k

2
�
+ ⇢L(K) ⇢+(Q) (p+ q)2

�
k
2 � (p� q)2

�

3 Like in [? ] using the gravitino polarization sum (1), we nullify the corresponding quark-squark D�graph.

12

FIG. 9. The D�graph contribution divided by Y3 T
6/M2

P for the SU(3)c gauge group. The upper dashed curve is the cont-pole
contribution, the dotted one in the middle is the cont-cont contribution and the dotdashed is the pole-pole one.

VI. The D�graph contribution

As it has been discussed above, Eq. (3) describes the relation between the D�graph and the sum of the
squared amplitudes for the s, t, and u channels. In the D�graph contribution we will implement the resummed
thermal corrections to the gauge boson and gaugino propagators 3. Although in Fig. 1 the gluino-gluon ther-
mal loop is displayed, the contributions of all the gauge groups have been included in our analysis. The mo-
mentum flow used to calculate the D�graph can be depicted in Fig. 1. That is eG(P ) ! g(K) + g̃(Q), with
P = (p, p, 0, 0) , K = (k0, k cos ✓k, k sin ✓k, 0) and Q = (q0, q cos ✓q, q sin ✓q, 0), where ✓k,q are the polar angles of
the corresponding 3-momenta k,q in spherical coordinates.

The non-time-ordered gravitino self-energy ⇧<(P ) can be expressed in terms of the thermally resummed gaugino
⇤
S
<(Q) and gauge boson ⇤

D
<

µ⌫
(K) propagators as [? ? ]

⇧<(P ) =
1

16M2

P

3X

N=1

nN

 
1 +

m
2

�N

3m2

3/2

!Z
d4K

(2⇡)4
Tr
h
/P [ /K, �

µ] ⇤S<(Q)[ /K, �
⌫ ] ⇤D<

µ⌫
(K)

i
, (76)

where
⇤
S
<(Q) =

fF (q0)

2

⇥
(�0 � � · q/q) ⇢+(Q) + (�0 + � · q/q) ⇢�(Q)

⇤
,

⇤
D

<

µ⌫
(K) = fB(k0)


⇧T

µ⌫
⇢T (K) +⇧L

µ⌫

k
2

K2
⇢L(K) + ⇠

KµK⌫

K4

�
, (77)

with ⇠ being the gauge parameter, taken ⇠ = 1 in our calculation and nN = {1, 3, 8}. ⇧L

µ⌫
, ⇧T

µ⌫
, ⇢L,T and ⇢± are the

longitudinal, the transverse projectors and the spectral densities for bosons and fermions, respectively. To compute
the production rate related to the D�graph �D, we will use its definition [? ]

�D =

Z
d3p

2p0(2⇡)3
⇧<(p) (78)

and after appropriate manipulations we obtain

�D =
1

4(2⇡)5M2

P

3X

N=1

nN

 
1 +

m
2

�N

3m2

3/2

!Z 1

0

dp

Z 1

�1
dk0

Z 1

0

dk

Z
k+p

|k�p|
dq k fB(k0) fF (q0)

⇥
h
⇢L(K) ⇢�(Q) (p� q)2

�
(p+ q)2 � k

2
�
+ ⇢L(K) ⇢+(Q) (p+ q)2

�
k
2 � (p� q)2

�

3 Like in [? ] using the gravitino polarization sum (1), we nullify the corresponding quark-squark D�graph.

12

FIG. 9. The D�graph contribution divided by Y3 T
6/M2

P for the SU(3)c gauge group. The upper dashed curve is the cont-pole
contribution, the dotted one in the middle is the cont-cont contribution and the dotdashed is the pole-pole one.

VI. The D�graph contribution

As it has been discussed above, Eq. (3) describes the relation between the D�graph and the sum of the
squared amplitudes for the s, t, and u channels. In the D�graph contribution we will implement the resummed
thermal corrections to the gauge boson and gaugino propagators 3. Although in Fig. 1 the gluino-gluon ther-
mal loop is displayed, the contributions of all the gauge groups have been included in our analysis. The mo-
mentum flow used to calculate the D�graph can be depicted in Fig. 1. That is eG(P ) ! g(K) + g̃(Q), with
P = (p, p, 0, 0) , K = (k0, k cos ✓k, k sin ✓k, 0) and Q = (q0, q cos ✓q, q sin ✓q, 0), where ✓k,q are the polar angles of
the corresponding 3-momenta k,q in spherical coordinates.

The non-time-ordered gravitino self-energy ⇧<(P ) can be expressed in terms of the thermally resummed gaugino
⇤
S
<(Q) and gauge boson ⇤

D
<

µ⌫
(K) propagators as [? ? ]

⇧<(P ) =
1

16M2

P

3X

N=1

nN

 
1 +

m
2

�N

3m2

3/2

!Z
d4K

(2⇡)4
Tr
h
/P [ /K, �

µ] ⇤S<(Q)[ /K, �
⌫ ] ⇤D<

µ⌫
(K)

i
, (76)

where
⇤
S
<(Q) =

fF (q0)

2

⇥
(�0 � � · q/q) ⇢+(Q) + (�0 + � · q/q) ⇢�(Q)

⇤
,

⇤
D

<

µ⌫
(K) = fB(k0)


⇧T

µ⌫
⇢T (K) +⇧L

µ⌫

k
2

K2
⇢L(K) + ⇠

KµK⌫

K4

�
, (77)

with ⇠ being the gauge parameter, taken ⇠ = 1 in our calculation and nN = {1, 3, 8}. ⇧L

µ⌫
, ⇧T

µ⌫
, ⇢L,T and ⇢± are the

longitudinal, the transverse projectors and the spectral densities for bosons and fermions, respectively. To compute
the production rate related to the D�graph �D, we will use its definition [? ]

�D =

Z
d3p

2p0(2⇡)3
⇧<(p) (78)

and after appropriate manipulations we obtain

�D =
1

4(2⇡)5M2

P

3X

N=1

nN

 
1 +

m
2

�N

3m2

3/2

!Z 1

0

dp

Z 1

�1
dk0

Z 1

0

dk

Z
k+p

|k�p|
dq k fB(k0) fF (q0)

⇥
h
⇢L(K) ⇢�(Q) (p� q)2

�
(p+ q)2 � k

2
�
+ ⇢L(K) ⇢+(Q) (p+ q)2

�
k
2 � (p� q)2

�

3 Like in [? ] using the gravitino polarization sum (1), we nullify the corresponding quark-squark D�graph.

3

processes A and B. Noting that in [26] the subtracted part
for the processes H and J is also non-zero, we assume that
the authors had used the squark-squark-gluino-goldstino
Feynman rule as given in [22], where a factor �5 is indeed
missing. In contrast we are using the correct Feynman
rule as given in [27].

To calculate the subtracted rate for the processes a b !
c eG, we use the general form
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(6)
where the fi stands for the usual Bose and Fermi statis-
tical densities

fB|F =
1

e
E
T ⌥ 1

. (7)

In the temperature range of interest all particles but the
gravitino are in thermal equilibrium. For the gravitino
the statistical factor feG is negligible. Thus 1 � feG ' 1,
as it is already used in (6). Furthermore, backward
reactions are neglected. In addition, the simplification
1± fc ' 1 is usually applied, making the analytic calcu-
lation of (6) possible. In our case there is no such reason.
We keep the factor 1 ± fc and consequently we proceed
calculating the subtracted rate numerically [36].

The contribution of the processes A and B, for each
gauge group, can be read from Table I as
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In (8) a factor 1/2 is already included for the process A
due to the 2 identical incoming particles. Substituting
(8) in (6), the subtracted rate is obtained as
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The numerical factors, calculated by using the
Cuba library [37], are Cs

BBF = 0.25957 ⇥ 10�3 and
Ct

BFB = �0.13286⇥10�3
. The subscripts B and F specify

if the particles are bosons or fermions respectively and
the superscripts determine if the squared amplitude is
proportional to s or t. It is easy to see that our result for
the subtracted part unlike in [26] is negative. This is not
unphysical, since the total rate and not the subtracted
one is bound to be positive.

The D�graph contribution.– As it has been discussed
above, Eq. (3) describes the relation between the
D�graph and the sum of the squared amplitudes for

G~ G~K

QP

g~

g

FIG. 1. The one-loop thermally corrected gravitino self-
energy (D�graph) for the case of SU(3)c. The thick gluon
and gluino lines denote resummed thermal propagators. In
our calculation we have taken also into account the equiva-
lent in SU(2)L and U(1)Y .

the s, t, and u channels. In the D�graph contribu-
tion we will implement the resummed thermal correc-
tions to the gauge boson and gaugino propagators [38].
Although in Fig. 1 the gluino-gluon thermal loop is dis-
played, the contributions of all the gauge groups have
been included in our analysis. The momentum flow used
to calculate the D�graph can be depicted in Fig. 1. That
is eG(P ) ! g(K) + g̃(Q), with P = (p, p, 0, 0) , K =
(k0, k cos ✓k, k sin ✓k, 0) and Q = (q0, q cos ✓q, q sin ✓q, 0),
where ✓k,q are the polar angles of the corresponding 3-
momenta k,q in spherical coordinates.

The non-time-ordered gravitino self-energy ⇧<(P ) can
be expressed in terms of the thermally resummed gaugino
⇤
S
<(Q) and gauge boson ⇤
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µ⌫(K) propagators as [21,

26]
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with ⇠ being the gauge parameter, taken ⇠ = 1 [35] in our calculation and nN = {1, 3, 8}. ⇧L
µ⌫ , ⇧

T
µ⌫ , ⇢L,T and ⇢± are

the longitudinal, the transverse projectors and the spectral densities for the bosons and fermions, respectively. To
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compute the production rate related to the D�graph �D, we will use its definition [39]
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where q0 = p� k0 .

The spectral functions ⇢L,T and ⇢± can be found in
Eqs. (3.7) in [26]. The thermally corrected one-loop
self-energy for gauge bosons, scalars and fermions that
we have used in calculating these spectral functions,
can be found in [42–47]. Comparing (13) with the
corresponding analytical result given in Eqs. (4.6) and
(4.7) in [26], one can notice that they di↵er on the overall
factor and on the number of independent phase-space
integrations. Our analytical result has been checked
using various frames for the momenta flow into the loop.

The top Yukawa rate.– The production rate resulting
from the top-quark Yukawa coupling �t is given by [26]
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T
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where At is the trilinear stop supersymmetry breaking
soft parameter and Cs

BBF = 0.25957 ⇥ 10�3. Since this
contribution stems from the process squark-squark !
higgsino-gravitino, only the numerical factor Cs

BBF is in-
volved.

TABLE II. The values of the constants cN and kN that
parametrize our result (15) for the subtracted and the
D�graph part. Each line corresponds to the particular gauge
group, U(1)Y , SU(2)L or SU(3)c.

Gauge group cN kN
U(1)Y 41.937 0.824
SU(2)L 68.228 1.008
SU(3)c 21.067 6.878

The parameterization of the result.– Following [6] we
parametrize the results (9) and (13) using the gauge cou-

FIG. 2. The gravitino production rates divided by YN T 6/M2
P.

The solid curves represent in order, the total rate (black) given
by (5), the SU(3)c (red), SU(2)L (blue) and U(1)Y (green)
rates given by (15) and the top Yukawa rate (purple) given
by (14). The upper dashed curve is the total production rate
obtained in [26]. The top Yukawa coupling �t has been taken
equal to 0.7 so that our result can be directly compared with
that in [26].
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where the constants cN and kN depend on the gauge
group and their values are given in Table II. In Fig. 2 we
summarize our numerical results for the gravitino pro-
duction rates divided by YN T

6
/M

2
P. Especially, for the

case of the top Yukawa contribution, in YN the m
2
�N

has
to be replaced by A

2
t . The colored solid curves repre-

sent the SU(3)c (red), SU(2)L (blue) and U(1)Y (green)
rates given by (15) and the top Yukawa rate (purple)
given by (14), while the black solid curve is the total re-
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FIG. 11. The gravitino production rates divided by YN T 6/M2
P. The solid curves represent in order, the total rate (black)

given by (5), the SU(3)c (red), SU(2)L (blue) and U(1)Y (green) rates given by (193) and the top Yukawa rate (purple) given
by (192). The upper dashed curve is the total production rate obtained in [? ]. The top Yukawa coupling �t has been taken
equal to 0.7 so that our result can be directly compared with that in [? ].

IX. The parameterization of the result

Following [? ] we parametrize the results (9) and (79) using the gauge couplings g1, g2 and g3 . Thus

�sub + �D =
3 ⇣(3)

16⇡3

T
6

M
2

P

3X

N=1

cN g
2

N

 
1 +

m
2

�N

3m2

3/2

!
ln

✓
kN

gN

◆
, (193)

where the constants cN and kN depend on the gauge group and their values are given in Table III. In Fig. 11 we
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Despite the analytical and numerical discrepancies with [? ], it is interesting that our result for the total gravitino
production rate is only 5 � 11% smaller than that in [? ]. Being unable to explain this quantitively in details, we
assume that the aforementioned di↵erences have opposing e↵ects on the total result. For convenience, in Fig. 11
universal gauge coupling unification is assumed at the grand unification (GUT) scale ⇠ 2⇥ 1016 GeV, but certainly
the result in (193) can be used independently of this assumption. Eq. (193) along with the numbers in Table III is
the main result of this paper.

X. The Gravitino abundance

The Boltzmann equation for the gravitino number density n3/2 is

ṅ3/2 + 3Hn3/2 = �3/2 , (194)
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(4.7) in [26], one can notice that they di↵er on the overall
factor and on the number of independent phase-space
integrations. Our analytical result has been checked
using various frames for the momenta flow into the loop.

The top Yukawa rate.– The production rate resulting
from the top-quark Yukawa coupling �t is given by [26]

�top =
T

6

M
2
P

72 Cs
BBF �

2
t

 
1 +

A
2
t

3m2
3/2

!
, (14)

where At is the trilinear stop supersymmetry breaking
soft parameter and Cs

BBF = 0.25957 ⇥ 10�3. Since this
contribution stems from the process squark-squark !
higgsino-gravitino, only the numerical factor Cs

BBF is in-
volved.

TABLE II. The values of the constants cN and kN that
parametrize our result (15) for the subtracted and the
D�graph part. Each line corresponds to the particular gauge
group, U(1)Y , SU(2)L or SU(3)c.

Gauge group cN kN
U(1)Y 41.937 0.824
SU(2)L 68.228 1.008
SU(3)c 21.067 6.878

The parameterization of the result.– Following [6] we
parametrize the results (9) and (13) using the gauge cou-

FIG. 2. The gravitino production rates divided by YN T 6/M2
P.

The solid curves represent in order, the total rate (black) given
by (5), the SU(3)c (red), SU(2)L (blue) and U(1)Y (green)
rates given by (15) and the top Yukawa rate (purple) given
by (14). The upper dashed curve is the total production rate
obtained in [26]. The top Yukawa coupling �t has been taken
equal to 0.7 so that our result can be directly compared with
that in [26].

plings g1, g2 and g3 . Thus

�sub+�D =
3⇣(3)

16⇡3

T
6

M
2
P

3X

N=1

cN g
2
N

 
1 +

m
2
�N

3m2
3/2

!
ln

✓
kN

gN

◆
,

(15)
where the constants cN and kN depend on the gauge
group and their values are given in Table II. In Fig. 2 we
summarize our numerical results for the gravitino pro-
duction rates divided by YN T

6
/M

2
P. Especially, for the

case of the top Yukawa contribution, in YN the m
2
�N

has
to be replaced by A

2
t . The colored solid curves repre-

sent the SU(3)c (red), SU(2)L (blue) and U(1)Y (green)
rates given by (15) and the top Yukawa rate (purple)
given by (14), while the black solid curve is the total re-

4

compute the production rate related to the D�graph �D, we will use its definition [39]

�D =

Z
d3p

2p0(2⇡)3
⇧<(p) (12)

and after appropriate manipulations [40] we obtain

�D =
1

4(2⇡)5M2
P

3X

N=1

nN

 
1 +

m
2
�N

3m2
3/2

!Z 1

0
dp

Z 1

�1
dk0

Z 1

0
dk

Z k+p

|k�p|
dq k fB(k0) fF (q0)

⇥
h
⇢L(K) ⇢�(Q) (p� q)2

�
(p+ q)2 � k

2
�
+ ⇢L(K) ⇢+(Q) (p+ q)2

�
k
2 � (p� q)2

�

+ ⇢T (K) ⇢�(Q)
�
k
2 � (p� q)2

�⇣
(1 + k

2
0/k

2
��
k
2 + (p+ q)2

�
� 4k0(p+ q)

⌘

+ ⇢T (K) ⇢+(Q)
�
(p+ q)2 � k

2
�⇣

(1 + k
2
0/k

2)
�
k
2 + (p� q)2

�
� 4k0(p� q)

⌘i
, (13)

where q0 = p� k0 .

The spectral functions ⇢L,T and ⇢± can be found in
Eqs. (3.7) in [26]. The thermally corrected one-loop
self-energy for gauge bosons, scalars and fermions that
we have used in calculating these spectral functions,
can be found in [42–47]. Comparing (13) with the
corresponding analytical result given in Eqs. (4.6) and
(4.7) in [26], one can notice that they di↵er on the overall
factor and on the number of independent phase-space
integrations. Our analytical result has been checked
using various frames for the momenta flow into the loop.

The top Yukawa rate.– The production rate resulting
from the top-quark Yukawa coupling �t is given by [26]

�top =
T

6

M
2
P

72 Cs
BBF �

2
t

 
1 +

A
2
t

3m2
3/2

!
, (14)

where At is the trilinear stop supersymmetry breaking
soft parameter and Cs

BBF = 0.25957 ⇥ 10�3. Since this
contribution stems from the process squark-squark !
higgsino-gravitino, only the numerical factor Cs

BBF is in-
volved.

TABLE II. The values of the constants cN and kN that
parametrize our result (15) for the subtracted and the
D�graph part. Each line corresponds to the particular gauge
group, U(1)Y , SU(2)L or SU(3)c.

Gauge group cN kN
U(1)Y 41.937 0.824
SU(2)L 68.228 1.008
SU(3)c 21.067 6.878

The parameterization of the result.– Following [6] we
parametrize the results (9) and (13) using the gauge cou-

FIG. 2. The gravitino production rates divided by YN T 6/M2
P.

The solid curves represent in order, the total rate (black) given
by (5), the SU(3)c (red), SU(2)L (blue) and U(1)Y (green)
rates given by (15) and the top Yukawa rate (purple) given
by (14). The upper dashed curve is the total production rate
obtained in [26]. The top Yukawa coupling �t has been taken
equal to 0.7 so that our result can be directly compared with
that in [26].

plings g1, g2 and g3 . Thus

�sub+�D =
3⇣(3)

16⇡3

T
6

M
2
P

3X

N=1

cN g
2
N

 
1 +

m
2
�N

3m2
3/2

!
ln

✓
kN

gN

◆
,

(15)
where the constants cN and kN depend on the gauge
group and their values are given in Table II. In Fig. 2 we
summarize our numerical results for the gravitino pro-
duction rates divided by YN T

6
/M

2
P. Especially, for the

case of the top Yukawa contribution, in YN the m
2
�N

has
to be replaced by A

2
t . The colored solid curves repre-

sent the SU(3)c (red), SU(2)L (blue) and U(1)Y (green)
rates given by (15) and the top Yukawa rate (purple)
given by (14), while the black solid curve is the total re-

4

compute the production rate related to the D�graph �D, we will use its definition [39]

�D =

Z
d3p

2p0(2⇡)3
⇧<(p) (12)

and after appropriate manipulations [40] we obtain

�D =
1

4(2⇡)5M2
P

3X

N=1

nN

 
1 +

m
2
�N

3m2
3/2

!Z 1

0
dp

Z 1

�1
dk0

Z 1

0
dk

Z k+p

|k�p|
dq k fB(k0) fF (q0)

⇥
h
⇢L(K) ⇢�(Q) (p� q)2

�
(p+ q)2 � k

2
�
+ ⇢L(K) ⇢+(Q) (p+ q)2

�
k
2 � (p� q)2

�

+ ⇢T (K) ⇢�(Q)
�
k
2 � (p� q)2

�⇣
(1 + k

2
0/k

2
��
k
2 + (p+ q)2

�
� 4k0(p+ q)

⌘

+ ⇢T (K) ⇢+(Q)
�
(p+ q)2 � k

2
�⇣

(1 + k
2
0/k

2)
�
k
2 + (p� q)2

�
� 4k0(p� q)

⌘i
, (13)

where q0 = p� k0 .

The spectral functions ⇢L,T and ⇢± can be found in
Eqs. (3.7) in [26]. The thermally corrected one-loop
self-energy for gauge bosons, scalars and fermions that
we have used in calculating these spectral functions,
can be found in [42–47]. Comparing (13) with the
corresponding analytical result given in Eqs. (4.6) and
(4.7) in [26], one can notice that they di↵er on the overall
factor and on the number of independent phase-space
integrations. Our analytical result has been checked
using various frames for the momenta flow into the loop.

The top Yukawa rate.– The production rate resulting
from the top-quark Yukawa coupling �t is given by [26]

�top =
T

6

M
2
P

72 Cs
BBF �

2
t

 
1 +

A
2
t

3m2
3/2

!
, (14)

where At is the trilinear stop supersymmetry breaking
soft parameter and Cs

BBF = 0.25957 ⇥ 10�3. Since this
contribution stems from the process squark-squark !
higgsino-gravitino, only the numerical factor Cs

BBF is in-
volved.

TABLE II. The values of the constants cN and kN that
parametrize our result (15) for the subtracted and the
D�graph part. Each line corresponds to the particular gauge
group, U(1)Y , SU(2)L or SU(3)c.

Gauge group cN kN
U(1)Y 41.937 0.824
SU(2)L 68.228 1.008
SU(3)c 21.067 6.878

The parameterization of the result.– Following [6] we
parametrize the results (9) and (13) using the gauge cou-

FIG. 2. The gravitino production rates divided by YN T 6/M2
P.

The solid curves represent in order, the total rate (black) given
by (5), the SU(3)c (red), SU(2)L (blue) and U(1)Y (green)
rates given by (15) and the top Yukawa rate (purple) given
by (14). The upper dashed curve is the total production rate
obtained in [26]. The top Yukawa coupling �t has been taken
equal to 0.7 so that our result can be directly compared with
that in [26].

plings g1, g2 and g3 . Thus

�sub+�D =
3⇣(3)

16⇡3

T
6

M
2
P

3X

N=1

cN g
2
N

 
1 +

m
2
�N

3m2
3/2

!
ln

✓
kN

gN

◆
,

(15)
where the constants cN and kN depend on the gauge
group and their values are given in Table II. In Fig. 2 we
summarize our numerical results for the gravitino pro-
duction rates divided by YN T

6
/M

2
P. Especially, for the

case of the top Yukawa contribution, in YN the m
2
�N

has
to be replaced by A

2
t . The colored solid curves repre-

sent the SU(3)c (red), SU(2)L (blue) and U(1)Y (green)
rates given by (15) and the top Yukawa rate (purple)
given by (14), while the black solid curve is the total re-

4

compute the production rate related to the D�graph �D, we will use its definition [39]

�D =

Z
d3p

2p0(2⇡)3
⇧<(p) (12)

and after appropriate manipulations [40] we obtain

�D =
1

4(2⇡)5M2
P

3X

N=1

nN

 
1 +

m
2
�N

3m2
3/2

!Z 1

0
dp

Z 1

�1
dk0

Z 1

0
dk

Z k+p

|k�p|
dq k fB(k0) fF (q0)

⇥
h
⇢L(K) ⇢�(Q) (p� q)2

�
(p+ q)2 � k

2
�
+ ⇢L(K) ⇢+(Q) (p+ q)2

�
k
2 � (p� q)2

�

+ ⇢T (K) ⇢�(Q)
�
k
2 � (p� q)2

�⇣
(1 + k

2
0/k

2
��
k
2 + (p+ q)2

�
� 4k0(p+ q)

⌘

+ ⇢T (K) ⇢+(Q)
�
(p+ q)2 � k

2
�⇣

(1 + k
2
0/k

2)
�
k
2 + (p� q)2

�
� 4k0(p� q)

⌘i
, (13)

where q0 = p� k0 .

The spectral functions ⇢L,T and ⇢± can be found in
Eqs. (3.7) in [26]. The thermally corrected one-loop
self-energy for gauge bosons, scalars and fermions that
we have used in calculating these spectral functions,
can be found in [42–47]. Comparing (13) with the
corresponding analytical result given in Eqs. (4.6) and
(4.7) in [26], one can notice that they di↵er on the overall
factor and on the number of independent phase-space
integrations. Our analytical result has been checked
using various frames for the momenta flow into the loop.

The top Yukawa rate.– The production rate resulting
from the top-quark Yukawa coupling �t is given by [26]

�top =
T

6

M
2
P

72 Cs
BBF �

2
t

 
1 +

A
2
t

3m2
3/2

!
, (14)

where At is the trilinear stop supersymmetry breaking
soft parameter and Cs

BBF = 0.25957 ⇥ 10�3. Since this
contribution stems from the process squark-squark !
higgsino-gravitino, only the numerical factor Cs

BBF is in-
volved.

TABLE II. The values of the constants cN and kN that
parametrize our result (15) for the subtracted and the
D�graph part. Each line corresponds to the particular gauge
group, U(1)Y , SU(2)L or SU(3)c.

Gauge group cN kN
U(1)Y 41.937 0.824
SU(2)L 68.228 1.008
SU(3)c 21.067 6.878

The parameterization of the result.– Following [6] we
parametrize the results (9) and (13) using the gauge cou-

FIG. 2. The gravitino production rates divided by YN T 6/M2
P.

The solid curves represent in order, the total rate (black) given
by (5), the SU(3)c (red), SU(2)L (blue) and U(1)Y (green)
rates given by (15) and the top Yukawa rate (purple) given
by (14). The upper dashed curve is the total production rate
obtained in [26]. The top Yukawa coupling �t has been taken
equal to 0.7 so that our result can be directly compared with
that in [26].

plings g1, g2 and g3 . Thus

�sub+�D =
3⇣(3)

16⇡3

T
6

M
2
P

3X

N=1

cN g
2
N

 
1 +

m
2
�N

3m2
3/2

!
ln

✓
kN

gN

◆
,

(15)
where the constants cN and kN depend on the gauge
group and their values are given in Table II. In Fig. 2 we
summarize our numerical results for the gravitino pro-
duction rates divided by YN T

6
/M

2
P. Especially, for the

case of the top Yukawa contribution, in YN the m
2
�N

has
to be replaced by A

2
t . The colored solid curves repre-

sent the SU(3)c (red), SU(2)L (blue) and U(1)Y (green)
rates given by (15) and the top Yukawa rate (purple)
given by (14), while the black solid curve is the total re-

4

compute the production rate related to the D�graph �D, we will use its definition [39]

�D =

Z
d3p

2p0(2⇡)3
⇧<(p) (12)

and after appropriate manipulations [40] we obtain

�D =
1

4(2⇡)5M2
P

3X

N=1

nN

 
1 +

m
2
�N

3m2
3/2

!Z 1

0
dp

Z 1

�1
dk0

Z 1

0
dk

Z k+p

|k�p|
dq k fB(k0) fF (q0)

⇥
h
⇢L(K) ⇢�(Q) (p� q)2

�
(p+ q)2 � k

2
�
+ ⇢L(K) ⇢+(Q) (p+ q)2

�
k
2 � (p� q)2

�

+ ⇢T (K) ⇢�(Q)
�
k
2 � (p� q)2

�⇣
(1 + k

2
0/k

2
��
k
2 + (p+ q)2

�
� 4k0(p+ q)

⌘

+ ⇢T (K) ⇢+(Q)
�
(p+ q)2 � k

2
�⇣

(1 + k
2
0/k

2)
�
k
2 + (p� q)2

�
� 4k0(p� q)

⌘i
, (13)

where q0 = p� k0 .

The spectral functions ⇢L,T and ⇢± can be found in
Eqs. (3.7) in [26]. The thermally corrected one-loop
self-energy for gauge bosons, scalars and fermions that
we have used in calculating these spectral functions,
can be found in [42–47]. Comparing (13) with the
corresponding analytical result given in Eqs. (4.6) and
(4.7) in [26], one can notice that they di↵er on the overall
factor and on the number of independent phase-space
integrations. Our analytical result has been checked
using various frames for the momenta flow into the loop.

The top Yukawa rate.– The production rate resulting
from the top-quark Yukawa coupling �t is given by [26]

�top =
T

6

M
2
P

72 Cs
BBF �

2
t

 
1 +

A
2
t

3m2
3/2

!
, (14)

where At is the trilinear stop supersymmetry breaking
soft parameter and Cs

BBF = 0.25957 ⇥ 10�3. Since this
contribution stems from the process squark-squark !
higgsino-gravitino, only the numerical factor Cs

BBF is in-
volved.

TABLE II. The values of the constants cN and kN that
parametrize our result (15) for the subtracted and the
D�graph part. Each line corresponds to the particular gauge
group, U(1)Y , SU(2)L or SU(3)c.

Gauge group cN kN
U(1)Y 41.937 0.824
SU(2)L 68.228 1.008
SU(3)c 21.067 6.878

The parameterization of the result.– Following [6] we
parametrize the results (9) and (13) using the gauge cou-

FIG. 2. The gravitino production rates divided by YN T 6/M2
P.

The solid curves represent in order, the total rate (black) given
by (5), the SU(3)c (red), SU(2)L (blue) and U(1)Y (green)
rates given by (15) and the top Yukawa rate (purple) given
by (14). The upper dashed curve is the total production rate
obtained in [26]. The top Yukawa coupling �t has been taken
equal to 0.7 so that our result can be directly compared with
that in [26].

plings g1, g2 and g3 . Thus

�sub+�D =
3⇣(3)

16⇡3

T
6

M
2
P

3X

N=1

cN g
2
N

 
1 +

m
2
�N

3m2
3/2

!
ln

✓
kN

gN

◆
,

(15)
where the constants cN and kN depend on the gauge
group and their values are given in Table II. In Fig. 2 we
summarize our numerical results for the gravitino pro-
duction rates divided by YN T

6
/M

2
P. Especially, for the

case of the top Yukawa contribution, in YN the m
2
�N

has
to be replaced by A

2
t . The colored solid curves repre-

sent the SU(3)c (red), SU(2)L (blue) and U(1)Y (green)
rates given by (15) and the top Yukawa rate (purple)
given by (14), while the black solid curve is the total re-

  [Rychkov, Strumia (2007)]



Gravitino abundance

26

FIG. 12. The cosmologically accepted 3� regions for the gravitino thermal abundance, for various values of the m1/2 between
750 GeV and 4 TeV. The trilinear coupling At has been ignored and the top Yukawa coupling is �t = 0.7.

where H is the Hubble constant and the dot denotes time di↵erentiation. The gravitino abundance is defined as
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where g⇤s are the e↵ective entropy degrees of freedom in the Minimal Supersymmetric SM. In [? ] it was assumed
that the inflaton decay is instantaneous as is the thermalization of the Universe.
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are g⇤s(T0) = 43/11 and g⇤s(Treh) = 915/4. The last number equals to the e↵ective energy degrees of freedom for
H(Treh) in the Minimal Supersymmetric SM too. Fig. 12 illustrates the 3� regions resulting from (197), for various
values of m1/2. In this figure the trilinear coupling At has been ignored and the top Yukawa coupling is �t = 0.7, as
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For large gravitino mass the reheating temperature is m1/2 independent, as the characteristic factor m2
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becomes negligible for m1/2 ⌧ m3/2. Assuming that m1/2 & 750 GeV, as it is suggested by the recent LHC data [?
? ] on gluino searches, from Fig. 12 we infer that for maximum Treh ' 109 GeV the corresponding gravitino mass
is m3/2 ' 550 GeV. Allowing for a reheating temperature an order of magnitude smaller, Treh ' 108 GeV, for the
same gravitino mass, m1/2 can go up to 3� 4 TeV.
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 Gravitino is natural candidate in SUGRA models for DM. 

  We calculated the gravitino thermal production rate beyond the HTL 
approximation. 

 Assuming m1/2> 750 GeV (~ LHC current bound), for the maximum value of  
Treh ~ 109 GeV,  we get m3/2 ~ 550 GeV.   If  Treh ~ 108 GeV for the same m3/2,    
m1/2~  3-4  TeV. 

 No-thermal gravitinos should be taken into account, but for this a particular 
inflation model has to assumed. 

Summary


