
The recent speed up of the Universe:
A Phenomelogical Approach

Beyond Standard Model: From Theory to Experiment 2021
@ Cairo (Egypt)

Mariam Bouhmadi-López
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Introduction



Introduction-1-: A brief sketch of the universe

• The universe is homogeneous and isotropic on large scales

(cosmological principle)

• The matter content of the universe:

• Standard matter

• Dark matter

• Something that induce the late-time acceleration of the

Universe

• The acceleration of the universe is backed by several

measurments: H(z), SneIa, BAO, CMB, LSS (matter power

spectrum, growth function)...
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Introduction-2-

• The effective equation of state of whatever is driving the current

speed up of the universe is roughly -1. For example, for a wCDM

model with w constant and k = 0, Planck (TT, TE, EE+lensing) +

ext(BAO,H0,JLA) results implies w is very close to −1

• Such an acceleration could be due

• A new component of the energy budget of the universe: dark energy;

i.e. it could be Λ, quintessence or of a phantom(-like/effective)

nature

• A change on the behaviour of gravity on the largest scale. No new

component on the budget of the universe but rather simply GR

modifies its behaviour, within a metric, Palatini (affine metric) ....
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Late-time acceleration of the Universe within

GR: dark energy with a constant EoS



Constant equation of state for DE: background-1-

• Cosmic acceleration:

ä

a
= −4πG

3
(ρm + ρde + 3pde)

• Observation indicates that for wde ∼ −1 where wde = pde/ρde.

• Therefore, as soon as DE starts dominating the Universe starts

accelerating, i.e. ä > 0.

• Simplest cases ΛCDM or wCDM.
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Constant equation of state for DE: background-2-

• State finders approach (Sahni, Saini

and Starobinsky JETP Lett. [arXiv:astro-ph/0201498])

• Scale factor: a(t)
a0

=

1 +
∞∑
n=1

An(t0)
n!

[H0 (t − t0)]n,

where An := a(n)/(aHn),

n ∈ N.

• State finders parameters:

S
(1)
3 = A3,

S
(1)
4 = A4 + 3 (1− A2),

S
(1)
5 = A5 −

2 (4− 3A2) (1− A2)

• Ωm = 0.309, Ωd = 0.691 and

H0 = 67.74 km s−1 Mpc−1

(according to Planck).
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Constant equation of state for DE: perturbations-1-
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• Example of the evolution of the
perturbations: k = 10−3 Mpc−1

• ΛCDM model: Φk vanishes
asymptotically

• Phantom model: Φk also evolves
towards a constant in the far future
but a change of sign occurs roughly
at log10 a/a0 ' 2.33, corresponding
to 8.84× 1010 years in the future.
A dashed line indicates negative
values of Φk

• Quintessence model: Φk evolves
towards a constant in the far future
without changing sign

Albarran, B.L. and Morais, EPJC 2018 [arXiv:1706.01484]
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Constant equation of state for DE: perturbations-2-

• What about f σ8 for the three different DE models?

f ≡ d (ln δm)

d (ln a)
, σ8 (z , kσ8 ) = σ8 (0, kσ8 )

δm (z , kσ8 )

δm (0, kσ8 )

kσ8
= 0.125 hMpc−1, σ8(0, kσ8

) = 0.820 (Planck)

Albarran, B.L. and Morais [arXiv:1706.01484]
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Late-time acceleration of the Universe within

GR and with a phantom fluid



Late-time acceleration of the Universe within

GR and with a phantom fluid

The models



The models

• We are going to focus on the genuinely phantom matter. i.e. when

the Equation of State satisfies w < −1.

• The phantom matter violates the Null energy condition. In

consequence, the rest of the energy conditions are violated.

• Null energy condition ⇒ p + ρ > 0.

• Weak energy condition ⇒p + ρ > 0 , ρ > 0.

• Dominant energy condition ⇒ ρ > |p|.
• Strong energy condition ⇒ p + ρ > 0 , 3p + ρ > 0.

• For example, a suitable way to write the Equation of State of a

phantom fluid is

p = −ρ− Cρα,

where C is a positive constant and α is a real number. We are going

to focus on the cases α = 1, 1/2, 0.
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Genuine phantom models: BR, LR and LSBR

• The DE content can be described for example with a perfect fluid or

a scalar field

Event EoS for a perfect fluid Potential for a scalar field

BR pd = wdρd V (φ) = Cbre
λφ

LR pd = −ρ− B
√
ρd V (φ) = Clrφ

4 + Dlrφ
2

LSBR pd = −ρd − A/3 V (φ) = Clsφ
2 + Dls

Where wd < −1, the parameters A and B are positive and Cbr , Clr , Dlr ,

Cls and Dlr are constants.

• The lower is the power on φ of V (φ), the smoother is the abrupt

event.

(1) A.A. Starobinsky. astro-ph 9912054; R.R. Cadwell astro-ph 9908168; Cadwell et al. astro-ph/0301273

(2) H. S̆tefanc̆ić. astro-ph 0411630; S. Nojiri, S. Odintsov and S. Tsujikawa. hep-th/0501025

(3) M. Bouhmadi-López , A. Errahmani, P. Mart́ın-Moruno, T. Ouali and Y. Tavakoli. arXiv:1407.2446

(4) M. P. Da̧browski, C. Kiefer and B. Sandhöfer. hep-th/0605229
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Phantom energy: Should we be afraid?

• Evolution of the scale factor for different models vs cosmic time.
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Late-time singularities

Some of the cosmological parameters:

DE might induce a future cosmic singularity

𝑡 Cosmic time
𝑎 Scale factor (relative size)
𝐻 Hubble parameter (growth rate)
 𝐻 Time derivative of 𝐻

Singularity 𝒕 𝒂 𝑯  𝑯  𝑯,  𝑯…

Big Bang 0 0 ∞ ∞ ∞

De Sitter ∞ ∞ 𝐻𝑑𝑠 0 0

Big Rip 𝑡𝑠 ∞ ∞ ∞ ∞

LR ∞ ∞ ∞ ∞ ∞

LSBR ∞ ∞ ∞  𝐻𝑠 0

Big Freeze 𝑡𝑠 𝑎𝑠 ∞ ∞ ∞

Sudden. S. 𝑡𝑠 𝑎𝑠 𝐻𝑠 ∞ ∞

Type IV 𝑡𝑠 𝑎𝑠 𝐻𝑠  𝐻𝑠 ∞

Asymptotic evolution of the scale factor

(Λ𝐶𝐷𝑀)

Bouhmadi-López, Kiefer, Mart́ın-Moruno, arXiv:1904.01836 [gr-qc] (review published in GRG)
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Late-time acceleration of the Universe within

GR and with a phantom fluid

Observational data and constraints



SNeIa data-1-

• The Pantheon compilation: 1048 SNeIa dataset 0.01 < z < 2.26

• The distance modulus for supernovae is given by

µth = 5 log10

dL
Mpc

+ 25

• The luminosity distance reads dL = (c/H0)DL where H0 is the

Hubble constant, c is the speed of light and DL = (1 + z)
∫ z

0
dz

E(z) ,

where E (z) = H(z)/H0

• The observed apparent magnitude for the Pantheon compilation is

given by mobs = µobs + M, where µobs is the observed distance

modulus and M is the absolute magnitude.

13



SNeIa data-2-

• To estimate the cosmological parameters, we compute χ2

χ2
SN = (µobs − µth)T.C−1

Pantheon.(µobs − µth),

where (µobs − µth) is the difference vector between the model

expectations and the observed magnitudes, CPantheon is the

covariance matrix of Pantheon data which is given by the sum of a

statistical part and systematic part CPantheon = Cstat + Csys.

• In order to get rid of the nuisance parameter M, we perform an

analytical marginalization over it, by defining a new chi-square

χ2
SN = A + ln

C

2π
− B2

C
,

where

A = (µobs − µth)T.C−1
Pantheon.(µobs − µth)

,

B = (µobs − µth)T.C−1
Pantheon.1, C = 1T.C−1

Pantheon.1

being 1 the 1048×1048 identity matrix.
14



CMB data-1-

• The power spectrum of CMB affects crucially the physics, from the

decoupling epoch till today.

• Effects are mainly quantified by the acoustic scale la and the shift

parameter R Komatsu et 2008

R ≡
√

ΩmH2
0 (1 + zCMB)DA(zCMB),

la ≡ (1 + zCMB)
πDA(zCMB)

rs(zCMB)
.

• The angular diameter distance of photons in a flat FLRW universe

DA(z) =
1

H0(1 + z)

∫ z

0

dz ′

E (z ′)
,

• The comoving sound horizon

rs(z) =
1

H0

∫ a

0

da′

a′E (a′)
√

3(1 + R̄b)a′
,

and Rb = 31500Ωbh
2(TCMB/2.7K )−4, with TCMB = 2.275K
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CMB data-2-

• The CMB contribution to the total χ2 is

χ2
CMB = XT

CMB.C
−1
CMB.XCMB,

where XCMB is the CMB parameters vector based on Planck 2018

release Zhai et al 2018

XCMB =

 R − 1.74963

la − 301.80845

Ωbh
2 − 0.02237

 .
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BAO data and H(z) data

• The BAO peaks present in the matter power spectrum can be used

to determine the Hubble parameter H(z) and the angular diameter

distance DA(z) Eisenstein et 2005

DV (z) ≡
[

(1 + z)2D2
A(z)

z

H(z)

]1/3

,

• Then once again we calculate

χ2
BAO = XT

BAO.C
−1
BAO.XBAO,

where XBAO is the difference vector between the theoretical

predictions and observations.

• For H(z) data we can consider

χ2
H(z) =

36∑
i=1

[
Hobs,i − H(zi )

σH,i

]2

,

where Hobs,i is the observational value of the Hubble parameter and

H(z) is the theoretical prediction of the Hubble parameter.
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Model fitted

• BR model: pd = wdρd

E (a)2 = Ωra
−4 + Ωma

−3 + Ωda
−3(1+wd).

• LR model: pd = −
(
ρd + βρ

1
2

d

)
E 2(a) = Ωra

−4 + Ωma
−3 + Ωd

(
1 +

3

2

√
Ωlr

Ωd
ln(a)

)2

.

• LSBR model: pd = −
(
ρd + α

3

)
E 2(a) = Ωra

−4 + Ωma
−3 + Ωd

(
1− Ωlsbr

Ωd
ln(a)

)
.

18



BR Model
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LR Model
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LSBR Model
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Comparison with LCDM
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Late-time acceleration of the Universe within

GR and with a phantom fluid

A perturbative approach: GR and phantom fluids



Our approach

• We start considering that the late-time acceleration of the universe

is described by a dark energy component effectively encapsulated

within a perfect fluid with energy density ρd and pressure pd . On

this setup, we consider two simple scenario:

• A constant equation of state for DE

• A DE in an effective and genuinely phantom DE universe. The

reason of this second choice will become clear after considering the

first case.

• Of course, on top of this we invoke a dark matter component.

• Given that to get the matter power spectrum, we start our numerical

integration since the radiation dominated epoch, we will consider as

radiation as well on our model.
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Cosmological perturbations: GR and for the late Universe-1

• We worked on the Newtonian gauge and carried the first order

perturbations considering DM, DE and radiation on GR. Radiation

was included because our numerical integrations start from well

inside the radiation dominated epoch (to get the matter power

spectrum)

• We assumed initial adiabatic conditions for the different fractional

energy density perturbations

• The total fractional energy density is fixed by Planck measurments;

i.e. through As and ns
• The speed of sound for DE:

• The pressure perturbation of DE reads:

δpd = c2
sdδρd − 3H (1 + wd)

(
c2
sd − c2

ad

)
ρdvd , where c2

sd = δpd
δρd

∣∣∣
r.f .

and c2
aA =

p′d
ρ′
d

• Given that c2
sd is negative, we can end up with a problem (this is not

intrisic to phantom matter as it can happen for example with fluids

with a negative constant equation of state larger than -1)

• We choose c2
sd = 1 as a phenomenological parameter 24



Cosmological perturbations: GR and for the late Universe-2

• Evolution equations for the different components

(δr)x =
4

3

(
k2

H vr + 3Ψx

)
,

(vr)x = − 1

H

(
1

4
δr + Ψ

)
,

(δm)x =

(
k2

H vr + 3Ψx

)
,

(vm)x = −
(
vm +

Ψ

H

)
,

(δd)x = (1 + wd)

{[
k2

H + 9H
(
c2
sd − c2

ad

)]
vd + 3Ψx

}
+ 3

(
wd − c2

sd

)
δd ,

(vd)x = − 1

H

(
c2
sd

1 + wd
δd + Ψ

)
+
(

3c2
sd − 1

)
vd .
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Cosmological perturbations: GR and for the late Universe-3

• Perturbed Einstein equations

Ψx + Ψ

(
1 +

k2

3H2

)
= −1

2
δ ,

Ψx + Ψ = −3

2
Hv (1 + w) ,

Ψxx +

[
3− 1

2
(1 + 3w)

]
Ψx − 3wΨ =

3

2

δp

ρ
.

where

ρ =
∑
A

δρA , δp =
∑
A

δpA , δ =
∑
A

ρA
ρ
δA =

∑
A

ΩAδA

and

v =
∑
A

1 + wA

1 + w
ΩAvA .
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Cosmological perturbations: GR and for the late Universe-4

• Adiabatic conditions:

3

4
δr,ini = δm,ini =

δd,ini
1 + wd,ini

≈ 3

4
δini

vr,ini = vm,ini = vd,ini ≈
δini

4Hini

• Initial conditions for δ are fixed through the amplitude and spectral

index of the primordial inflationary power spectrum:

As = 2.143× 10−9, ns = 0.9681 and k∗ = 0.05 Mpc−1 (Planck

values): Φini = 2π
3

√
2As

(
k
k∗

)ns−1

k−3/2

• Well inside the radiation era: Φini ≈ − 1
2δtot,ini and

Φini ≈ −2Hinivtot,ini

• We choose c2
sd = 1 as a phenomenological parameter

• The parameters of the models will be fixed through the fitting we

did previously.
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Results: DM perturbations and the gravitational potential

|δ m
|k

3 2

Ψ
/
Ψ

⋆

x x

k1 = 3.33× 10−4h Mpc−1, k4 = 1.02× 10−2h Mpc−1,

k2 = 1.04× 10−4h Mpc−1, k5 = 3.19× 10−2h Mpc−1,

k3 = 3.26× 10−3h Mpc−1, k6 = 1.00× 10−1h Mpc−1.
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Results: DE perturbations

|δ d
|k

3 2
|δ d

|
k

3 2

x x x

k1 = 3.33× 10−4h Mpc−1, k4 = 1.02× 10−2h Mpc−1,

k2 = 1.04× 10−4h Mpc−1, k5 = 3.19× 10−2h Mpc−1,

k3 = 3.26× 10−3h Mpc−1, k6 = 1.00× 10−1h Mpc−1.
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Results: a closer look at the gravitational potential

Ψ
/
Ψ

⋆
Ψ
/
Ψ

⋆

x x x

k1 = 3.33× 10−4h Mpc−1, k4 = 1.02× 10−2h Mpc−1,

k2 = 1.04× 10−4h Mpc−1, k5 = 3.19× 10−2h Mpc−1,

k3 = 3.26× 10−3h Mpc−1, k6 = 1.00× 10−1h Mpc−1.
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Results: The evolution of f σ8 (growth rate)-1-

f
σ
8

z
The evolution of f σ8 for the 3 models.

f ≡ d (ln δm)

d (ln a)
, σ8 (z , kσ8 ) = σ8 (0, kσ8 )

δm (z , kσ8 )

δm (0, kσ8 )

kσ8
= 0.125 hMpc−1, σ8(0, kσ8

) = 0.820 (Planck) 31



Effect of the speed of sound, C 2
sd , on DE perturbations
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Effect of the speed of sound, C 2
sd , on the gravitational potential-

1-
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Effect of the speed of sound, C 2
sd , on the gravitational potential-

2-
Ψ
/
Ψ

⋆
,
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Conclusions



Conclusions

• We have followed a phenomenological approach to describe the

late-time acceleration of the universe.

• It can be perfectly described by a constant equation of state.

• We have also shown that the late-time acceleration of the Universe

can be described through a phantom DE component

• Finally, we have looked for the observational fit and the

perturbations
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