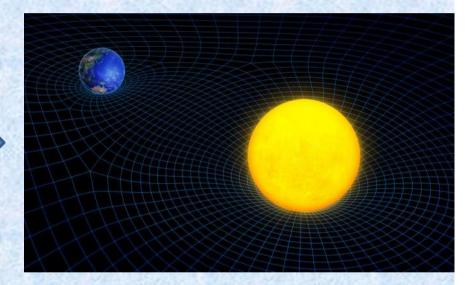
Foundation and Cosmological Applications of Non-Local Gravity



1

Salvatore Capozziello

Beyond Standard Model: From Theory to Experiment, March 31, 2021

Outline

- Locality and Non-Locality
- Non-Local Theories of Gravity
- The Noether Symmetry Approach
- Non-Local Theories with scalar curvature
- Non-Local *Gauss-Bonnet* Gravity
- Non-Local Teleparallel Gravity
- Spherical Symmetry and astrophysical tests
- Conclusions and perspectives

Locality and Non-locality

Kinematics

It refers to the STATES

Dynamics

It refers to the INTERACTIONS

Classical Theories: local

 $CM \longrightarrow {Points of a} \ tangent/cotangent bundle$

CFT ----> Tensor fields over a manifold

Quantum Theories: non-local

- Born interpretation of Ψ
- Heisenberg uncertainty principle



Non-Locality in Physics

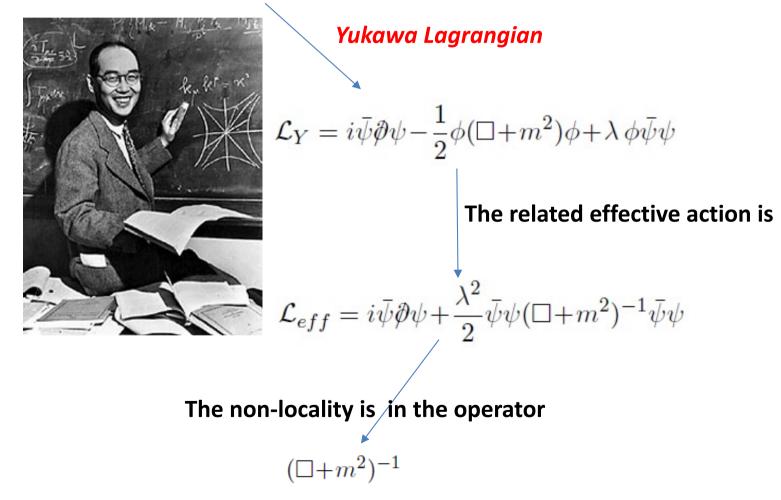
• Fundamental interactions are Non-Local. It can be shown by considering the one-loop effective action

Euler-Heisenberg Lagrangian

$$\mathcal{L}_{EH} = -\frac{1}{4}\mathcal{F}^2 - \frac{e^2}{32\pi^2} \int_0^\infty \frac{ds}{s} e^{i\varepsilon s} e^{-m^2 s} \left[\frac{\operatorname{Re}\cosh(esX)}{\operatorname{Im}\cosh(esX)} F_{\mu\nu} F^{\mu\nu} - \frac{4}{e^2 s^2} - \frac{2}{3} \mathcal{F}^2 \right]$$
$$\mathcal{F} = \frac{1}{2} \left(|\mathbf{E}|^2 - |\mathbf{B}|^2 \right), X = \mathcal{F} + i\mathbf{E} \cdot \mathbf{B}$$

Non-Locality in Physics

Another example



Local Action vs Non-local Action

Local Action

it is a functional of only local fields, *i.e.* algebraic functions of fields or their derivatives evaluated at a single point

It is the paradigm of all fundamental field theories, both classical and quantum

Non-local Action

it is a functional of non-local fields (at least one), *i.e.* functions of fields evaluated at more than one point or transcendental functions of fields or their derivatives

It describes an effective theory

We must find a link between GR and QM **GR** must be changed

QFT must be changed

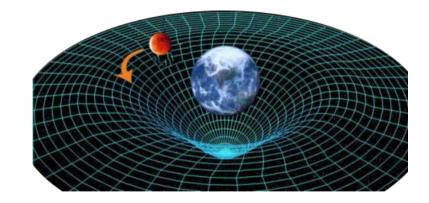
Shortcomings in GR

Large Scales

- Universe accelerated expansion
- > Inflation
- Galaxy Rotation Curve
- Mass-Radius Diagram of Neutron Stars
- Fine-tuning of cosmological parameters

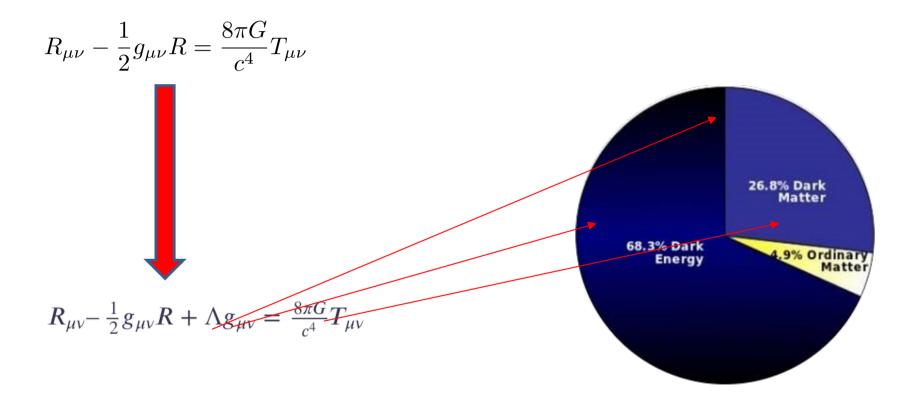
Small Scales

- Renormalizability
- GR cannot be quantized
- GR cannot be treated under the same standard of the other interactions
- Discrepancy between theoretical and experimental value of Λ
- Classical spacetime singularities



No theory is capable of solving these problems at once so far

No evidence for DM and DE at fundamental level



Can Dark Side Issue be solved by Non-locality?

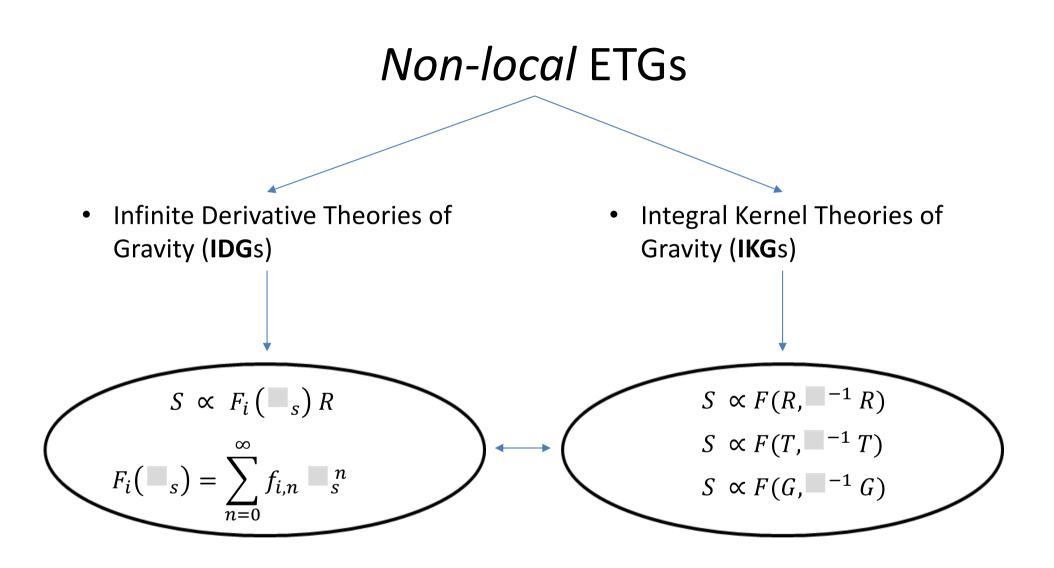
Local Extended Theories of Gravity (ETG)

$$S_{BD} = \frac{1}{16\pi} \int d^4x \sqrt{-g} \left[\phi R - \frac{\omega}{\phi} g^{\mu\nu} \nabla_{\mu} \phi \nabla_{\nu} \phi \right] + S^{(m)}$$

• Higher-order Theories

• Higher-order-scalar-tensor Theories

$$S = \int d^4x \sqrt{-g} \left[F(R, R, \Box^2 R, \dots, \Box^k R, \phi) - \frac{\varepsilon}{2} g^{\mu\nu} \nabla_{\mu} \phi \nabla_{\nu} \phi \right] + 2\kappa S^{(m)}$$



They could be very useful to address astrophysical and cosmological scale and, eventually, infrared dynamics

Infinite Derivative Theories of Gravity (IDGs)

We can start from the infinite-derivative Lorentz-invariant action depending on a scalar field

$$S = \frac{1}{2} \int d^4x d^4y \,\phi(x) \mathcal{K}(x-y) \phi(y) - \int d^4x V(\phi)$$

Prototype of Non-Locality: a general operator depending on the distance (x-y)

Starting from S and performing:

- 1. A Fourier transformation
- 2. The reparameterization $\mathcal{K}(x-y) = F(\Box)\delta^{(4)}(x-y)$ with $F(\Box) = e^{-\gamma(\Box)}\prod_{i=1}^{N} (\Box m_i^2)$

We get

$$\frac{1}{2} \int d^4x d^4y \,\phi(x) \mathcal{K}(x-y) \phi(y) \sim \frac{1}{2} \int d^4x \phi(x) F(\Box) \phi(x)$$

11

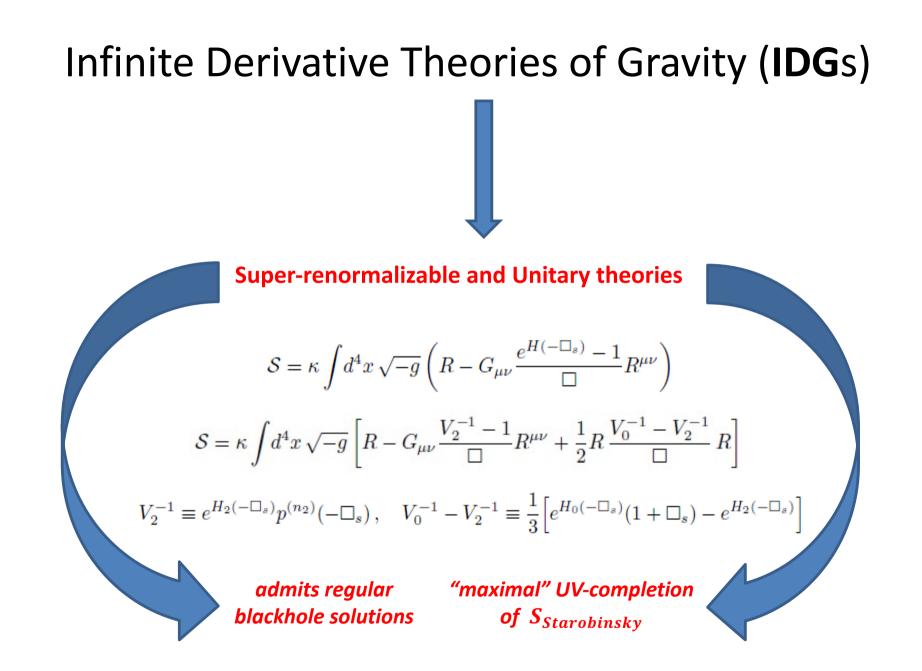
Infinite Derivative Theories of Gravity (IDGs)

The most general gravitational action in 4D, quadratic in curvature and ghost-free, has to contain infinite covariant derivatives:

$$S = \kappa \int d^4x \sqrt{-g} \left[R + \alpha \left(RF_1(\square_s) R + R_{\mu\nu}F_2(\square_s) R^{\mu\nu} + R_{\mu\nu\rho\sigma}F_3(\square_s) R^{\mu\nu\rho\sigma} \right) \right] + S^{(m)}$$

• $\kappa \equiv (16\pi G_N)^{-1}$, $\alpha \equiv (M_s)^{-2}$, $[M_s] = lenght$
• $\int_{s} \equiv M_s^2$, $\equiv g^{\mu\nu} \nabla_{\mu} \nabla_{\nu}$
• $F_i(\square_s)$ transcendental and analytic $\longrightarrow F_i(\square_s) = \sum_{n=0}^{\infty} f_{i,n} \square_s^n$

⁽T. Biswas, E. Gerwick, T. Koivisto, and A. Mazumdar. "Towards singularity and ghost free theories of gravity". In: Phys. Rev. Lett. **108** (2012), p. 031101)



(L. Modesto. "Super-renormalizable Quantum Gravity". In: Phys. Rev. **D86** (2012), p. 044005; F. Briscese, L. Modesto, and S. Tsujikawa. "Super-renormalizable or finite completion of the Starobinsky theory". In: Phys. Rev. **D89**.2(2014), p. 024029.)

Integral Kernel Theories of Gravity (IKGs)

- Involve non-local operator of the form \Box^{-1}
- *Firstly considered by Deser and Woodard in cosmology* S. Deser and R. P. Woodard. "Nonlocal Cosmology". In: Phys. Rev. Lett. **99** (2007), p. 111301

They start from

$$S = \frac{1}{16\pi G_N} \int d^4x \sqrt{-g} R [1 + F(-^1 R)] + S^{(m)}$$

• $\equiv g^{\mu\nu} \nabla_\mu \nabla_\nu = \frac{1}{\sqrt{-g}} \partial_\mu (\sqrt{-g} g^{\mu\nu} \partial_\nu)$
• $(-^1 R)(x) \equiv \int d^4x' \sqrt{-g} G(x, x') R(x')$ with $G(x, x')$ "retarded" Green

⁻¹ could explain the current late-time accelerated cosmic expansion without invoking any Dark Energy:

$$g_{\mu\nu}^{FLRW} = diag(1, -a^{2}(t), -a^{2}(t), -a^{2}(t))$$

$$(-1R)(t) = \int_{t_{i}}^{t} dt' \frac{1}{a^{3}(t')} \int_{t_{i}}^{t'} dt'' a^{3}(t'') R(t'')$$

$$= \int_{t_{i}}^{t} dt' \frac{1}{a^{3}(t')} \int_{t_{i}}^{t'} dt'' a^{3}(t'') R(t'')$$

$$= \int_{s=2/3}^{t_{i}=t_{eq} \sim 10^{5} y} (-1R)(t_{0})_{s=2/3} \sim 14,0$$

Large number required by the current cosmic acceleration avoiding the fine-tuning of parameters

$$F(R, -1 R) = F(T, -1 T, B, -1 B) = F(G, -1 G)$$

Classification

- Higher-order IKG (in the metric, affine, teleparallel formalism)
- Non-local extension of F(R) gravity

Motivations

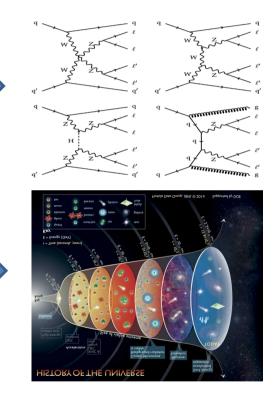
• It could account for UV and IR quantum corrections

• It could reproduce both UV and IR cosmic evolution

Purposes

- Cosmography, Dark Energy
- Physically motivated cosmological models
- Reproducing cosmic history from UV to IF scales

Method <u>Noether Symmetry Approach</u>



Noether Point Symmetries

 $\bar{t} = \bar{t}(t,q;\varepsilon) \simeq t + \varepsilon \xi(t,q)$ $\bar{q}^{i} = \bar{q}^{i}(t,q;\varepsilon) \simeq q^{i} + \varepsilon \eta^{i}(t,q)$ 1-parameter (ε) group of point transformations

 $X^{[1]} = X + \eta^{[1]i} \frac{\partial}{\partial \dot{q}^i} = X + (\dot{\eta}^i - \dot{\xi} \dot{q}^i) \frac{\partial}{\partial \dot{q}^i} \longrightarrow \text{``first prolongation'' of the} infinitesimal generator''}$

Noether Theorem. If and only if it exists a function g(t, q(t)) such that

$$\boldsymbol{X}^{[1]}L+\dot{\xi}L=\dot{g},$$

then the one-parameter group of point transformations generated by **X** is a one-parameter group of Noether point symmetries for the dynamical system described by the Lagrangian L. **The associated first integral of motion is:**

$$I(t,q,\dot{q}) = \xi \left(\dot{q} \frac{\partial L}{\partial \dot{q}^{i}} - L \right) - \eta^{i} \frac{\partial L}{\partial \dot{q}^{i}} + g$$

Noether Symmetry Approach

The recipe:

- 1. Consider a point-like (cosmological) Lagrangian
- 2. Write the ansatz for $X \text{ ed } X^{[1]}$
- 3. Derive the Noether point symmetry existence condition

$$\boldsymbol{X}^{[1]}L + \dot{\xi}L = \dot{g}$$

to obtain a polynomial depending on $\xi(t,q)$, $\eta^i(t,q)$, $\dot{g}(t,q)$ and products of the Lagrangian velocities $(e. g. \dot{\eta}^i \dot{\eta}^j \dot{\xi} ...)$

3. We obtain a system of PDEs for ξ , η^i , \dot{g}

The system contains the unknown function $F(R, \phi)$, so that it can provide, in principle, the explicit form for $F(R, \phi)$ related to the existence of symmetries. In other words, the existence of symmetries gives physically motivated Lagrangians.

1) $F(R, I^{-1}R)$

Cosmological Lagrangian

$$S = \frac{1}{16\pi G_N} \int d^4x \sqrt{-g} F(R, \Box^{-1}R)$$

$$formal \, localization$$

$$\phi \equiv \Box^{-1}R$$

$$R = \Box \phi$$

$$g_{\mu\nu}^{FLRW} \Rightarrow \begin{cases} R = -6\left[\frac{\ddot{a}}{a} + \left(\frac{\dot{a}}{a}\right)^2\right] \\ R \equiv = \phi = \ddot{\phi} + 3H\dot{\phi} \end{cases}$$

$$S = \kappa \int dt \, a^3 \left\{ F(R, \phi) - \epsilon(R - \ddot{\phi} - 3H\dot{\phi}) - \left(\frac{\partial F(R, \phi)}{\partial R} - \epsilon\right) \left[R + 6\left(\frac{\ddot{a}}{a} + \left(\frac{\dot{a}}{a}\right)^2\right) \right] \right\}$$

$$L = a^3 F - a^3 \dot{\phi} \dot{\epsilon} - a^3 R \partial_R F + 6a\dot{a}^2 \partial_R F - 6a\dot{a}^2 \epsilon + 6a^2 \dot{a}\dot{R} \partial_{RR} F + 6a^2 \dot{a}\dot{\phi} \partial_{R\phi} F - 6a^2 \dot{a}\dot{e}$$

$$q(t) = \{a(t), R(t), \phi(t), \epsilon(t)\}$$
New scalar field

Selection of the models by symmetries

$$f_{I}(R,\phi) = \frac{\delta_{1}}{2\xi_{0}(n-1)}R + [2\xi_{0}R]^{n}\mathcal{F}\left(\phi + \frac{(1-n)}{\ell}\log[2\xi_{0}R]\right)$$

$$f_{II}(R,\phi) = \frac{\delta_{1}}{2\xi_{0}(n-1)}R + G(R)e^{k\phi}$$
Arbitrary functions

Selection of the model: First Case

Simple choice

$$\mathcal{F}_1\left(\phi + \frac{(1-n)}{\ell}\log[2\xi_0 R]\right) \equiv \phi + \frac{(1-n)}{\ell}\log[2\xi_0 R] + q$$

The first function becomes

$$f_1(R,\phi) = \frac{\delta_1}{2\xi_0(n-1)}R + (2\xi_0R)^n(q+\phi) + (2\xi_0R)^n \frac{(1-n)}{\ell}\log[2\xi_0R]$$

Example: n=2
NON-LOCAL EXTENSION of $S_{starobinsky}$

$$f_1(R,\phi)\Big|_{n=2} = \frac{\delta_1}{2\xi_0(n-1)}R + 4\xi_0^2R^2(q+\phi) - \frac{4\xi_0^2}{\ell}R^2\log[2\xi_0R]$$

Cosmological Solutions for the First Case

Replacing
$$f_1(R,\phi) = \frac{\delta_1}{2\xi_0(n-1)}R + (2\xi_0R)^n(q+\phi) + (2\xi_0R)^n\frac{(1-n)}{\ell}\log[2\xi_0R]$$

Into the system of E-L equations, we get *three* different cosmological solutions

$$\begin{aligned} \mathbf{I:} \quad a(t) &= a_0 \, e^{\Lambda t} \quad R(t) = -12 \, \Lambda^2 \quad \phi(t) = -\frac{1}{3} (40 + 3q) - 4\Lambda t \\ \epsilon(t) &= 576 (2\xi_0)^3 \Lambda^5 t - \frac{C_3 e^{-3\Lambda t}}{3\Lambda} + \frac{\delta_1}{2\xi_0 (n-1)}, \end{aligned}$$
$$\begin{aligned} \mathbf{II:} \quad a(t) &= a_0 \, t^{-10} \quad R(t) = -1260 \, t^{-2} \quad \phi(t) = C_2 + \frac{1260}{31} \log(t) \\ \epsilon(t) &= \frac{\delta_1}{2\xi_0 (n-1)} + \frac{C_3}{31} \, t^{31} + 14288400 (2\xi_0)^3 \, t^{-4} \end{aligned}$$

Both constrain the function to be

$$f_1(R,\phi) = \frac{\delta_1}{2\xi_0(n-1)}R + (\phi+q)(2\xi_0R)^3 - \frac{16\xi_0^3}{\ell}R^3 \log[2\xi_0R]^3$$

 $I = \Box - 1 D$

Cosmological Solutions for the First Case

$$f_1(R,\phi) = \frac{\delta_1}{2\xi_0(n-1)}R + (2\xi_0R)^n(q+\phi) + (2\xi_0R)^n\frac{(1-n)}{\ell}\log[2\xi_0R]$$

Third solution of the first function:

$$a(t) = a_0 t^{\frac{1}{2}}$$
 $R(t) = 0$ $\phi(t) = C_2$ $\epsilon(t) = \frac{\delta_1}{2\xi_0(n-1)} - \frac{2C_3}{\sqrt{t}}$

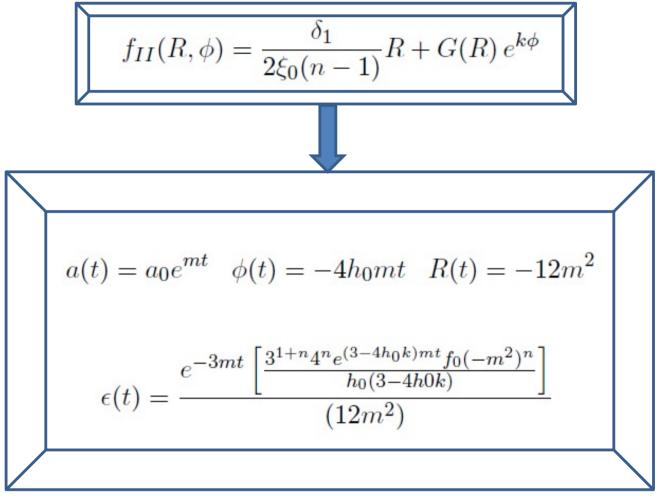
Constraining the function to be

$$f_1(R,\phi) = \frac{\delta_1}{2\xi_0(n-1)}R + \phi$$

which is nothing else but GR minimally coupled to a scalar field

Let us now consider the second selected function

Cosmological Solutions for the Second Case



Where:

- 1. We chose $G(R) = R^n$
- 2. The system of E-L equations provides the constraint $\delta_1=0$

2) F(G, -1 h(G))

Why considering the Gauss-Bonnet term?

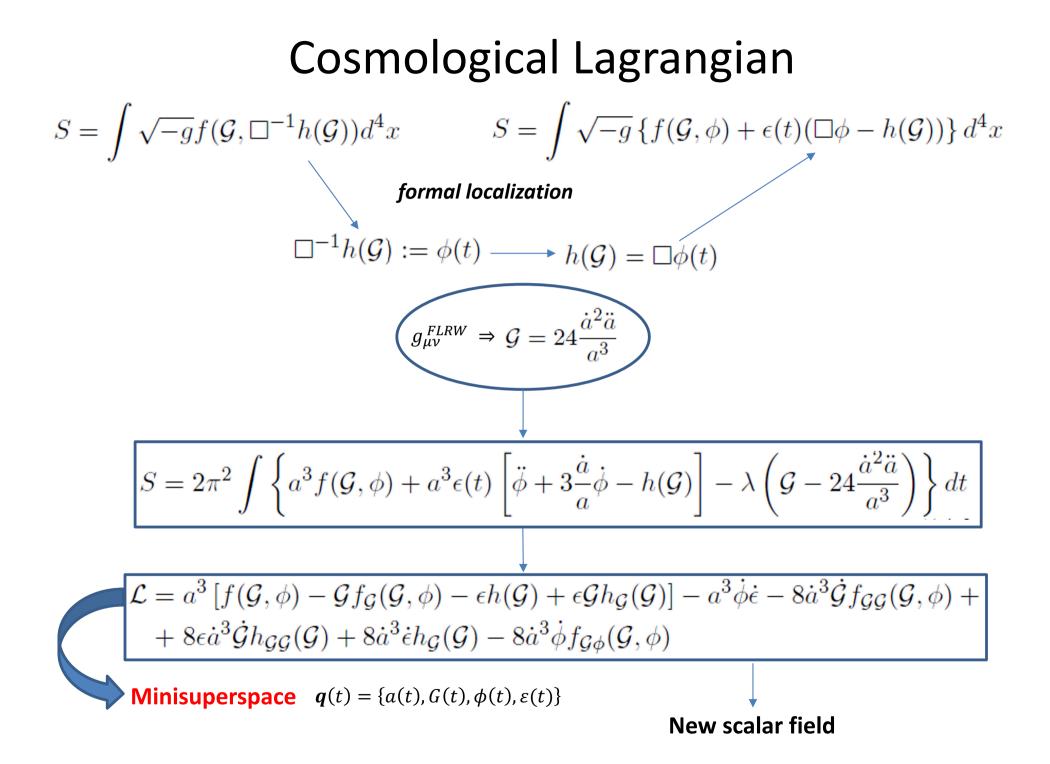
- 1. The Gauss-Bonnet term is a topological surface term and reduces dynamics
- 2. The Gauss-Bonnet Term naturally emerges in gauge theories of gravity
- 3. In homogeneous cosmology, it turns out that $f(\mathcal{G}) = \sqrt{\mathcal{G}} \longrightarrow R$

Gauss-Bonnet Invariant: $\mathcal{G} = R^2 - 4R_{\mu\nu}R^{\mu\nu} + R_{\mu\nu\rho\sigma}R^{\mu\nu\rho\sigma}$

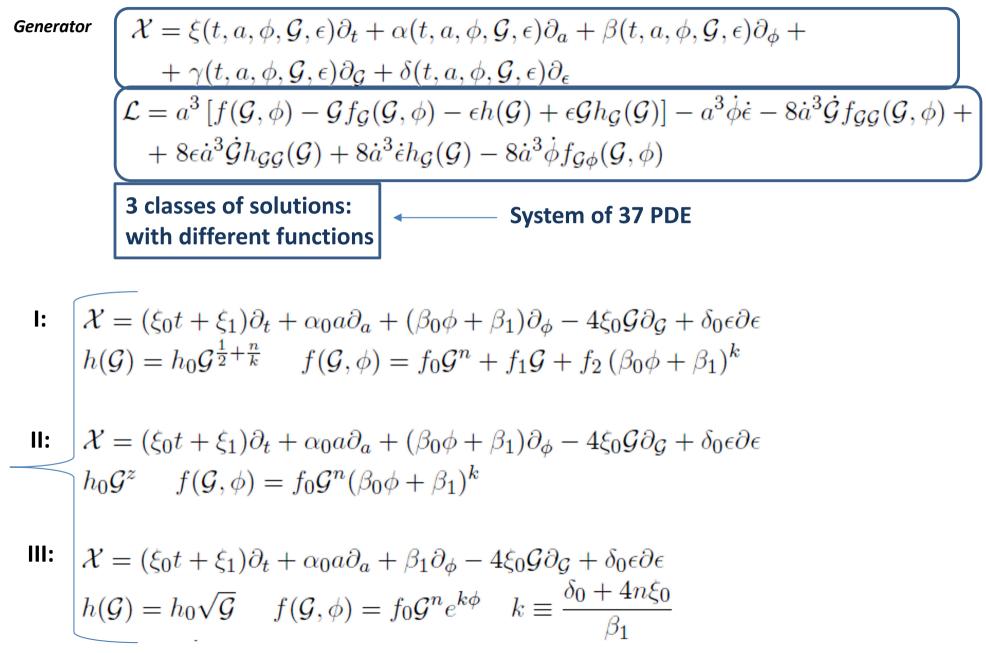
Let us start from

$$S = \int \sqrt{-g} f(\mathcal{G}, \Box^{-1} h(\mathcal{G})) d^4 x$$

$$\downarrow$$
So that we may have
$$h(\mathcal{G}) \stackrel{\cdot}{=} \sqrt{\mathcal{G}} \longrightarrow R$$



Selection of the models by symmetries



Cosmological Solutions
I:
$$f(\mathcal{G}, \phi) = f_0 \mathcal{G}^n + f_1 \mathcal{G} + f_2 (\beta_0 \phi + \beta_1)^k$$

 $a(t) = a_0 e^{qt} \quad \mathcal{G}(t) \sim \text{const} \quad \phi(t) \sim t \quad \epsilon(t) \sim t \quad k = 1, \ n = \frac{1}{2}$
 $f(\mathcal{G}, \Box^{-1}h(\mathcal{G})) = f_0 \sqrt{\mathcal{G}} + f_1 \mathcal{G} + f_2 \Box^{-1} \mathcal{G} + f_3$
Parameters are constrained by E-L equations
II: $f(\mathcal{G}, \phi) = f_0 \mathcal{G}^n (\beta_0 \phi + \beta_1)^k$
 $a(t) \sim t^{\frac{2}{3}(2n+2kz-k)} \quad \mathcal{G}(t) \sim t^{-4} \quad \phi(t) \sim t^{2-4z} \quad \epsilon(t) \sim t^{2k(1-2z)}$
 $f(\mathcal{G}, \Box^{-1}h(\mathcal{G})) = f_2 \mathcal{G}^n (\Box^{-1} \mathcal{G}^z)^k$

Cosmological Solutions

Note that solution I with
$$f_3 = 0$$
 is equivalent to $S = \int \sqrt{-g} \left(R + f_2 \Box^{-1} \mathcal{G} \right) d^4 x$
 $f(\mathcal{G}, \Box^{-1} h(\mathcal{G})) = f_0 \sqrt{\mathcal{G}} + f_1 \mathcal{G} + f_2 \Box^{-1} \mathcal{G} + f_3$ Due to the topological nature of \mathcal{G}

Solution III)

$$f(\mathcal{G}, \phi) = f_0 \mathcal{G}^n e^{k\phi} \quad k \equiv \frac{\delta_0 + 4n\xi_0}{\beta_1}$$
leads to
Case I

$$a(t) = a_0 e^{q t} \quad \phi(t) = \sqrt{\frac{8}{3}} q t \quad \epsilon(t) \sim e^{\sqrt{\frac{8}{3}}kq t}$$

$$f(\mathcal{G}, \Box^{-1}\sqrt{\mathcal{G}}) = f_0 \mathcal{G}^{\frac{12\sqrt{6}}{4k-\sqrt{6}}} e^{k\phi}$$

$$a(t) = a_0 t^q \quad \phi(t) = \frac{2\sqrt{6q^3(q-1)}\ln[(1-3q)t]}{3q-1}$$

$$\mathcal{G}(t) = \frac{24q^3(q-1)}{t^4} \quad \epsilon(t) \sim t^{2-4n+\frac{2k\sqrt{6q^3(q-1)}}{3q-1}}$$

What happens if we add the Ricci Scalar to the action?

Instead of considering $S = \int \sqrt{-g} f(\mathcal{G}, \Box^{-1}h(\mathcal{G})) d^4x$

We now consider $S = \int \sqrt{-g} \left[\chi R + f(\mathcal{G}, \Box^{-1}h(\mathcal{G})) \right] d^4x$

With the same localization procedure we get the Lagrangian

$$\mathcal{L} = a^{3} \left[f(\mathcal{G}, \phi) - \mathcal{G} f_{\mathcal{G}}(\mathcal{G}, \phi) - \epsilon h(\mathcal{G}) + \epsilon \mathcal{G} h_{\mathcal{G}}(\mathcal{G}) \right] - a^{3} \dot{\phi} \dot{\epsilon} - 8 \dot{a}^{3} \dot{\mathcal{G}} f_{\mathcal{G}\mathcal{G}}(\mathcal{G}, \phi) + 8 \dot{a}^{3} \dot{\epsilon} h_{\mathcal{G}}(\mathcal{G}) + 8 \epsilon \dot{a}^{3} \dot{\mathcal{G}} h_{\mathcal{G}\mathcal{G}}(\mathcal{G}) - 8 \dot{a}^{3} \dot{\phi} f_{\mathcal{G}\phi}(\mathcal{G}, \phi) + 6 \chi a \dot{a}^{2}$$

and the Noether identity provides five solutions

$$\begin{split} \mathcal{X} &= (3\alpha_0 t + \xi_1)\partial_t + \alpha_0 a\partial_a + (\beta_0 \phi + \beta_1)\partial_\phi - 12\alpha_0 \mathcal{G}\partial_{\mathcal{G}} + \delta_0 \epsilon \partial \epsilon \\ h(\mathcal{G}) &= h_0 \mathcal{G}^{\frac{1}{2} + \frac{1}{2k}} \quad f(\mathcal{G}, \phi) = f_0 \mathcal{G}^{\frac{1}{2}} + f_1 \mathcal{G} + f_2 (\beta_0 \phi + \beta_1)^k \\ \mathcal{X} &= (3\alpha_0 t + \xi_1)\partial_t + \alpha_0 a\partial_a + (\beta_0 \phi + \beta_1)\partial_\phi - 12\alpha_0 \mathcal{G}\partial_{\mathcal{G}} + (\delta_0 \epsilon + \delta_1)\partial \epsilon \\ h(\mathcal{G}) &= h_0 \mathcal{G} \quad f(\mathcal{G}, \phi) = f_0 \mathcal{G}^{\frac{1}{2}} + f_1 \mathcal{G} + f_2 (\beta_0 \phi + \beta_1) \\ \mathcal{X} &= (3\alpha_0 t + \xi_1)\partial_t + \alpha_0 a\partial_a + (\beta_0 \phi + \beta_1)\partial_\phi - 12\alpha_0 \mathcal{G}\partial_{\mathcal{G}} + \delta_0 \epsilon \partial \epsilon \\ h_0 \mathcal{G}^{\frac{1-2n}{2k}} \quad f(\mathcal{G}, \phi) &= f_0 \mathcal{G}^n (\beta_0 \phi + \beta_1)\partial_\phi - 12\alpha_0 \mathcal{G}\partial_{\mathcal{G}} + (\delta_0 \epsilon + \delta_1)\partial \epsilon \\ h(\mathcal{G}) &= h_0 \mathcal{G} \quad f(\mathcal{G}, \phi) = f_0 \mathcal{G}^n (\beta_0 \phi + \beta_1)\partial_\phi - 12\alpha_0 \mathcal{G}\partial_{\mathcal{G}} + (\delta_0 \epsilon + \delta_1)\partial \epsilon \\ h(\mathcal{G}) &= h_0 \mathcal{G} \quad f(\mathcal{G}, \phi) = f_0 \mathcal{G}^n (\beta_0 \phi + \beta_1)^{1-2n} \\ \mathcal{X} &= (3\alpha_0 t + \xi_1)\partial_t + \alpha_0 a\partial_a + \beta_1 \partial_\phi - 12\alpha_0 \mathcal{G}\partial_{\mathcal{G}} \\ h(\mathcal{G}) &= h_0 \sqrt{\mathcal{G}} \quad f(\mathcal{G}, \phi) = f_0 \mathcal{G}^n e^{k\phi} \\ \end{split}$$

No cosmological solutions are compatible with Noether Symmetries this time

3) F(T, B, -1 T, -1 B)

S. Bahamonde, S. Capozziello, K.F. Dialektopoulos "Constraining generalized non-local cosmology from Noether symmetries". In: EPJC 77 (2017), p. 722

Non-Local Gravity in the Teleparallel picture

Thanks to the relation R

R = -T + B we write the Non-Local version

 $\Box^{-1}R = -\Box^{-1}T + \Box^{-1}B$

34

...and we start from the action $S = \int h \left[-T + (\tau T + \chi B) f(\Box^{-1}T, \Box^{-1}B) \right] d^4x$ $\begin{array}{c} h \longrightarrow \text{determinant of tetrad fields} \\ \tau, \chi \longrightarrow \text{real constants} \end{array} \xrightarrow{} \tau = 1, \ \chi = -1 \longrightarrow R$ Localization procedure $\Box^{-1}T \equiv \phi(t) \rightarrow T = \Box \phi(t) \qquad \Box^{-1}B \equiv \varphi(t) \rightarrow B = \Box \varphi(t)$ $S = \int h \left[-T + (\tau T + \chi B) f(\phi, \varphi) + \epsilon (\Box \phi - T) + \zeta (\Box \varphi - B) \right] d^4x$ $\begin{cases} \Box \epsilon = (\tau T + \chi B) f_{\phi}(\phi, \varphi) \\ \Box \zeta = (\tau T + \chi B) f_{\varphi}(\phi, \varphi) \end{cases} \longrightarrow \text{Klein-Gordon equations}$

Cosmological Lagrangian

The generator of the symmetry

$$\begin{split} \mathcal{X} &= \xi(t)\partial_t + \alpha(a,\phi,\varphi,\epsilon,\zeta,t)\partial_a + \beta(a,\phi,\varphi,\epsilon,\zeta,t)\partial_\phi + \\ &+ \gamma(a,\phi,\varphi,\epsilon,\zeta,t)\partial_\varphi + \delta(a,\phi,\varphi,\epsilon,\zeta,t)\partial_\epsilon + \theta(a,\phi,\varphi,\epsilon,\zeta,t)\partial_\zeta \end{split}$$

Can be selected via Noether's approach

Provides a system of 43 PDE

Solutions

$$\begin{cases} \mathcal{X}_{1} = (\xi_{0}t + \xi_{1}) \partial_{t} + \frac{\alpha_{0}}{3} a \partial_{a} + [\beta_{0} + \beta_{1}(6 \ln a + \phi)] \partial_{\phi} + \\ + [\gamma_{0} + \gamma_{1}(6 \ln a + \varphi) + \gamma_{2}] \partial_{\varphi} + \delta_{0}\epsilon \partial_{\epsilon} + [(\delta_{0} - \gamma_{1}) \zeta - \beta_{1}\epsilon + \theta_{0}] \partial_{\zeta} \\ f(\phi, \varphi) = \frac{1}{\tau} + f_{0} \exp \left\{ n \left(\beta_{1}\varphi - \gamma_{1}\phi \right) \right\} \\ \begin{cases} \mathcal{X}_{2} = (\xi_{0}t + \xi_{1}) \partial_{t} + \frac{\alpha_{0}}{3} a \partial_{a} + [\beta_{0} + \beta_{1}(6 \ln a + \varphi)] \partial_{\phi} \\ + \gamma_{0}\partial_{\varphi} + (\delta_{0} + \delta_{1}\epsilon) \partial_{\epsilon} + (\delta_{1}\zeta - \beta_{1}\epsilon + \theta_{0}) \partial_{\zeta} \\ f(\phi, \varphi) = \frac{1}{\tau} \left(1 - \frac{\delta_{0}}{\delta_{1}} \right) + f_{0}e^{\frac{\delta_{1}}{\gamma_{0}}\varphi} \end{cases} \xrightarrow{\mathsf{A particular case of 1}} \\ \mathcal{X}_{3} = (\xi_{0}t + \xi_{1}) \partial_{t} - \frac{\alpha_{0}}{3} a \partial_{a} + \beta_{0} \partial_{\phi} + (\delta_{0} + \delta_{1}\epsilon) \partial_{\epsilon} \\ f(\phi) = f_{0}e^{\frac{\beta_{0}}{\delta_{1}}\phi} - \frac{\beta_{0}}{\delta_{0}} + 1 \end{cases}$$

$$\begin{pmatrix} \mathcal{X}_4 = (\xi_0 t + \xi_1) \partial_t - \frac{\alpha_0}{3} a \partial_a + \beta_0 \partial_\phi + \delta_0 \partial_\epsilon \\ f(\phi) = f_1 + \frac{\beta_0}{\delta_0} \phi. \end{pmatrix} \longrightarrow \text{No cosmological solutions}$$

Cosmological Solutions

Cosmological solutions related to the first and third generator

$$\begin{split} f(\phi,\varphi) &= \frac{1}{\tau} + f_0 \exp\left\{n\left(\beta_1\varphi - \gamma_1\phi\right)\right\} \\ a(t) &= a_0 e^{H_0 t}, \quad \phi(t) = -2H_0 t, \quad \varphi(t) = -6H_0 t \\ \epsilon(t) &= \epsilon_0 e^{-3H_0 t(1+c_1)} - \epsilon_1 e^{-3H_0 t}, \quad \zeta(t) = \zeta_0 e^{-3H_0 t(1+c_1)} - \zeta_1 e^{-3H_0 t} \\ a(t) &= a_0 t^p, \quad \phi(t) = \frac{6p^2 \ln(t-3pt)}{1-3p}, \quad \varphi(t) = -6p \ln t \\ \epsilon(t) &= \epsilon_0 t^{2-3p} + \epsilon_1 t^{1-3p} \quad \zeta(t) = \zeta_0 t^{2-3p} + \zeta_1 t^{1-3p} \\ f(\phi) &= f_0 e^{\frac{\beta_0}{\delta_1}\phi} - \frac{\beta_0}{\delta_0} + 1 \\ \bullet & a(t) = e^{H_0 t}, \quad \phi(t) = -2H_0 t, \quad \epsilon(t) = e^{-3H_0 t} \left[f_0 \left(3H_0 t + 1 \right) - \frac{\epsilon_1}{3H_0} \right] - 1 \\ f(\phi,\varphi) &= f_0 e^{\frac{\beta_0}{\delta_1}\phi} - \frac{\beta_0}{\delta_0} + 1 \\ \bullet & a(t) = t^p \quad \phi(t) = \frac{6p^2 \log(t-3pt)}{1-3p} \quad \epsilon(t) = f_0 (1-3p)^{3(1-p)} t^{2-3p} \frac{\epsilon_0 t^{1-3p}}{1-3p} - 1 \\ f(\phi) &= f_0 e^{\frac{(9p^2 - 9p + 2)\phi}{\delta_p^2}} \\ \bullet & \text{Constrained by EL equations} \end{split}$$

Spherical Symmetry and astrophisical considerations

K.F. Dialektopoulos, D. Borka, S. Capozziello, V. Borka Jovanovic, P. Jovanovic "Constraining non-local gravity by S2 star orbits". In: Phys. Rev. D **99** (2019), p. 044053

Objectives

□ Selecting the form of the Non-Local action containing symmetries

Performing the post-Newtonian limit

Constraining the free parameters by S2 star orbit around SgrA*

 \Box Estimate the reduced χ^2 and constrain characteristic lengths related to NLG

Non-Local Gravity in Spherical Symmetry

We focus our attention in a spherically symmetric spacetime of the form

 $ds^2 = e^{\nu(r,t)}dt^2 - e^{\lambda(r,t)}dr^2 - r^2d\Omega^2$

With the aim to perform again the Noether Symmetry Approach

$$\phi \equiv \Box^{-1}R \longrightarrow S = \frac{1}{2\kappa^2} \int \sqrt{-g} \left\{ R[1 + f(\phi)] + \varepsilon(r, t)(\Box \phi - R) \right\} d^4x$$
New scalar field depending on both r and t
$$A \text{ particular form of modified Non-Local action:}$$

$$Deser \text{ and Woodard action}$$

$$\mathcal{L}(r, \nu, \lambda) = e^{-\frac{1}{2}(\lambda+\nu)} \left[-e^{\nu}r^2\nu_r\phi_r f_{\phi}(\phi) + e^{\lambda}r^2\lambda_t\phi_t f_{\phi}(\phi) + e^{\lambda}r^2\varepsilon_r\phi_r + e^{\nu}r^2\varepsilon_r\phi_r + e^{\nu}r^2\nu_r\varepsilon_r + e^{\lambda}r^2\varepsilon_t\phi_t - e^{\lambda}r^2\lambda_t\varepsilon_t + 2e^{\nu}\varepsilon\left(e^{\lambda} + r\lambda_r - 1\right) - 2e^{\nu}r\lambda_r \right]$$

Minisuperspace containing $r, t, \nu, \lambda, \phi, \varepsilon$

Solution and Selection

Noether Symmetry Approach selects

$$\begin{cases} \mathcal{X} = (\xi_0 t + \xi^t(r))\partial_t - 2\xi_0\partial_\nu + (\gamma_0 + 2\xi_0)\partial_\phi + \delta_0(\gamma_0 + 2\xi_0)\partial_\varepsilon \\ f(\phi) = \delta_0\phi + f_1 \\ \mathcal{X} = (\xi_0 t + \overline{\xi^r(r)})\partial_t - \frac{\xi_1}{2}r\partial_r - (2\xi_0 + \xi_1)\partial_\nu + \gamma_0\partial_\phi + \xi_1(\varepsilon - \delta_0 - 1)\partial_\varepsilon \\ f(\phi) = \delta_0 + f_1e^{\frac{\gamma_0}{\xi_1}\phi} \end{cases}$$

1) We restrict the interval to a subclass of spacetimes where the Birkhoff theorem holds

$$ds^2 = A(r)dt^2 - B(r) dr^2 - r^2 d\Omega^2$$

2) We consider the sixth-order approximation of the metric

$$g_{00} \sim \mathcal{O}(6), g_{0i} \sim \mathcal{O}(5) \text{ and } g_{ij} \sim \mathcal{O}(4)$$

Post Newtonian Limit

The approximation $g_{00} \sim \mathcal{O}(6), g_{0i} \sim \mathcal{O}(5)$ and $g_{ij} \sim \mathcal{O}(4)$

Potentials $\begin{bmatrix}
A(r) = 1 + \frac{1}{c^2} \Phi(r)^{(2)} + \frac{1}{c^4} \Phi(r)^{(4)} + \frac{1}{c^6} \Phi(r)^{(6)} + \mathcal{O}(8) \\
B(r) = 1 + \frac{1}{c^2} \Psi(r)^{(2)} + \frac{1}{c^4} \Psi(r)^{(4)} + \mathcal{O}(6) \\
\phi(r) = \phi_0 + \frac{1}{c^2} \phi(r)^{(2)} + \frac{1}{c^4} \phi(r)^{(4)} + \frac{1}{c^6} \phi(r)^{(6)} + \mathcal{O}(8) \\
\varepsilon(r) = \varepsilon_0 + \frac{1}{c^2} \varepsilon(r)^{(2)} + \frac{1}{c^4} \varepsilon(r)^{(4)} + \frac{1}{c^6} \varepsilon(r)^{(6)} + \mathcal{O}(8)
\end{bmatrix}$ Constants

The above functions can be replaced into the field equations $[1+f(\phi)-\varepsilon]G_{\mu\nu} = (\nabla_{\mu}\nabla_{\nu} - g_{\mu\nu}\Box) f(\phi) - \frac{1}{2}g_{\mu\nu}D_{\alpha}\varepsilon D^{\alpha}\phi + D_{\mu}\varepsilon D_{\nu}\phi$

Corrected Newtonian potentials

Replacing the second function selected by Noether's approach

 $f(\phi) = \delta_0 + f_1 e^{\frac{\gamma_0}{\xi_1}\phi}$

Into the field equations, with the approximations

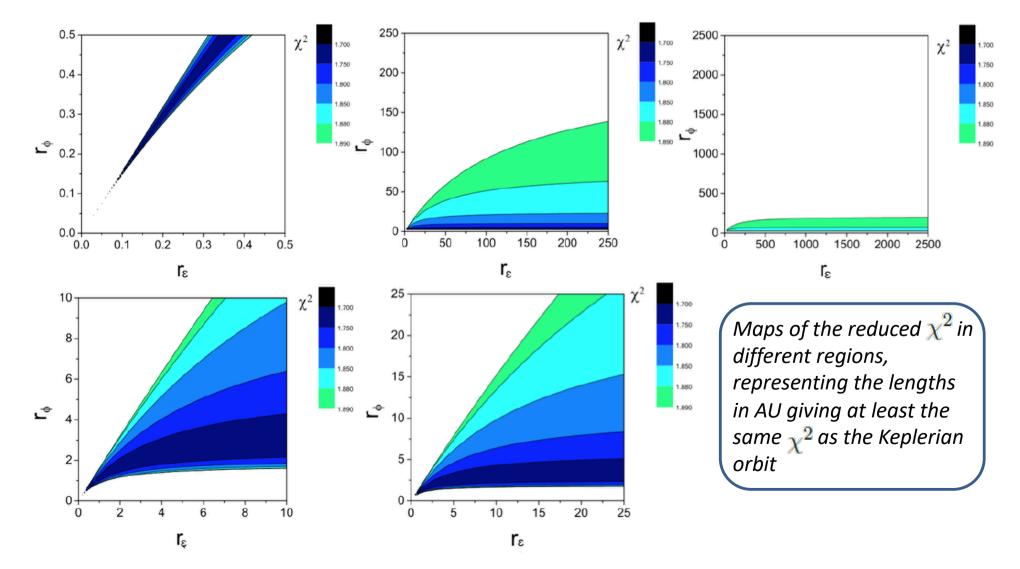
$$\begin{cases} A(r) = 1 + \frac{1}{c^2} \Phi(r)^{(2)} + \frac{1}{c^4} \Phi(r)^{(4)} + \frac{1}{c^6} \Phi(r)^{(6)} + \mathcal{O}(8) \\ B(r) = 1 + \frac{1}{c^2} \Psi(r)^{(2)} + \frac{1}{c^4} \Psi(r)^{(4)} + \mathcal{O}(6) \\ \phi(r) = \phi_0 + \frac{1}{c^2} \phi(r)^{(2)} + \frac{1}{c^4} \phi(r)^{(4)} + \frac{1}{c^6} \phi(r)^{(6)} + \mathcal{O}(8) \\ \varepsilon(r) = \varepsilon_0 + \frac{1}{c^2} \varepsilon(r)^{(2)} + \frac{1}{c^4} \varepsilon(r)^{(4)} + \frac{1}{c^6} \varepsilon(r)^{(6)} + \mathcal{O}(8) \end{cases}$$

Order of the potential

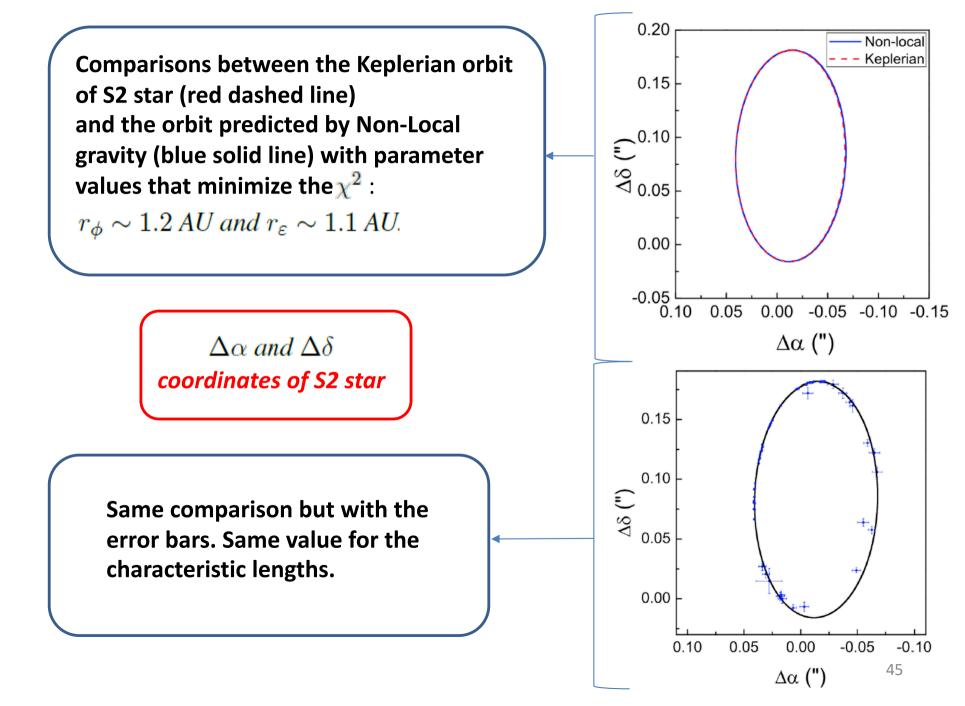
$$\begin{split} A(r) &= 1 - \frac{2G_N M \phi_c}{c^2 r} + \frac{G_N^2 M^2}{c^4 r^2} \left[\frac{14}{9} \phi_c^2 + \frac{18r_{\varepsilon} - 11r_{\phi}}{6r_{\varepsilon}r_{\phi}} r \right] + \\ &- \frac{G_N^3 M^3}{c^6 r^3} \left[\frac{50r_{\varepsilon} - 7r_{\phi}}{12r_{\varepsilon}r_{\phi}} \phi_c r + \frac{16\phi_c^3}{27} - \frac{r^2 \left(2r_{\varepsilon}^2 - r_{\phi}^2\right)}{r_{\varepsilon}^2 r_{\phi}^2} \right] \right] \\ B(r) &= 1 + \frac{2G_N M \phi_c}{3c^2 r} + \frac{G_N^2 M^2}{c^4 r^2} \left[\frac{2\phi_c^2}{9} + \left(\frac{3}{2r_{\varepsilon}} - \frac{1}{r_{\phi}} \right) r \right] \\ \phi(r) &= \frac{4G_N M \phi_c}{3c^2 r} - \frac{G_N^2 M^2}{c^4 r^2} \left[\left(\frac{11}{6r_{\varepsilon}} + \frac{1}{r_{\phi}} \right) r - \frac{2\phi_c^2}{9} \right] + \\ &- \frac{G_N^3 M^3}{c^6 r^3} \left[\frac{r^2}{r_{\phi}^2} - \left(\frac{25}{12r_{\varepsilon}} - \frac{7}{6r_{\phi}} \right) \phi_c r - \frac{4\phi_c^3}{81} \right] \\ \varepsilon(r) &= 1 + \frac{G_N^2 M^2}{c^4 r^2} \left[\frac{2\phi_c^2}{3} - \left(\frac{13}{6r_{\varepsilon}} - \frac{1}{r_{\phi}} \right) r \right] + \\ &+ \frac{G_N^3 M^3}{c^6 r^3} \left[\frac{20\phi_c^3}{27} - \left(\frac{1}{r_{\varepsilon}^2} - \frac{1}{r_{\phi}^2} \right) r^2 - \left(\frac{131}{36r_{\varepsilon}} + \frac{1}{6r_{\phi}} \right) \phi_c r \right] \\ \Phi^{(2)}(r) &= -\frac{2G_N M}{r} \phi_c \\ \Phi^{(4)}(r) &= \frac{G_N^2 M^2}{r^2} \left[\frac{14}{9} \phi_c^2 + \frac{18r_{\varepsilon} - 11r_{\phi}}{6r_{\varepsilon}r_{\phi}} r \right] \\ \overline{\Phi^{(6)}}(r) &= \frac{G_N^3 M^3}{r^3} \left[\frac{7r_{\phi} - 50r_{\varepsilon}}{12r_{\varepsilon}r_{\phi}} \phi_c r - \frac{16\phi_c^3}{27} + \frac{2r_{\varepsilon}^2 - r_{\phi}^2}{r_{\varepsilon}^2 r_{\phi}^2} r^2 \right]_{3} \end{split}$$

Solution of the Perturbation

Two new length appears: r_{ϵ} and r_{ϕ} , searching for those by simulated orbits giving <u>at least</u> the same χ^2 as the Keplerian orbit ($\chi^2 \sim 1.89$)



After fixing the right parameters minimizing the χ^2 we plot the orbit



Conclusions

• $F(R, \square^{-1} R), F(G, \square^{-1} G), F(T, \square^{-1} T, B, \square^{-1} B)$ could reproduce, in principle, both UV and IR cosmic evolution

using the "Noether Symmetry Approach", it is possible:

• to select physically relevant cosmological models

• to derive exact cosmological solutions

• to constraint solutions by means of experimental observations

Perspectives

I. Theoretical perspectives:

- Search for approximate cosmological solutions
- Study of renormalizability and unitarity
- Application of the Noether Symmetry Approach in general spherically symmetric background

II. Experimental perspectives:

- Observational constraining of the models free parameters *via* cosmological data, *e.g.* SNe Ia + BAO + CC + H_0
- Constraining at astrophysical scales too, *e.g.* by S2 star orbit observations NTT/VLT

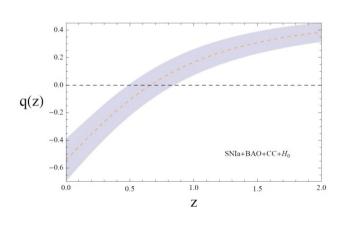
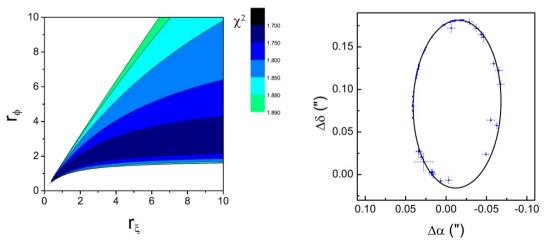


Figure from: S. Bahamonde, S. Capozziello, M. Faiza, R. C. Nunes. ''Nonlocal Teleparallel Cosmology''. In: Eur. Phys. J. **C77**.9 (2017), p.628)



Figures from: K. F.. *Dialektopoulos, D. Borka, S. Capozziello, V. Borka Jovanović, P. Jovanović. ''Constraining Non-local Gravity by S2 star orbits''. In: Phys. Rev.* **D99**.4 (2019) p. 044053