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Crab nebula

• A supernova remnant

• Born in July 4, 1054

• ‘guest star’ recordings of
Chinese

• Death of a massive star

• NS are born in SN
explosions (Baade &
Zwicky 1934)



The Crab pulsar

• Period: P = 33 ms

• Period derivative:
Ṗ = 4.22× 10−13 s/s

• Age:
2021− 1054 = 967 yr

• Spin-down power:
L = −IΩΩ̇ = 105L�



NS phenomenology

NS are the central engines of many diverse phenomena:

• Radio pulsars (rotationally powered, isolated NS)

• X-ray pulsars (accreting NS in binaries)

• Magnetars (isolated NS with extreme magnetic fields
of B ∼ 1015 Gauss causing crustal break.)

• Gamma-ray bursts (GRBs):
• mergers of neutron stars (short-GRBs: ∆t < 2 s),
• formation of magnetars by core-collapse (long-GRBs:

∆t > 2 s)

• Fast radio bursts (FRBs): recently traced back to
the magnetosphere of magnetars.



Basic parameters of NS

Some basic parameters of
NS:

• M ' 1.4− 2.5M�

• R ' 10− 12 km

• ρ̄ & 1015 g cm−3 (An
order of magnitude
larger than nuclear
density)

• Compactness
2GM
c2R
' 0.4 (Almost a

black hole!)

• They can rotate with
frequencies as high as
ν ∼ 1000 Hz

• B ∼ 1012 Gauss (typical
pulsars) (∼ 108 times
the B in MRI device.)

• B ∼ 1015 Gauss
(magnetars) (Above the
QED limit Bc =
m2
ec

3/~e = 4.4× 1013 G)
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Basic parameters of NS

Some basic parameters of
NS:

• M ' 1.4− 2.5M�

• R ' 10− 12 km

• ρ̄ & 1015 g cm−3 (An
order of magnitude
larger than nuclear
density)

• Compactness
2GM
c2R
' 0.4 (Almost a

black hole!)

• They can rotate with
frequencies as high as
ν ∼ 1000 Hz

• B ∼ 1012 Gauss (typical
pulsars) (∼ 108 times
the B in MRI device.)

• B ∼ 1015 Gauss
(magnetars) (Above the
QED limit Bc =
m2
ec

3/~e = 4.4× 1013 G)

NS stars are the most compact objects whose surface is not
hidden behind an event horizon!
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• Testing Einstein’s
GR in strong
gravity
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• Testing Einstein’s
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Relativistic stars
• Consider the spherically symmetric metric

ds2 = e2ν(r) dt2 − e2λ dr2 − r2(dθ2 + sin2 θ dφ2)

• Non-vanishing components of Ricci tensor

R00 =

(
−ν ′′ + λ′ν ′ − ν ′2 − 2

ν ′

r

)
e2(ν−λ)

R11 = ν ′′ − λ′ν ′ + ν ′2 − 2
λ′

r

R22 = (1 + rν ′ − rλ′)e−2λ − 1

R33 = R22 sin2 θ

• The Ricci scalar:

R =

(
−2ν ′′ + 2λ′ν ′ − 2ν ′2 − 2

r2
+ 4

λ′

r
− 4

ν ′

r

)
e−2λ +

2

r2



GR in spherical symmetry
Energy-momentum tensor for perfect fluid

Tµν = (ε+ P )uµuν − Pgµν , uµ =
dxµ
dτ
≡ (e−ν , 0, 0, 0)

Plugging these into Einstein’s field equations

Gµν = 8πGTµν , Gµν ≡ Rµν −
1

2
gµνR

one gets (Tolman 1939, Oppenheimer & Volkoff 1939)(
1

r2
− 2

λ′

r

)
e−2λ − 1

r2
= 8πGε(r)(

1

r2
+ 2

ν ′

r

)
e−2λ − 1

r2
= −8πGP (r)(

ν ′′ + ν ′2 − λ′ν ′ + ν ′ − λ′
r

)
e−2λ = 8πGP (r)



Hydrostatic equilibrium equations

After a bit of manupilations one gets the hydrostatic
equilibrium equations:

dP

dr
= −Gmρ

r2

(
1 +

P

ρc2

)(
1 +

4πr3P

mc2

)(
1− 2Gm

rc2

)−1

and
dm

dr
= 4πr2ρ

(Oppenheimer & Volkoff 1939)

EoS, P = P (ρ)
Boundary conditions:
ρ(0) = ρc, m(0) = 0,
P (R∗) = 0 and m(R∗) = M∗



Density distribution within the star
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Relativistic corrections
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GR correction= αβγ

α = (1− 2Gm/rc2)−1

β = 1 + 4πr3P/mc2

γ = 1 + P/ρc2

dP

dr
= −Gmρ

r2
×(

1 +
P

ρc2

)
×(

1 +
4πr3P

mc2

)
×(

1− 2Gm

rc2

)−1

Ekşi, TJP (2016) 40: 127-138, arXiv:1511.04305



GR and maximum mass

Recall

dP

dr
= −Gmρ

r2

(
1 +

P

ρc2

)(
1 +

4πr3P

mc2

)(
1− 2Gm

rc2

)−1

dm

dr
= 4πr2ρ

• All corrections > 1

• All kinds of energy contribute to gravity in GR.

• Increasing pressure not only balance gravity but enhances
the internal gravity (!)

• Beyond a critical mass, contribution of pressure to gravity
overwhelms the resistence of the pressure against gravity.

• There is thus a maximum mass of relativistic stars in GR.



Why GR?

• Einstein’s GR passed from all
solar system tests with great
successs.

• GR fits the Hulse-Taylor pulsar
data.

• GR presents us the fundamental
framework for understanding the
expanding universe.
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Why GR?

• Einstein’s GR passed from all
solar system tests with great
successs.

• GR fits the Hulse-Taylor pulsar
data.

• GR presents us the fundamental
framework for understanding the
expanding universe.

-You’re right Edwin, it is
really expanding!



What is strong gravity?
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• In GR, the strength of the
gravitational field is
measured by the
gravitational potential

ε ≡ GM

rc2
compactness

• In a general Lagrangian
theory with an additional
scale, the strength of the
field would be measured by
the curvature

ξ ≡ GM

r3c2
curvature



Neutron star tests

A gravity test with neutron stars (M = 1.4M� and R = 10 km)
would probe a compactness

ε ' GM

Rc2
' 0.2 ∼ 105ε� ,

a spacetime curvature of

ξ =
GM

R3c2
' 4× 10−13 cm−2 ∼ 1015ξ� .

Note that the precision of the Solar Systems tests is 10−5.



Curvature

The tidal force is the only sign of gravity that cannot be cast
aside by a coordinate transformation. The tidal force on a body
moving along a geodesic leads to

1 a distortion of the shape of the body

2 a change in the volume of the body

Curvatures are different on the basis of information they
convey:

• The Riemann curvature tensor, Rµνρσ, captures both (1)
and (2).

• The Ricci curvature, Rµν , the trace component of the
Riemann tensor, conveys only (2).

• The Weyl tensor Cµνρσ, the traceless component of the
Riemann tensor, conveys only (1).



Curvature scalars in a spherically
symmetric metric

R = κ(ρc2 − 3P ), κ ≡ 8πG

c4

J2 ≡ RµνRµν = κ2
[
(ρc2)2 + 3P 2

]
K2 ≡ RµνρσRµνρσ

= κ2
[
3(ρc2)2 + 3P 2 + 2Pρc2

]
− 16κGmρ

r3
+

48G2m2

r6c4

W 2 ≡ CµνρσCµνρσ =
4

3

(
6Gm

c2r3
− κρc2

)2



What does an MR measurement
constrain?
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An untested gravity regime!
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How much can we deviate from GR?

Constrain α in a gravity
model

S =
c4

16πG

∫
d4x
√−g(R+αR2)

by using neutron stars.
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f(R) = R + αR2
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• We have found,
in all cases, that

|α| < 1010 cm2

Arapoğlu, Deliduman,

KYE (2011)

• Gravity Probe B
data implies

α . 5× 1015 cm2

Näf & Jetzer 2010
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f(R) = R + αR2

Neutron stars are really good for
constraining gravity even if we do
not know the EoS!

• We have found,
in all cases, that

|α| < 1010 cm2

Arapoğlu, Deliduman,

KYE (2011)

• Gravity Probe B
data implies

α . 5× 1015 cm2

Näf & Jetzer 2010



Handling the perturbative terms
• f(R) gravities any other than linear in R, i.e. GR, have

high order derivatives in the field equations!

• A similar situation exists in fluid mechanics when one
introduces viscosity:

∂u

∂t
+ u · ∇u = −∇p

ρ
+ ν∇2u

• A small-viscosity flow does not asmptotically converge to a
zero-viscosity flow since the former requires two boundary
conditions.

• In fluid mechanics such issues are resolved by employing
matched asymptotic expansion and the concept of boundary
layer.

• Uniform neutron stars analytically handled with the
method of matched asymptotic expansions Arapoğlu,

Çıkıntoğlu, KYE (2017)



Yet another gravity model

Constrain β in a gravity model

S =
c4

16πG

∫
d4x
√−g(R+βRµνR

µν)

Deliduman, KYE, Keleş, 2012
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Neutron stars in energy-momentum
squared gravity

• Add a self-contraction
of the
energy-momentum
tensor to the
Einstein-Hilbert action
Katırcı & Kavuk 2014:
F (R, TµνT

µν)

• Structure and
M&R-relations of
neutron stars in EMSG

• Constraints on α in
F (R, TµνT

µν) =
R+ αTµνT

µν .
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Conclusion

• Gravity in the bulk of a neutron star is in a non-explored
regime.

• The gravity regime inside the NS is less constrained than
the EoS.

• As one goes deeper inside the NS, the mass contained
decreases, and gravity decreases. But the curvature keeps
increasing since the size also becomes smaller.

• This strong gravity of neutron stars allow for constraining
the parameters of modified theories of gravity even though
the EoS is unknown.



Conclusion

• Gravity in the bulk of a neutron star is in a non-explored
regime.

• The gravity regime inside the NS is less constrained than
the EoS.

• As one goes deeper inside the NS, the mass contained
decreases, and gravity decreases. But the curvature keeps
increasing since the size also becomes smaller.

• This strong gravity of neutron stars allow for constraining
the parameters of modified theories of gravity even though
the EoS is unknown.



Conclusion

• Gravity in the bulk of a neutron star is in a non-explored
regime.

• The gravity regime inside the NS is less constrained than
the EoS.

• As one goes deeper inside the NS, the mass contained
decreases, and gravity decreases. But the curvature keeps
increasing since the size also becomes smaller.

• This strong gravity of neutron stars allow for constraining
the parameters of modified theories of gravity even though
the EoS is unknown.



Conclusion

• Gravity in the bulk of a neutron star is in a non-explored
regime.

• The gravity regime inside the NS is less constrained than
the EoS.

• As one goes deeper inside the NS, the mass contained
decreases, and gravity decreases. But the curvature keeps
increasing since the size also becomes smaller.

• This strong gravity of neutron stars allow for constraining
the parameters of modified theories of gravity even though
the EoS is unknown.


