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Observations of magnetic fields in universe

Picture source: Max Planck Institute for Radio Astronomy

Micro-Gauss strength magnetic field over 10kpc coherence length scale is
present in galaxies.
1pc = 2.1× 105AU = 3.1× 1016m



Two kinds of fields

Electromagnetic field has two transverse degrees of freedom which
can be associated with Left circular and right circular polarization.

For massless particle helicity is the projection of the direction of spin
(clockwise or anti-clockwise) along the direction of propagation.
Hence giving +1,−1 for right handed and left handed helicity
modes.

Same propagation (speed or dispersion relation) of both
polarization modes lead to non-helical, and differently propagating
modes lead to helical fields.

If both the polarization modes propagate differently → Helicity
Imbalance

How to create helicity imbalance?



Helical magnetic fields

Lorentz force,
−→
F = m d−→v

dt =
−→
E +−→v ×

−→
B implies that under parity

transformation (changing the sign of coordinate system):
−→
E −→ −

−→
E ,
−→
B −→

−→
B .

Because standard EM action, FµνF
µν ∝ B2 − E 2, is quadratic in

−→
E

and
−→
B , it is invariant under parity symmetry.

Fµν F̃
µν = −4

−→
E ·
−→
B is parity non-invariant, where F̃µν = 1

2ε
µναβFαβ.

Hence Fµν F̃
µν can create the Helicity imbalance.



Vorticity

Vorticity is defined as
−→
Ω =

−→
∇ ×−→v , where −→v is velocity field.

Source: Wikipedia



Magnetic helicity

Grasso and Rubinstein (2001),

Blackman (2014)

Magnetic helicity
(HM) is defined as:∫
d3x
−→
A ·
−→
B and

−→
B ·
−→
∇ ×

−→
B .

It is a measure of
twist and linkage of
magnetic field lines.

HM =
∫
d3x
−→
A ·
−→
B = 2V1 · V2



Why helical magnetic fields are interesting?

Helical magnetic fields leave a very distinct signature as they violate
parity symmetry which leads to observable effects, e.g. correlations
between the anisotropies in the temperature and B-polarisation or in
the E- and the B-polarisations in the CMB. Kahniashvili (2006)

One of the interests in primordial magnetic helicity is that it can be a
direct indication of parity violation (CP violation) in the early
Universe. Vachaspati (2001)



How to generate magnetic fields ?



Problem with magnetic field generation during inflation

EM action for an arbitrary 4-D metric

Sem = −1

4

∫
d4x
√
−ggαµgβνFαβFµν

where Fµν = ∂µAν − ∂νAµ, and Aµ is electromagnetic four vector.

Under conformal transformation g̃µν = ω2(x)gµν

S̃em = −1

4

∫
d4x
√
−gg̃αµg̃βνFαβFµν = Sem

EM action is conformally invariant.

Because Flat FRW metric is conformally equivalent to Minikowski
spacetime, B ∼ 1

a2 .

We need to break the conformal invariance of EM action !



(Helical fields) Models in the literature

Scalar field coupled models: f (φ)Fµν F̃
µν Durrer et al.(2011),

Sharma et al.(2018)

where f (φ) is time-dependent coupling function.

Problems with these models :
Strong coupling - Coupling between charged particles and the EM
field is so strong that theory can not be treated perturbatively.

Back-reaction - Overproduction of gauge fields affect the background
inflationary dynamics

Because magnetic fields are produced near the end of inflation,
strength of the fields generated depends on the reheating scale.

To resolve strong coupling and back-reaction problem f (φ) is assumed to
increase during inflation and decrease back to its initial value post inflation.
Sharma et al.(2018)



Helical magnetic fields from
Riemann coupling



Motivation

Non-minimal coupling to the Riemann tensor generates sufficient
primordial helical magnetic fields at all observable scales.

One of the helical states decay while the other helical mode increases,
leading to a net non-zero helicity −→ helicity imbalance

Necessary condition : Conformal invariance breaking + parity
violation

S =

Einstein-Hilbert term︷ ︸︸ ︷
−
M2

P

2

∫
d4x
√
−g R +

Scalar field︷ ︸︸ ︷∫
d4x
√
−g
[

1

2
∂µφ∂

µφ− V (φ)

]
− 1

4

∫
d4x
√
−g FµνF

µν − σ

M2

∫
d4x
√
−g R̃µναβFαβ Fµν︸ ︷︷ ︸

Conformal breaking

(1)

where R̃µναβ = 1
2ε
µνρσRρσ

αβ and M is the energy scale, which sets
the scale for the breaking of conformal invariance. details



Electromagnetic energy density

To identify whether these modes lead to back-reaction on the metric, we
define R, which is the ratio of the total energy density of the fluctuations
and background energy density during inflation: Talebian et al.(2020)

R =
(ρB + ρE )|k∗∼H

6M2
PH

2
(2)

α ρ (in GeV4) R

−1
2 − ε ∼ 1064 ∼ 10−4

−3
4 ∼ 1062 ∼ 10−6

−1 ∼ 1061 ∼ 10−7

−3 ∼ 1059 ∼ 10−9

No back-reaction on the background metric.



Estimating the strength of helical magnetic fields

Assuming instantaneous reheating, and the Universe becomes
radiation dominated after inflation. Due to flux conservation, the
magnetic energy density will decay as 1/a4 : Subramanian (2016)

Using the fact that the relevant modes exited Hubble radius around
30 e-foldings of inflation, with energy density ρB ≈ 1064GeV4, the
primordial helical fields at GPc scales is:

B0 ≈ 10−20G (3)

Helical magnetic fields that re-entered the horizon at two different
epochs:

B|50 MPc ∼ 10−18 G (z ∼ 20) ; B|1 MPc ∼ 10−14 G (z ∼ 1000)



Conclusion and Future work...

Our model does not require the coupling of the electromagnetic field
with the scalar field. Hence, there are no extra degrees of freedom
and will not lead to a strong-coupling problem.

Since the curvature is large in the early Universe, the coupling term
will introduce non-trivial corrections to the electromagnetic action.

Power spectrum of the helical fields generated has a slight red-tilt for
slow-roll inflation which is different compared to the scalar field
coupled models where the power-spectrum has a blue-tilt.

Currently we are looking at the effect of this helical field on baryon
asymmetry during the early universe.



Thank you



Backup slides



Conformal transformation

g̃µν = ω2(x)gµν =⇒ Γ̃λµν = Γλµν + Cλµν (4)

where Cλµν = ω−1
(
δλµ∇νω + δλν∇µω − gµνg

ρλ∇ρω
)

Fµν = ∇µAν −∇νAµ = ∂µAν − ΓλµνAλ − ∂νAµ + ΓλνµAλ = ∂µAν − ∂νAµ
(5)

R̃λσµν = Rλσµν +∇µCλνσ −∇νCλµσ + CλµρC
ρ
νσ − CλνρC

ρ
µσ (6)

R̃µν = Rµν − [2δαµδ
β
ν + gµνg

αβ]ω−1(∇α∇βω)

+ [4δαµδ
β
ν − gµνg

αβ]ω−2(∇αω)(∇βω) (7)

R̃ = ω−2R −−6gαβω−3(∇α∇βω) (8)

∇̃µ∇̃νφ = ∇µ∇νφ− ( δαµ δ
β
ν + δβµ δ

α
ν ) ω−1 (∇αω)(∇βω) (9)

Back



Energy densities

Gauge field decomposition:

Ai (~x , η) =

∫
d3k

(2π)3

∑
λ=1,2

εiλ

[
Aλ(k, η)bλ(~k)e ik·x + A∗λ(k , η)b†λ(~k)e−ik·x

]
(10)

The EM energy densities with respect to the comoving observer are:

ρB (η, k) ≡ −1

2
〈0|BµBµ|0〉 =

∫
dk

k

1

(2π)2

k5

a4

(
|A+ (η, k)|2 + |A− (η, k) |2

)
(11)

ρE (η, k) ≡ −1

2
〈0|EµEµ|0〉 =

∫
dk

k

1

(2π)2

k3

a4

( ∣∣A′+ (η, k)
∣∣2 +

∣∣A′− (η, k)
∣∣2 )

(12)

ρh (η, k) ≡ −〈0|AµBν |0〉 =

∫
dk

k

1

2π2

k4

a3

(
|A+ (η, k)|2 − |A− (η, k)|2

)
.

(13)

where spectral energy density is given by dρΥ
d lnk for Υ ∈ (B,E , h)



Evolution equation

In Flat FRW universe : ds2 = a2(η) (dη2 − δijdx idx j). In the Coulomb
gauge (A0 = 0, ∂iA

i = 0), equation of motion is

A′′i +
4 εijl
M2

(
a′′′

a3
− 3

a′′a′

a4

)
∂jAl − ∂j∂jAi = 0 (14)

Which in helicity basis can be written as:

A′′h +

[
k2 − 4kh

M2
Γ(η)

]
Ah = 0 (15)

where,

Γ(η) =
a′′′

a3
− 3

a′′a′

a4
=

1

a2

(
H′′ − 2H3

)
(16)

which vanishes for de-sitter case. Back



Helical magnetic field generation

For power law inflation: a(η) =
(
− η
η0

)β+1
, de-sitter β = −2, we have

A′′h +

[
k2 − 8kh

M2

β(β + 1)(β + 2)

η3
0

(
−η0

η

)(2β+5)
]
Ah = 0 (17)

Sub-horizon mode | − kη| >> 1 solution is: Ah = 1√
k
e−ikη

For super-horizon mode | − kη| << 1, with dimensionless variable,

τ =
(
−η0

η

)α
and α = β + 3

2

A+(τ, k) = τ−
1

2α J 1
2α

(
ς
√
k

α
τ

)
C1 + τ−

1
2α Y 1

2α

(
ς
√
k

α
τ

)
C2 (18a)

A−(τ, k) = τ−
1

2α J 1
2α

(
−i ς
√
k

α
τ

)
C3 + τ−

1
2α Y 1

2α

(
−i ς
√
k

α
τ

)
C4

(18b)



Taking H ∼ η0
−1 ∼ 1014GeV, and M ∼ 1017GeV gives

|C1| ≈ |C3| ≈ 10−17/2GeV−
1
2 , and |C2| ≈ |C4| ≈ 10−11/2GeV−

1
2 .
(19)
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Figure: Figure showing the behaviour of positive and negative helicity mode for
α = −0.53 and α = −1. τ̃ = 10− 63

2 τ and the vertical axis is in GeV−1/2.

We can ignore the negative helicity mode.



Using the fact that we can approximate the super-horizon modes by power
law, we have

A+(τ, k) = C k
1

4α − C2
F−1

π
Γ

(
1

2α

)
k−

1
4α τ−

1
α (20)

where

F(τ) = F (τ)
( ς

2α

) 1
2α
, (21)

C (τ) = F (τ)
( ς

2α

) 1
2α

[
C1

Γ
(
1 + 1

2α

) − C2

π
Γ

(
− 1

2α

)
cos
( π
2α

)]
, (22)

and the approximate values are

|F| ∼ 10−
5
α GeV−1/4α, |C| ∼ 10−

5
α
− 11

2 GeV−
1
4α
− 1

2 .


