Helical magnetic fields from Riemann coupling

Ashu Kushwaha

Department of Physics, IIT Bombay

Based on the work with S. Shankaranarayanan, PRD 102,103528 (2020) [arXiv:2008.10825]

Beyond Standard Model: From Theory to Experiment (BSM- 2021)

March 31, 2020

Observations of magnetic fields in universe

M51 (4.8 GHz)

NGC891 (8.4 GHz)

NGC4569 (4.8 GHz)

Picture source: Max Planck Institute for Radio Astronomy
Micro-Gauss strength magnetic field over 10 kpc coherence length scale is present in galaxies.
$1 p c=2.1 \times 10^{5} \mathrm{AU}=3.1 \times 10^{16} \mathrm{~m}$

Two kinds of fields

- Electromagnetic field has two transverse degrees of freedom which can be associated with Left circular and right circular polarization.
- For massless particle helicity is the projection of the direction of spin (clockwise or anti-clockwise) along the direction of propagation. Hence giving $+1,-1$ for right handed and left handed helicity modes.
- Same propagation (speed or dispersion relation) of both polarization modes lead to non-helical, and differently propagating modes lead to helical fields.
- If both the polarization modes propagate differently \rightarrow Helicity Imbalance
How to create helicity imbalance?

Helical magnetic fields

- Lorentz force, $\vec{F}=m \frac{d \vec{v}}{d t}=\vec{E}+\vec{V} \times \vec{B}$ implies that under parity transformation (changing the sign of coordinate system): $\vec{E} \longrightarrow-\vec{E}, \vec{B} \longrightarrow \vec{B}$.
- Because standard EM action, $F_{\mu \nu} F^{\mu \nu} \propto B^{2}-E^{2}$, is quadratic in \vec{E} and \vec{B}, it is invariant under parity symmetry.
- $F_{\mu \nu} \tilde{F}^{\mu \nu}=-4 \vec{E} \cdot \vec{B}$ is parity non-invariant, where $\tilde{F}^{\mu \nu}=\frac{1}{2} \epsilon^{\mu \nu \alpha \beta} F_{\alpha \beta}$.

Hence $F_{\mu \nu} \tilde{F}^{\mu \nu}$ can create the Helicity imbalance.

Vorticity

Vorticity is defined as $\vec{\Omega}=\vec{\nabla} \times \vec{v}$, where \vec{V} is velocity field.

Vorticity $\neq 0$

Vorticity $\neq 0$

Vorticity $=0$

Source: Wikipedia

Magnetic helicity

Grasso and Rubinstein (2001), Blackman (2014)

- Magnetic helicity $\left(\mathcal{H}_{M}\right)$ is defined as: $\int d^{3} \times \vec{A} \cdot \vec{B}$ and
$\vec{B} \cdot \vec{\nabla} \times \vec{B}$.
- It is a measure of twist and linkage of magnetic field lines.

$$
\mathcal{H}_{M}=\int d^{3} \times \vec{A} \cdot \vec{B}=2 V_{1} \cdot V_{2}
$$

Why helical magnetic fields are interesting?

- Helical magnetic fields leave a very distinct signature as they violate parity symmetry which leads to observable effects, e.g. correlations between the anisotropies in the temperature and B-polarisation or in the E - and the B-polarisations in the CMB. Kahniashvili (2006)
- One of the interests in primordial magnetic helicity is that it can be a direct indication of parity violation (CP violation) in the early Universe.

Vachaspati (2001)

How to generate magnetic fields ?

Problem with magnetic field generation during inflation

- EM action for an arbitrary 4-D metric

$$
S_{e m}=-\frac{1}{4} \int d^{4} x \sqrt{-g} g^{\alpha \mu} g^{\beta \nu} F_{\alpha \beta} F_{\mu \nu}
$$

where $F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}$, and A^{μ} is electromagnetic four vector.

- Under conformal transformation $\tilde{g}_{\mu \nu}=\omega^{2}(x) g_{\mu \nu}$

$$
\tilde{S}_{e m}=-\frac{1}{4} \int d^{4} x \sqrt{-g} \tilde{g}^{\alpha \mu} \tilde{g}^{\beta \nu} F_{\alpha \beta} F_{\mu \nu}=S_{e m}
$$

- EM action is conformally invariant.
- Because Flat FRW metric is conformally equivalent to Minikowski spacetime, $B \sim \frac{1}{a^{2}}$.
We need to break the conformal invariance of EM action !

(Helical fields) Models in the literature

Scalar field coupled models: $f(\phi) F_{\mu \nu} \tilde{F}^{\mu \nu}$
Durrer et al.(2011),
Sharma et al.(2018)
where $f(\phi)$ is time-dependent coupling function.

- Problems with these models :
- Strong coupling - Coupling between charged particles and the EM field is so strong that theory can not be treated perturbatively.
- Back-reaction - Overproduction of gauge fields affect the background inflationary dynamics
- Because magnetic fields are produced near the end of inflation, strength of the fields generated depends on the reheating scale.

To resolve strong coupling and back-reaction problem $f(\phi)$ is assumed to increase during inflation and decrease back to its initial value post inflation. Sharma et al.(2018)

Helical magnetic fields from Riemann coupling

Motivation

- Non-minimal coupling to the Riemann tensor generates sufficient primordial helical magnetic fields at all observable scales.
- One of the helical states decay while the other helical mode increases, leading to a net non-zero helicity \longrightarrow helicity imbalance
- Necessary condition : Conformal invariance breaking + parity violation

$$
\begin{align*}
S & =-\overbrace{\frac{M_{\mathrm{P}}^{2}}{2} \int d^{4} x \sqrt{-g} R}^{\text {Einstein-Hilbert term }}+\overbrace{\int d^{4} x \sqrt{-g}\left[\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-V(\phi)\right]}^{\text {Scalar field }} \\
& -\frac{1}{4} \int d^{4} x \sqrt{-g} F_{\mu \nu} F^{\mu \nu}-\underbrace{\frac{\sigma}{M^{2}} \int d^{4} x \sqrt{-g} \tilde{R}^{\mu \nu \alpha \beta} F_{\alpha \beta} F_{\mu \nu}}_{\text {Conformal breaking }} \tag{1}
\end{align*}
$$

where $\tilde{R}^{\mu \nu \alpha \beta}=\frac{1}{2} \epsilon^{\mu \nu \rho \sigma} R_{\rho \sigma}{ }^{\alpha \beta}$ and M is the energy scale, which sets the scale for the breaking of conformal invariance.

Electromagnetic energy density

To identify whether these modes lead to back-reaction on the metric, we define R, which is the ratio of the total energy density of the fluctuations and background energy density during inflation: Talebian et al.(2020)

$$
\begin{equation*}
R=\frac{\left.\left(\rho_{B}+\rho_{E}\right)\right|_{k_{*} \sim \mathcal{H}}}{6 M_{P}^{2} H^{2}} \tag{2}
\end{equation*}
$$

α	$\rho\left(\mathrm{in} \mathrm{GeV}^{4}\right)$	R
$-\frac{1}{2}-\epsilon$	$\sim 10^{64}$	$\sim 10^{-4}$
$-\frac{3}{4}$	$\sim 10^{62}$	$\sim 10^{-6}$
-1	$\sim 10^{61}$	$\sim 10^{-7}$
-3	$\sim 10^{59}$	$\sim 10^{-9}$

No back-reaction on the background metric.

Estimating the strength of helical magnetic fields

- Assuming instantaneous reheating, and the Universe becomes radiation dominated after inflation. Due to flux conservation, the magnetic energy density will decay as $1 / a^{4}$: Subramanian (2016)
- Using the fact that the relevant modes exited Hubble radius around 30 e-foldings of inflation, with energy density $\rho_{B} \approx 10^{64} \mathrm{GeV}^{4}$, the primordial helical fields at GPc scales is:

$$
\begin{equation*}
B_{0} \approx 10^{-20} \mathrm{G} \tag{3}
\end{equation*}
$$

- Helical magnetic fields that re-entered the horizon at two different epochs:

$$
\left.B\right|_{50 \mathrm{MPc}} \sim 10^{-18} G(z \sim 20) ;\left.B\right|_{1 \mathrm{MPc}} \sim 10^{-14} G(z \sim 1000)
$$

Conclusion and Future work...

- Our model does not require the coupling of the electromagnetic field with the scalar field. Hence, there are no extra degrees of freedom and will not lead to a strong-coupling problem.
- Since the curvature is large in the early Universe, the coupling term will introduce non-trivial corrections to the electromagnetic action.
- Power spectrum of the helical fields generated has a slight red-tilt for slow-roll inflation which is different compared to the scalar field coupled models where the power-spectrum has a blue-tilt.
- Currently we are looking at the effect of this helical field on baryon asymmetry during the early universe.

Thank you

Backup slides

Conformal transformation

$$
\begin{equation*}
\tilde{g}_{\mu \nu}=\omega^{2}(x) g_{\mu \nu} \Longrightarrow \tilde{\Gamma}_{\mu \nu}^{\lambda}=\Gamma_{\mu \nu}^{\lambda}+C_{\mu \nu}^{\lambda} \tag{4}
\end{equation*}
$$

where $C_{\mu \nu}^{\lambda}=\omega^{-1}\left(\delta_{\mu}^{\lambda} \nabla_{\nu} \omega+\delta_{\nu}^{\lambda} \nabla_{\mu} \omega-g_{\mu \nu} g^{\rho \lambda} \nabla_{\rho} \omega\right)$

$$
\begin{gather*}
F_{\mu \nu}=\nabla_{\mu} A_{\nu}-\nabla_{\nu} A_{\mu}=\partial_{\mu} A_{\nu}-\Gamma_{\mu \nu}^{\lambda} A_{\lambda}-\partial_{\nu} A_{\mu}+\Gamma_{\nu \mu}^{\lambda} A_{\lambda}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu} \tag{5}\\
\tilde{R}_{\sigma \mu \nu}^{\lambda}=R_{\sigma \mu \nu}^{\lambda}+\nabla_{\mu} C_{\nu \sigma}^{\lambda}-\nabla_{\nu} C_{\mu \sigma}^{\lambda}+C_{\mu \rho}^{\lambda} C_{\nu \sigma}^{\rho}-C_{\nu \rho}^{\lambda} C_{\mu \sigma}^{\rho} \tag{6}\\
\tilde{R}_{\mu \nu}= \\
\quad R_{\mu \nu}-\left[2 \delta_{\mu}^{\alpha} \delta_{\nu}^{\beta}+g_{\mu \nu} g^{\alpha \beta}\right] \omega^{-1}\left(\nabla_{\alpha} \nabla_{\beta} \omega\right) \tag{7}\\
\quad+\left[4 \delta_{\mu}^{\alpha} \delta_{\nu}^{\beta}-g_{\mu \nu} g^{\alpha \beta}\right] \omega^{-2}\left(\nabla_{\alpha} \omega\right)\left(\nabla_{\beta} \omega\right) \tag{8}\\
\tilde{R}=\omega^{-2} R--6 g^{\alpha \beta} \omega^{-3}\left(\nabla_{\alpha} \nabla_{\beta} \omega\right) \tag{9}\\
\tilde{\nabla}_{\mu} \tilde{\nabla}_{\nu} \phi=\nabla_{\mu} \nabla_{\nu} \phi-\left(\delta_{\mu}^{\alpha} \delta_{\nu}^{\beta}+\delta_{\mu}^{\beta} \delta_{\nu}^{\alpha}\right) \omega^{-1}\left(\nabla_{\alpha} \omega\right)\left(\nabla_{\beta} \omega\right)
\end{gather*}
$$

Energy densities

Gauge field decomposition:

$$
\begin{equation*}
A^{i}(\vec{x}, \eta)=\int \frac{d^{3} k}{(2 \pi)^{3}} \sum_{\lambda=1,2} \varepsilon_{\lambda}^{i}\left[A_{\lambda}(k, \eta) b_{\lambda}(\vec{k}) e^{i k \cdot x}+A_{\lambda}^{*}(k, \eta) b_{\lambda}^{\dagger}(\vec{k}) e^{-i k \cdot x}\right] \tag{10}
\end{equation*}
$$

The EM energy densities with respect to the comoving observer are:
$\rho_{B}(\eta, k) \equiv-\frac{1}{2}\langle 0| B_{\mu} B^{\mu}|0\rangle=\int \frac{d k}{k} \frac{1}{(2 \pi)^{2}} \frac{k^{5}}{a^{4}}\left(\left|A_{+}(\eta, k)\right|^{2}+\left|A_{-}(\eta, k)\right|^{2}\right)$
$\rho_{E}(\eta, k) \equiv-\frac{1}{2}\langle 0| E_{\mu} E^{\mu}|0\rangle=\int \frac{d k}{k} \frac{1}{(2 \pi)^{2}} \frac{k^{3}}{a^{4}}\left(\left|A_{+}^{\prime}(\eta, k)\right|^{2}+\left|A_{-}^{\prime}(\eta, k)\right|^{2}\right)$
$\rho_{h}(\eta, k) \equiv-\langle 0| A_{\mu} B^{\nu}|0\rangle=\int \frac{d k}{k} \frac{1}{2 \pi^{2}} \frac{k^{4}}{a^{3}}\left(\left|A_{+}(\eta, k)\right|^{2}-\left|A_{-}(\eta, k)\right|^{2}\right)$.
where spectral energy density is given by $\frac{d \rho \Upsilon}{d \rho}$ for $\uparrow \in(B, E, h)$

Evolution equation

In Flat FRW universe : $d s^{2}=a^{2}(\eta)\left(d \eta^{2}-\delta_{i j} d x^{i} d x^{j}\right)$. In the Coulomb gauge ($A^{0}=0, \partial_{i} A^{i}=0$), equation of motion is

$$
\begin{equation*}
A_{i}^{\prime \prime}+\frac{4 \epsilon_{i j l}}{M^{2}}\left(\frac{a^{\prime \prime \prime}}{a^{3}}-3 \frac{a^{\prime \prime} a^{\prime}}{a^{4}}\right) \partial_{j} A_{l}-\partial_{j} \partial_{j} A_{i}=0 \tag{14}
\end{equation*}
$$

Which in helicity basis can be written as:

$$
\begin{equation*}
A_{h}^{\prime \prime}+\left[k^{2}-\frac{4 k h}{M^{2}} \Gamma(\eta)\right] A_{h}=0 \tag{15}
\end{equation*}
$$

where,

$$
\begin{equation*}
\Gamma(\eta)=\frac{a^{\prime \prime \prime}}{a^{3}}-3 \frac{a^{\prime \prime} a^{\prime}}{a^{4}}=\frac{1}{a^{2}}\left(\mathcal{H}^{\prime \prime}-2 \mathcal{H}^{3}\right) \tag{16}
\end{equation*}
$$

which vanishes for de-sitter case.

Helical magnetic field generation

- For power law inflation: $a(\eta)=\left(-\frac{\eta}{\eta_{0}}\right)^{\beta+1}$, de-sitter $\beta=-2$, we have

$$
\begin{equation*}
A_{h}^{\prime \prime}+\left[k^{2}-\frac{8 k h}{M^{2}} \frac{\beta(\beta+1)(\beta+2)}{\eta_{0}^{3}}\left(\frac{-\eta_{0}}{\eta}\right)^{(2 \beta+5)}\right] A_{h}=0 \tag{17}
\end{equation*}
$$

- Sub-horizon mode $|-k \eta| \gg 1$ solution is: $A_{h}=\frac{1}{\sqrt{k}} e^{-i k \eta}$
- For super-horizon mode $|-k \eta| \ll 1$, with dimensionless variable,

$$
\tau=\left(-\frac{\eta_{0}}{\eta}\right)^{\alpha} \text { and } \alpha=\beta+\frac{3}{2}
$$

$$
\begin{align*}
& A_{+}(\tau, k)=\tau^{-\frac{1}{2 \alpha}} J_{\frac{1}{2 \alpha}}\left(\frac{\varsigma \sqrt{k}}{\alpha} \tau\right) C_{1}+\tau^{-\frac{1}{2 \alpha}} Y_{\frac{1}{2 \alpha}}\left(\frac{\varsigma \sqrt{k}}{\alpha} \tau\right) C_{2} \\
& A_{-}(\tau, k)=\tau^{-\frac{1}{2 \alpha}} J_{\frac{1}{2 \alpha}}\left(-i \frac{\varsigma \sqrt{k}}{\alpha} \tau\right) C_{3}+\tau^{-\frac{1}{2 \alpha}} Y_{\frac{1}{2 \alpha}}\left(-i \frac{\varsigma \sqrt{k}}{\alpha} \tau\right) C_{4} \tag{18b}
\end{align*}
$$

Taking $\mathcal{H} \sim \eta_{0}{ }^{-1} \sim 10^{14} \mathrm{GeV}$, and $M \sim 10^{17} \mathrm{GeV}$ gives

$$
\begin{equation*}
\left|C_{1}\right| \approx\left|C_{3}\right| \approx 10^{-17 / 2} \mathrm{GeV}^{-\frac{1}{2}}, \quad \text { and } \quad\left|\mathrm{C}_{2}\right| \approx\left|\mathrm{C}_{4}\right| \approx 10^{-11 / 2} \mathrm{GeV}^{-\frac{1}{2}} \tag{19}
\end{equation*}
$$

For $\alpha=-0.53$

For $\alpha=-1$

Figure: Figure showing the behaviour of positive and negative helicity mode for $\alpha=-0.53$ and $\alpha=-1 . \tilde{\tau}=10^{-\frac{63}{2}} \tau$ and the vertical axis is in $\mathrm{GeV}^{-1 / 2}$.

We can ignore the negative helicity mode.

Using the fact that we can approximate the super-horizon modes by power law, we have

$$
\begin{equation*}
A_{+}(\tau, k)=C k^{\frac{1}{4 \alpha}}-C_{2} \frac{\mathcal{F}^{-1}}{\pi} \Gamma\left(\frac{1}{2 \alpha}\right) k^{-\frac{1}{4 \alpha}} \tau^{-\frac{1}{\alpha}} \tag{20}
\end{equation*}
$$

where

$$
\begin{align*}
& \mathcal{F}(\tau)=F(\tau)\left(\frac{\varsigma}{2 \alpha}\right)^{\frac{1}{2 \alpha}} \tag{21}\\
& C(\tau)=F(\tau)\left(\frac{\varsigma}{2 \alpha}\right)^{\frac{1}{2 \alpha}}\left[\frac{C_{1}}{\Gamma\left(1+\frac{1}{2 \alpha}\right)}-\frac{C_{2}}{\pi} \Gamma\left(-\frac{1}{2 \alpha}\right) \cos \left(\frac{\pi}{2 \alpha}\right)\right], \tag{22}
\end{align*}
$$

and the approximate values are
$|\mathcal{F}| \sim 10^{-\frac{5}{\alpha}} \mathrm{GeV}^{-1 / 4 \alpha},|\mathrm{C}| \sim 10^{-\frac{5}{\alpha}-\frac{11}{2}} \mathrm{GeV}^{-\frac{1}{4 \alpha}-\frac{1}{2}}$.

