The Hartle-Hawking wavefunction of the universe revisited

Hervé Partouche

CNRS and Ecole Polytechnique

March 31, 2021
In collaboration with Nicolaos Toumbas (Cyprus University) and Balthazar de Vaulchier (Ecole Polytechnique) arXiv:2103.15168

Beyond Standard Model: From theory to experiment (BSM-2021)

Introduction

- Wavefunctions in Quantum Mechanics \Rightarrow probabilities Wavefunctions in Quantum Gravity \Rightarrow probabilities favoring realistic aspects of the Universe?

■ Hartle-Hawking proposal for spatially closed universes with cosmological constant $\Lambda>0$. ['83]
\square Homogeneous and isotropic $\mathrm{d} s^{2}=-N(t)^{2} \mathrm{~d} t^{2}+a(t)^{2} \mathrm{~d} \Omega_{3}^{2}$
Euclidean path integral

$$
\Psi\left(a_{0}\right)=\int_{\substack{a_{\mathrm{i}}=0 \\ a_{\mathrm{f}}=a_{0}}} \frac{\mathcal{D} N \mathcal{D} a}{\operatorname{Vol}(\text { Diff })} e^{-\frac{1}{\hbar} S_{\mathrm{E}}[N, a]}
$$

obeying the "No-boundary proposal": Probability amplitude for creating a Universe of scale factor a_{0} from "nothing." [Vilenkin, '82]

Plan

■ Fix the gauge consistently: Result independent of the gauge.

- Field redefinitions of the scale factor are symmetries of the classical action but

$$
q=Q(a) \quad \Longrightarrow \quad \mathcal{D} q \neq \mathcal{D} a
$$

We obtain different results for the wavefunctions at the semi-classical level.

■ However, all prescriptions yield same quantum predictions, at least at the semi-classical level.

Gauge fixing of Euclidean time

- The Euclidean action

$$
S_{\mathrm{E}}=6 \pi \int_{x_{\mathrm{Ei}}^{0}}^{x_{\mathrm{Ef}}^{0}} \mathrm{~d} x_{\mathrm{E}}^{0} \sqrt{g_{00}}\left[a g^{00}\left(\frac{\mathrm{~d} a}{\mathrm{~d} x_{\mathrm{E}}^{0}}\right)^{2}+a-\frac{\Lambda}{3} a^{3}\right]
$$

describes a non-linear σ-model:

- The base is a line segment $\left[x_{\mathrm{Ei}}^{0}, x_{\mathrm{Ef}}^{0}\right]$ of metric $g_{00} \equiv N^{2}$.
- The target space is parametrized by the scale factor a.
- All metrics g_{00} are not equivalent up to a change of coordinate, since the proper length ℓ of a line segment is invariant under a change of coordinate.

Choose a metric $\hat{g}_{00}[\ell]$ in each equivalence class ($=$ choice of gauge) and replace

$$
\int \frac{\mathcal{D} N}{\operatorname{Vol}(\mathrm{Diff})}=\int_{0}^{+\infty} \mathrm{d} \ell \int_{\mathrm{Diff}} \frac{\mathcal{D} \xi}{\operatorname{Vol}(\mathrm{Diff})} \Delta_{\mathrm{FP}}\left[\hat{g}_{00}[\ell]\right]
$$

■ Fadeev-Popov determinant

$$
1=\Delta_{\mathrm{FP}}\left[\hat{g}_{00}[\ell]\right] \int_{0}^{+\infty} \mathrm{d} \ell^{\prime} \int_{\text {Diff }} \mathcal{D} \xi \delta\left[\hat{g}_{00}[\ell]-\hat{g}_{00}^{\xi}\left[\ell^{\prime}\right]\right]
$$

■ Introducing anticommuting ghosts b^{00}, c_{0},

$$
\Delta_{\mathrm{FP}}\left[\hat{g}_{00}[\ell]\right]=\int_{\substack{c^{0}\left(\hat{x}_{\mathrm{E}}^{0}\right)=0 \\ c^{0}\left(\hat{x}_{\mathrm{Ef}}^{\mathrm{O}}\right)=0}} \mathcal{D} c \int \mathcal{D} b\left(b, \frac{\hat{g}[\ell]}{\ell}\right) \exp \{4 i \pi(b, \hat{\nabla} c)\}
$$

where $(f, h) \equiv \int_{\hat{x}_{\mathrm{Ei}}^{0}}^{\hat{x}_{\mathrm{Ef}}^{0}} \mathrm{~d} \hat{x}_{\mathrm{E}}^{0} \sqrt{\hat{g}_{00}[\ell]} f^{00} h_{00}$
■ By expanding in Fourrier modes on $\left[\hat{x}_{\mathrm{Ei}}^{0}, \hat{x}_{\mathrm{Ei}}^{0}\right]$ and using gaugeinvariant measures,

$$
\Delta_{\mathrm{FP}}\left[\hat{g}_{00}[\ell]\right]=1
$$

NB: For a base with topology of a circle, the result is $1 / \ell$.

Path integral over the scale factor

■ Gauge $\hat{g}_{00}[\ell]=\ell^{2}$

$$
\Psi\left(a_{0}\right)=\int_{0}^{+\infty} \mathrm{d} \ell \int_{\substack{a(0)=0 \\ a(1)=a_{0}}} \mathcal{D} a e^{-\frac{1}{\hbar} S_{\mathrm{E}}[\ell, a]}
$$

where the action

$$
S_{\mathrm{E}}[\ell, a]=6 \pi \int_{0}^{1} \mathrm{~d} \tau\left[\frac{a}{\ell}\left(\frac{\mathrm{~d} a}{\mathrm{~d} \tau}\right)^{2}+\ell V(a)\right], \quad V(a)=a-\frac{\Lambda}{3} a^{3}
$$

is not quadratic \Longrightarrow semi-classical approximation
\square steepest-descent method

- Find all instanton solutions $(\bar{a}, \bar{\ell})$: Two solutions.
- Develop at quadratic order and integrate over fluctuations.

$$
S_{\mathrm{E}}[\ell, a]=\bar{S}_{\mathrm{E}}+6 \pi^{2} \int_{0}^{1} \mathrm{~d} \tau \bar{\ell}\left[\delta a \mathcal{Q} \delta a+2 \delta a \frac{V_{a}(\bar{a})}{\bar{\ell}} \delta \ell+\delta \ell \frac{V(\bar{a})}{\bar{\ell}^{2}} \delta \ell\right]+\cdots
$$

- Diagonalizing,

$$
\begin{aligned}
\Psi\left(a_{0}\right)=\sum_{\epsilon= \pm 1} e^{-\frac{1}{\hbar} \bar{S}_{\mathrm{E}}^{\epsilon}} & \int_{\substack{\delta a(0)=0 \\
\delta a(1)=0}} \mathcal{D} \delta a \exp \left\{-\frac{6 \pi^{2}}{\hbar}\left(\delta a, \mathcal{Q}_{\epsilon} \delta a\right)\right\} \\
& \int \mathrm{d} \delta \ell \exp \left\{-\mathcal{K}_{\epsilon} \delta \ell^{2}\right\}(1+\mathcal{O}(\hbar))
\end{aligned}
$$

- Gaussian (path) integrals $\Longrightarrow \frac{1}{\sqrt{\operatorname{det} \mathcal{Q}_{\epsilon}}} \frac{1}{\sqrt{\mathcal{K}_{\epsilon}}}$

$$
\Psi\left(a_{0}\right)=\sum_{\epsilon= \pm 1} \frac{1}{\sqrt{\epsilon}} \frac{\exp \left[\epsilon \frac{12 \pi^{2}}{\hbar \Lambda}\left(1-\frac{\Lambda}{3} a_{0}^{2}\right)^{\frac{3}{2}}\right]}{a_{0}^{\frac{1}{8}}\left(1-\frac{\Lambda}{3} a_{0}^{2}\right)^{\frac{1}{4}}}(1+\mathcal{O}(\hbar))
$$

- Classically, the action is invariant under redefinitions $q=Q(a)$ At the quantum level $\mathcal{D} q \neq \mathcal{D} a$ due to a Jacobian

$$
\begin{aligned}
\widetilde{\Psi}\left(q_{0}\right) & =\int_{0}^{+\infty} \mathrm{d} \ell \int_{\substack{q(0)=Q(0) \\
q(1)=Q\left(a_{0}\right)}} \mathcal{D} q e^{-\frac{1}{\hbar} S_{\mathrm{E}}\left[\ell^{2}, q\right]} \\
& =\sum_{\epsilon= \pm 1} \frac{1}{\sqrt{\epsilon}} \frac{\exp \left[\epsilon \frac{12 \pi^{2}}{\hbar \Lambda}\left(1-\frac{\Lambda}{3} a_{0}^{2}\right)^{\frac{3}{2}}\right]}{\left|Q^{\prime}\left(a_{0}\right)\right|^{\frac{1}{4}} a_{0}^{\frac{1}{8}}\left(1-\frac{\Lambda}{3} a_{0}^{2}\right)^{\frac{1}{4}}}(1+\mathcal{O}(\hbar))
\end{aligned}
$$

There are infinitely many different prescriptions for the wavefunctions!

Wheeler-DeWitt equation

■ For each presciption $\mathcal{D} q$, all possible states/wavefunctions satisfy an equation similar to Schrödinger in quantum mechanics To derive it,

$$
\begin{equation*}
0=\int \frac{\mathcal{D} N \mathcal{D} q}{\operatorname{Vol}(\operatorname{Diff})} \frac{\delta}{\delta N} e^{i S[N, q]}=-i \int \frac{\mathcal{D} N \mathcal{D} q}{\operatorname{Vol}(\text { Diff })} \frac{H}{N} e^{i S[N, q]} \tag{1}
\end{equation*}
$$

where the classical Hamiltonian is

$$
\frac{H}{N}=-\frac{1}{24 \pi} \frac{\pi_{q}^{2}}{A A^{\prime 2}}-6 \pi V \quad \text { where } \quad A=Q^{-1}
$$

\Longrightarrow The quantum Hamiltonian vanishes on all states of the Hilbert space.

- Classically, we have for arbitrary functions $\rho_{1}(q), \rho_{2}(q)$

$$
\pi_{q}^{2}=\frac{1}{\rho_{1} \rho_{2}} \pi_{q} \rho_{1} \pi_{q} \rho_{2}
$$

- canonical quantization

$$
q \longrightarrow q_{0}, \quad \pi_{q} \longrightarrow-i \hbar \frac{\mathrm{~d}}{\mathrm{~d} q_{0}}
$$

yields an ambiguity

$$
\frac{\hbar^{2}}{24 \pi} \frac{1}{A A^{\prime 2}} \frac{1}{\rho} \frac{\mathrm{~d}}{\mathrm{~d} q_{0}}\left(\rho \frac{\mathrm{~d} \Phi}{\mathrm{~d} q_{0}}\right)+\left(\hbar^{2} \omega-6 \pi V\right) \Phi=0
$$

where Φ is an arbitrary wavefunction of the Hilbert space.
\square We can find ρ by solving this equation at the semi-classical level using the WKB method

$$
\Phi\left(q_{0}\right)=\sum_{\epsilon= \pm 1} N_{\epsilon} \frac{\exp \left[\epsilon s \frac{12 \pi^{2}}{\hbar \Lambda}\left(1-\frac{\Lambda}{3} a_{0}^{2}\right)^{\frac{3}{2}}\right]}{\left|\rho\left(q_{0}\right) A^{\prime}\left(q_{0}\right)\right|^{\frac{1}{2}} a_{0}^{\frac{1}{2}}\left(1-\frac{\Lambda}{3} a_{0}^{2}\right)^{\frac{1}{4}}}(1+\mathcal{O}(\hbar))
$$

Comparing with a particular wavefunction, the "no-boundary state"

$$
\Longrightarrow \quad \rho\left(q_{0}\right)=a_{0}^{-\frac{3}{4}}\left|A^{\prime}\left(q_{0}\right)\right|^{-\frac{3}{2}}
$$

Universality at the semi-classical

■ Different wavefunction prescriptions $\mathcal{D} q$ and Wheeler-DeWitt equations \Longrightarrow different quantum gravities with same classical limits?

- To discuss probabilities, we define inner product in each Hilbert space. Denoting $\Phi\left(q_{0}\right) \equiv \Phi_{A}\left(a_{0}\right), \quad\left(a_{0}=A\left(q_{0}\right)\right)$

$$
\left\langle\Phi_{A 1}, \Phi_{A 2}\right\rangle=\int_{0}^{+\infty} \mathrm{d} a_{0} \mu\left(a_{0}\right) \Phi_{A 1}\left(a_{0}\right)^{*} \Phi_{A 2}\left(a_{0}\right)
$$

- Imposing Hermiticity of the Hamiltnonians

$$
\left\langle\Phi_{A 1}, \frac{H}{N} \Phi_{A 2}\right\rangle=\left\langle\frac{H}{N} \Phi_{A 1}, \Phi_{A 2}\right\rangle
$$

\Longrightarrow Differential equation $\Longrightarrow \mu=a_{0}\left|A^{\prime}\right| \rho$

$$
\Longrightarrow \sqrt{\mu\left(a_{0}\right)} \Phi_{A}\left(a_{0}\right)=\sum_{\epsilon= \pm 1} N_{\epsilon} \frac{\exp \left[\epsilon \frac{12 \pi^{2}}{\hbar \Lambda}\left(1-\frac{\Lambda}{3} a_{0}^{2}\right)^{\frac{3}{2}}\right]}{\left(1-\frac{\Lambda}{3} a_{0}^{2}\right)^{\frac{1}{4}}}(1+\mathcal{O}(\hbar))
$$

is independent of ρ and A i.e. is independent of the choice of field redefinition, at the semi-classical level

So is the inner product $\left\langle\Phi_{A 1}, \Phi_{A 2}\right\rangle=\int_{0}^{+\infty} \mathrm{d} a_{0} \mu \Phi_{A 1}^{*} \Phi_{A 2}$
\Longrightarrow All probabilities are independent of the choice of measure $\mathcal{D} q$, at least at the semi-classical level

Conclusion

\square We have considered the Hartle-Hawking wavefunction for spatially closed universes, with $\Lambda>0$.

- We focussed on a simpler version, for homogeneous and isotropic universes.
- The system can be seen as a non-linear σ-model with a line segment for the base and a target space parametrized by the scale factor.
- The gauge fixing of time reparametrization is done by:
- Integrating over the proper length of the line-segment base.
- The Faddeev-Popov determinant is trivial.
- Using gauge invariant measures.
\square The reparametrizations of the scale factor (i.e. coordinate in the target space) yield different measures and path integrals, but the Hilbert spaces are equivalent at least semi-classically.

