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Motivation
Bouncing scenario is interesting because:

It can generate an almost scale invariant power spectrum and

hence confront the observational constraints.

Can give rise to a singularity free evolution of the early universe.

The bouncing scenario consists of two eras — an era of contraction and an era
of expansion of the scale factor, both the eras being connected by a
non-singular bounce

In this talk, we will see the role of radion in inducing a bouncing universe.

The scalar field radion arises in higher dimensional models—the warped
geometry model proposed by Randall & Sundrum (RS)

The RS model was proposed to resolve the gauge-hierarchy problem arising
due to large radiative corrections to the Higgs mass

Does the modulus stabilze at the point of exit from inflation?

Summary and Discussions
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Plan of the talk

Description of the non-flat warped braneworld scenario: Emergence of the
radion field

Radion Cosmology: Background evolution

Radion Cosmology: Evolution of perturbations
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EXTRA-DIMENSIONAL MODEL:
THE NON-FLAT WARPED

BRANEWORLD SCENARIO
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RANDALL SUNDRUM MODEL

Has two 3-branes extending in the xµ directions, located at the fixed points
y = 0 (hidden brane), π (visible brane) (y represents the extra space coordinate)

RS model consists of a spacetime with a single S1/Z2 orbifold extra dimension
=⇒ The points (x, y) and (x,−y) are identified.

Randall & Sundrum (1999)
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Randall-Sundrum model: The Original Setup
The classical action is:

S = Sgravity + Svis + Shid (1)

Sgravity =

∫
d
4
x

∫ π

−π

dy

√
−G{2M3R − Λ} (2)

Svis =

∫
d
4
x

√
−gvis{Lvis − Vvis}; g

vis
µν (xµ) ≡ Gµν(xµ, y = π) (3)

Shid =

∫
d
4
x

√
−ghid{Lhid − Vhid}; g

hid
µν (xµ) ≡ Gµν(xµ, y = 0) (4)

5-d Einstein’s equations for the above action,√
−G(RMN −

1
2
RGMN ) = −

1
4M3

[
Λ
√
−GGMN + Vvis

√
−gvisg

vis
µν δ

µ
M
δ
ν
N δ(y − π)

+ Vhid

√
−ghidg

hid
µν δ

µ
M
δ
ν
N δ(y)

]
(5)

The metric ansatz

ds2 = e−2A
ηµνdxµdxν + r2

cdy2 = e−2σ(y)
ηµνdxµdxν + r2

cdy2 (6)
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Warped geometry and Randall-Sundrum model
Solving the Einstein’s equations with the metric ansatz gives,

σ(y) = −rc|y|
√
−Λ

24M3 = −rc|y|k0 (1)

The brane tensions are given by,

Vvis = −Vhid = −24M3
k0 (2)

The solution of the bulk metric is thus,

ds2 = e−2krc|y|ηµνdxµdxν + r2
cdy2 (3)

Any mass parameter v0 in the fundamental higher-dimensional theory will
correspond to a physical mass v on the visible 3-brane

v = v0e
−k0rcπ (4)

If krc ∼ 12, the weak scale is generated on the “visible” brane from the Planck
scale.

Randall & Sundrum (1999)
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Success and deficiencies of the Randall Sundrum model

Success
The RS two-brane model is particularly successful in resolving the fine
tuning problem without bringing in any arbitrary intermediate scale
between the Planck and the TeV scale.

Masses of the graviton KK excitations mn = kxne−krcπ of TeV scale
and couplings to Standard Model particles TeV suppressed →
detectable in present day collider experiments.

Deficiencies
In the RS model the 3-brane was taken to be flat ⇒ cosmological
constant induced on the visible brane is zero.

But we know our universe has a very small cosmological constant that
explains the acceleration of the universe.

Can we improve upon this situation?
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Warped geometry models with non-flat branes
We consider generalized RS set-up, (a) curved 3-branes and (b) treat the distance
between the two branes as a 4-d field, the so called radion field or the modular
field, T (x).

The action is given by:
S = Sgravity + Svis + Shid (1)

where,

Sgravity =

∫ ∞
−∞

d4x

∫ π

−π

dy
√
−G(2M3R − Λ) (2)

Svis =

∫ ∞
−∞

d4x
√
−gvis(Lvis − Vvis) (3)

Shid =

∫ ∞
−∞

d4x
√
−ghid(Lhid − Vhid) (4)

The metric ansatz we consider is the following:

ds2 = e−A(xµ,y)gµνdxµdxν + T(x)2dy2 (5)

e−A = ω sinh
(

ln
c2

ω
− kT (x)|y|

)
ω =

Ω
3k2 (6)
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Effective action in de-Sitter 3-branes
The 4-d effective action can be separated into 3 parts,

(4)Atot = (4)Acurv + (4)Akinetic + (4)Apot (1)

where,
(4)Acurv = 2M3

∫
d

4
x
√
−g R̂

{
c22
4k

+
ω2

k
ln
(

Φ
f

)
+

ω4

4kc22

(
f2

Φ2

)
−

ω4

4kc22
−
c22
4k

(
Φ2

f2

)}
(2)

(4)Akinetic =

∫
d

4
x
√
−g
(
−

1
2
∂µΦ∂µΦ

){
1 + 8

M3

k
ω

2
(

1
Φ2 ln

Φ
f

)
−

6M3

k

ω4

c22

(
f2

Φ4

)}
(3)

(4)Apot =

∫
d

4
x
√
−gV̂ (Φ/f) (4)

V̂

(
Φ
f

)
= 6ω4 ln

(
Φ
f

)
−

3
2
ω

2
c
2
2

(
Φ2

f2

)
+

3
2
ω

2
c
2
2 +

3
2
ω6

c22

(
f2

Φ2

)
−

3
2
ω6

c22
(5)

where, Φ = fe−kT (x)π; f =
√

6M3c2
2

k ; c2 = 1 +
√

1 + ω2

IB & S. SenGupta, EPJC, 77, 277 (2017);

IB, S. Chakraborty & S. SenGupta, PRD, 02, 023515 (2019)
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Effective action in the Einstein frame
The radion potential in the Einstein frame is given by,

V (ξ) =
V̂ (ξ)
h(ξ)2

=
6ω2

h(ξ)
ξ ≡

Φ
f

(1)

where the non-minimal coupling term is,

h(ξ) =
{
c22
4

+ ω2 ln(ξ) +
ω4

4c22

(
1
ξ2

)
−
ω4

4c22
−
c22
4
ξ2
}

=
1

6ω2 V̂ (ξ) (2)

The complete 4-d effective action in the Einstein frame is given by,

(4)AE
tot =

∫
d4x
√
−ĝ

[
2M3

k0
R︸ ︷︷ ︸

Lcurv

−
1
2
G(Φ/f)∂µΦ∂µΦ︸ ︷︷ ︸

Lkinetic

−2M3k0V (Φ/f)︸ ︷︷ ︸
Lpot

]
(3)

where,

G(ξ) =
Ĝ(ξ)
h(ξ)

+
1
c22

[
h′(ξ)
h(ξ)

]2
(4)

Ĝ(ξ) = 1 +
4
3
ω2

c22

(
1
ξ2

)
ln (ξ)−

ω4

c42

(
1
ξ4

)
(5)
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Interesting consequences related to the form of the warp
factor

Recall, Φ ≡ f exp{−kT (x)π} where f =
√

6M3c22/k (order of Planck mass).

Since T (x) represents the distance between the two branes, it cannot be negative
and hence 0 . (Φ/f) . 1 .
The warp factor can be written as,

e−A =
ω

2

{
exp
[(

ln
c2

ω
− kT (x)|φ|

)]
− exp

[
−
(

ln
c2

ω
− kT (x)|φ|

)]}
=
c2

2
exp(−kT (x)|φ|)−

ω2

2c2
exp(kT (x)|φ|) (1)

where, c2 = 1 +
√

1 + ω2.
The warp factor has to be positive on the visible brane, i.e., φ = π,

e−A > 0
=⇒ (Φ/f) = exp{−kT (x)π} > (ω/c2) (2)

This implies ω
c2

. (Φ/f) . 1 is physically allowed region.
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General properties of V and G

The potential V has an inflection point at ξi = Φi/f = ω/c2, where
c2 = 1 +

√
1 + ω2, implies ξi = Φi/f < 1.

G becomes negative to positive at ξf = Φf/f > ξi where ξf = Φf/f ∼ ω.
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Figure: The above figure depicts the variation of (a) the radion potential V and (b) the non-canonical
coupling to the kinetic term G in the Eintein frame, within the allowed range of the radion field ξ for
ω = 10−3.

For any ω, ξi < ξf , e.g., for ω = 10−3 the value of ξi = 5× 10−4 whereas
ξf = 1.483× 10−3, ξ exhibits phantom− like behavior when ξi ≤ ξ ≤ ξf
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EARLY UNIVERSE COSMOLOGY WITH
RADION: BACKGROUND EVOLUTION

I. Banerjee Bouncing cosmology in a curved braneworld



Background evolution with radion

We study early universe cosmology with the radion field.
We consider the Einstein frame metric to be described by the FRW spacetime,

ds2 = dt2 − a(t)2
[
dx2 + dy2 + dz2

]
(1)

The Friedmann equations are given by,

H2 =
κ2

3
ρ(t) =

c22
4
G(ξ)ξ̇2 +

k2
0
6
V (ξ); 2κ2 = 16πGN =

k0

2M3 (2)

Ḣ = −
κ2

2
(ρ+ p) = −

3
4
c22G(ξ)ξ̇2 (3)

The equation of motion for the radion field is given by,

ξ̈ + 3Hξ̇ +
G′(ξ)
2G(ξ)

ξ̇2 +
k2
0

3c22

V ′(ξ)
G(ξ)

= 0 (4)

We solve these equations to get background evolution of H(t) and ξ(t).
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Evolution equations for radion and Hubble parameter near
bounce

The model can show a bounce phenomena when G(ξ) < 0.

Note: ξi, ξf ∼ ω, we analytically solve the background equations with ξ ∼ ω near
the bounce (t = 0).
We consider,

ξ(t) =
ω

c2
[1 + δ(t)] δ(t)� 1 (5)

Using 5 the evolution equations for the Hubble parameter H(t) and the radion
field ξ(t) turn out to be,

Ḣ + 3H2 −
12k2

0ω
2

c22
= 0 (6)

and

δ̇2 =
c22
ω2

Ḣ

4ln
(
c2
ω

)[1 + δ

{ 4 + 2ln
(
c2
ω

)
ln
(
c2
ω

) }]
(7)
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Analytic solution of H(t) and ξ(t) near bounce

The background solution for H(t) and δ(t) in the regime ξ(t) = ω
c2

(1 + δ(t))
with δ(t)� 1,

ξ(t) =
ω

c2
(1 + δ(t)),

H(t) = 2k0
ω
c2
tanh

[
6 ωc2

k0t

]
δ(t) = 2

A

[
exp

{
− A

6
ω
c2

√
3

ln

(
c2
ω

)(tan−1tanh

(
3ω
c2
k0t

)
− π

4

)}
− 1
]
,

(8)

where, A =
4+2ln

(
c2
ω

)
ln

(
c2
ω

) . We use lim
t→∞ δ(t)→ 0 to arrive at above result.

8 clearly indicates H(0) = 0 and Ḣ > 0 at t = 0 (corresponding to the bounce
time)

The present model generically predits a bouncing universe in the visible brane
when the radion field lies within the phantom regime i.e., ξ ∼ ω.

In the phantom regime, the null energy condition (NEC) is violated, which
makes the bounce possible at a certain finite time, in particular at t = 0.

The violation of NEC occurs irrespective of any value of ω
c2

and k0 (i.e the
model parameters).
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Numerical solution of H(t) and ξ(t) near bounce
We check whether the radion field, starting from a value in the normal regime,
will reach to the phantom regime by its dynamical evolution.

We solve the Friedmann equations for a wide range of cosmic time.

Boundary conditions used: H(0) = 0 and ξ(0) = 6.0041× 10−4, where we
consider ω = 10−3
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Figure: The above figure depicts the time evolution of (a) the Hubble parameter H(t) and (b)
the non-canonical kinetic term G(ξ) (magenta curve) and the background radion field
magnified 1000 times, i.e. ξ(t) ∗ 1000 (blue curve). 2b is illustrated near the zero crossing of
G(ξ), i.e. when t ∼ −4.7. Note that bounce occurs after this at t = 0 when the kinetic term
of the radion is in the phantom regime. Both the above figures are illustrated for ω = 10−3.
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EARLY UNIVERSE COSMOLOGY WITH
RADION: EVOLUTION OF PERTURBATIONS
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Generation era of perturbations: Behavior of comoving
Hubble radius

In our model the comoving Hubble radius 1/(aH) monotonically decreases
with time and goes to zero asymptotically on both sides of the bounce.

Hence, the perturbation modes generate near the bouncing regime where the
Hubble radius has an infinite size such that all the perturbation modes are
contained inside the horizon.

Therefore we solve the perturbation equations near the bouncing point, i.e.,
t = 0.
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Figure: The above figure depicts the time evolution of (a) the comoving Hubble radius 1

aH
and (b) the

inverse Hubble parameter H−1. Both the above figures are illustrated for ω = 10−3.
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Scalar metric perturbations

The scalar metric perturbation over FRW metric can be written in the
longitudinal gauge as,

ds
2 = a

2(η)
[(

1 + 2Ψ
)
dη

2 −
(
1− 2Ψ

)
δijdx

i
dx
j

]
(9)

where dη = dt
a(t) and Ψ(η, ~x) symbolizes the scalar metric fluctuation

The spacelike and the timelike components of scalar perturbation are
considered to be same as the background evolution has no anisotropic stress.

We expand the radion field as,

Φ(η, ~x) = Φ0(η) + δΦ(η, ~x) (10)
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Perturbed Einstein’s equations

The perturbed Einstein’s equations are given by,

∇2Ψ− 3HΨ′ − 3HΨ =
κ2

2

[
G(Φ0)Φ′0δΦ

′ +
1
2
G
′(Φ0)(Φ′0)2

δΦ + 2a2
M

3
k0V

′(Φ0)δΦ
]

Ψ′ +HΨ =
κ2

2
Φ′0δΦ

Ψ′′ + 3HΨ′ +
(
2H′ +H2

)
Ψ =

κ2

2

[
G(Φ0)Φ′0δΦ

′ +
1
2
G
′(Φ0)(Φ′0)2

δΦ− 2a2
M

3
k0V

′(Φ0)δΦ
]

(11)

Here the primes in V (Φ0) and G(Φ0) are with respect to Φ0 while the primes
in H and Φ0 are with respect to η.

From above we obtain evolution of Ψ(t, ~x),

Ψ̈−
1
a2∇

2Ψ +
[

7H +
2k2

0 V
′(ξ0)

3c22G(ξ0)ξ̇0

]
Ψ̇ +

[
2Ḣ + 6H2 +

2k2
0H V ′(ξ0)

3c22G(ξ0)ξ̇0

]
Ψ = 0 (12)

ξ0 is the dimensionless unperturbed radion field.

We solve the perturbation equations near t = 0 using background evolution of
H(t) and ξ(t) near bounce.
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Perturbed Einstein’s equations

Using background evolution of H(t) and ξ(t) in 12, the E.O.M. for Ψ(t)
becomes,

Ψ̈−∇2Ψ +
[
−
√
αp+ (q + 14)αt

]
Ψ̇ +

[
4α− 2α

√
αp t
]
Ψ(~x, t) = 0 (13)

p = 16
√

2
3

(
B sinh2(Bπ/8)(

3− 2eBπ/4
)(

2− ln ω
c2

)) and q =
8
(
2− 2 cosh(Bπ/4) + sinh(Bπ/4)

)(
3− 2eBπ/4

)2(
2− ln ω

c2

)
where B = A

6
ω
c2

√
3

ln
(
c2
ω

) , α = 6k2
0ω

2

c2
2

, A =
4+2ln c2

ω

ln
c2
ω

.

In terms of the Fourier transformed scalar perturbation variable
Ψk(t) =

∫
d~xe−i

~k.~xΨ(~x, t), 13 can be written as,

Ψ̈k +
[
−
√
αp+ (q + 14)αt

]
Ψ̇k +

[
k

2 + 4α− 2α
√
αp t
]
Ψk(t) = 0 (14)

I. Banerjee Bouncing cosmology in a curved braneworld



Perturbed Einstein’s equations

Solving 14 for Ψk(t), we get

Ψk(t) = b1(k) exp
[√

αpt− 7αt2 −
q

2
αt

2
]
H

[
− 1 +

k2 + 4α
α(q + 14)

,
−p+ (q + 14)

√
α t√

2(q + 14)

]
(15)

with H[n, x] is the n-th order Hermite polynomial.
b1(k) is determined from the initial Bunch-Davies vacuum condition:

lim
t→0

Ψk(t) =
κ2f

2k2 lim
t→0

[√
G(ξ) ξ̇v′k(η)

]
=

iκ2f

2
√

2k3/2
lim
t→0

[√
G(ξ) ξ̇

]
(16)

where, limη→0 vk(η) = 1√
2k
e−ikη.

Using the background evolution of ξ(t) and G(ξ) and comparing 15 and 16,

b1(k) =
√

3
2k3/2

(
ω

c2

)(
k0

M

)3/2 { eBπ/4
(
3− 2eBπ/4

)1/2

H
[
− 1 + k2+4α

α(q+14) ,
−p√

2(q+14)

]}
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Scalar power spectrum
The solution for the scalar perturbation variable,

Ψk(t) =
√

3
2k3/2

(
ω

c2

)(
k0

M

)3/2
e
Bπ/4

(
3− 2eBπ/4

)1/2
e
[p
√
α t −7αt2− q

2
αt2] (17)

×

{
H
[
− 1 + k2+4α

α(q+14) ,
−p+(q+14)

√
α t√

2(q+14)

]
H
[
− 1 + k2+4α

α(q+14) ,
−p√

2(q+14)

] }
The scalar power spectrum for kth mode,

PΨ(k, t) =
k3

2π2

∣∣∣Ψk(t)
∣∣∣2

=
3

8π2

(
ω

c2

)2( k0

M

)3
e
Bπ/2

(
3− 2eBπ/4

)
e
[2p
√
α t −14αt2−qαt2]

×

{
H
[
− 1 + k2+4α

α(q+14) ,
−p+(q+14)

√
α t√

2(q+14)

]
H
[
− 1 + k2+4α

α(q+14) ,
−p√

2(q+14)

] }2

(18)

To match with Planck 2018 observations we need to calculate PΨ(k, t) at CMB
scale kCMB ≈ 0.02Mpc−1 ≈ 10−40GeV.
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Scalar power spectrum at horizon crossing

With the background solution of Hubble parameter, we determine the time
when kCMB crosses the horizon, i.e., k = aH, and is given by,

th =
kCMB

12k2
0

(
c22
ω2

)
, (19)

Correspondingly, the scalar power spectrum at horizon crossing can be
expressed as,

PΨ(k, t)
∣∣∣
h.c

=
3

8π2

(
ω

c2

)2( k0

M

)3
e
Bπ/2

(
3− 2eBπ/4

)
e
[2p
√
α th−14αt2

h
−qαt2

h
] (20)

×
{H[− 1 + k2+4α

α(q+14) ,
−p+(q+14)

√
α th√

2(q+14)

]
H
[
− 1 + k2+4α

α(q+14) ,
−p√

2(q+14)

] }2
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Tensor perturbation
We consider the tensor perturbation on the FRW metric background,

ds
2 = −dt2 + a(t)2 (δij + hij) dxidxj , (21)

The tensor perturbed action up to quadratic order is given by,

δSh =

∫
dtd

3
~xa(t)zT (t)2

[
ḣij ḣ

ij −
1
a2 (∂lhij)2

]
, (22)

where, zT (t) = a(t)
κ .

Equation for the tensor perturbed variable hij ,

1
a(t)z2

T
(t)

d

dt

[
a(t)z2

T (t)ḣij
]
−

1
a2 ∂l∂

l
hij = 0 (23)

In terms of the Fourier transformed tensor variable hk(t), 23 can be expressed
as,

1
a(t)z2

T
(t)

d

dt

[
a(t)z2

T (t)ḣk
]

+
k2

a2 hk(t) = 0 (24)

hij(t, ~x) =
∫
d~k
∑

γ
ε
(γ)
ij h(γ)(~k, t)ei

~k.~x, where γ =′ +′ and γ =′ ×′ represent
two polarization modes.
ε
(γ)
ij are the polarization tensors satisfying ε(γ)

ii = kiε
(γ)
ij = 0.
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Near bounce equation for tensor perturbation

Equation for the Fourier transformed tensor peturbation variable at leading
order in t (near bounce where perturbation modes are generated)

ḧk + 6αḣk t+ k
2
hk(t) = 0 (25)

Solving 25 for hk(t), we get,

hk(t) = b2(k) e−3αt2
H

[
− 1 +

k2

6α
,
√

3α t
]

(26)

We determine b2(k) assuming tensor perturbation field starts from the
adiabatic vacuum: limt→0

[
zT (t)hk(t)

]
= 1√

2k
where at t→ 0,

a(t) ' 1 + 6ω2

c2
2
k2

0t
2 and zT (t→ 0) = a(t)/κ = 1/κ

Therefore the integration constant b2(k) is given by,

b2(k) =
1

zT (t→ 0)

[2Γ
(
1− k2

12α

)
√

2πk 2
k2
6α

]
= κ

[2Γ
(
1− k2

12α

)
√

2πk 2
k2
6α

]
. (27)
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Tensor power spectrum
The solution of hk(t) is given by,

hk(t) =
(2κ Γ

(
1− k2

12α

)
√

2πk 2
k2
6α

)
e
−3αt2

H

[
− 1 +

k2

6α
,
√

3α t
]

(28)

28 represents the solution of the tensor perturbation for both the polarization
modes.
The tensor power spectrum is ,

Ph(k, t) =
k3

2π2

∑
γ

∣∣∣h(γ)
k

(t)
∣∣∣2

=
2k2

π3

(
κ Γ
(
1− k2

12α

))2

2
k2
3α

e
−6αt2

{
H

[
− 1 +

k2

6α
,
√

3α t
]}2

(29)

Tensor power spectrum at horizon crossing k = aH ' 2αth (α = 6k2
0
ω2

c2
2

)

Ph(k, t)
∣∣∣
h.c

=
12k3

0ω
2

π3M3c22
αt

2
h

(
κ Γ
(
1− αt2

h

3

))2

2
4αt2

h

3

e
−6αt2

h

{
H

[
− 1 +

2
3
αt

2
h,
√

3α th
]}2

(30)
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Contact with observations
Ee calculate the scalar spectral index of the primordial curvature perturbations
ns and the tensor-to-scalar ratio r.

ns − 1 =
∂ lnPΨ

∂ ln k

∣∣∣
H.C

, r =
Ph(k, t)
PΨ(k, t)

∣∣∣
H.C

(31)

The perturbation modes are generated and also cross the horizon near the
bounce =⇒ we can use the near-bounce scale factor in the horizon crossing
condition to determine k = aH = 2αth (where th is the horizon crossing time).

ns = 1−
16αt2h

(q + 14)

{H(1,0)
[
− 1 + 4(αt2

h
+1)

(q+14) , −p√
2(q+14)

]
H
[
− 1 + 4(αt2

h
+1)

(q+14) , −p√
2(q+14)

] − (32)

H(1,0)
[
− 1 + 4(αt2

h
+1)

(q+14) ,
−p+(q+14)

√
α th√

2(q+14)

]
H
[
− 1 + 4(αt2

h
+1)

(q+14) ,
−p+(q+14)

√
α th√

2(q+14)

] }
h.c

where q =
8
(

2−2 cosh(Bπ/4)+sinh(Bπ/4)
)(

3−2eBπ/4
)2(

2−ln ω

c2

) and B = A
6
ω
c2

√
3

ln
(
c2
ω

) , α = 6k2
0ω

2

c2
2

,

A =
4+2ln c2

ω

ln
c2
ω

.

ns depend on the dimensionless parameters ω and αt2h
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Contact with Planck 2018 data

The tensor-to-scalar ratio

r =
Ph(k, t)
PΨ(k, t)

∣∣∣
H.C

(33)

Ph(k, t)
∣∣∣
h.c

=
12k3

0ω
2

π3M3c22
αt

2
h

(
κ Γ
(
1− αt2

h

3

))2

2
4αt2

h

3

e
−6αt2

h

{
H

[
− 1 +

2
3
αt

2
h,
√

3α th
]}2

(34)

PΨ(k, t)
∣∣∣
h.c

=
3

8π2

(
ω

c2

)2( k0

M

)3
e
Bπ/2

(
3− 2eBπ/4

)
e
[2p
√
α th−14αt2

h
−qαt2

h
] (35)

×
{H[− 1 + k2+4α

α(q+14) ,
−p+(q+14)

√
α th√

2(q+14)

]
H
[
− 1 + k2+4α

α(q+14) ,
−p√

2(q+14)

] }2

ns depend on the dimensionless parameters ω and αt2h = Rh
12α − 1 (Rh is Ricci

scalar at horizon crossing)
The observable quantities ns and r depend on ω and Rh/α.
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Constraints from Planck 2018 data

We estimate the allowed values of Rh
α and ω which in turn can give rise to ns

and r in agreement with the Planck data.

0.94 0.95 0.96 0.97 0.98 0.99
0.00

0.05

0.10

0.15

ns

r

Figure: 1σ (yellow) and 2σ (light blue) contours for Planck 2018 results, on ns − r plane. Additionally,

we present the predictions of the present bounce scenario with
Rh
α

= 14 (blue point),
Rh
α

= 16

(black point) and
Rh
α

= 19 (red point). Here ω = 10−3.
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Constraints from Planck 2018 data

The scalar perturbation amplitude (As) is constrained to
ln
[
1010As

]
= 3.044± 0.014 from the Planck results.

The amplitude of scalar perturbations As not only depends on ω and Rh
α but

also on the ratio of the 5D bulk curvature (k0) and the 5D Planck mass (M) i.e
k0
M .

With ω = 10−3 and Rh
α = 16, As = 9.5× 10−9

(
k0
M

)3
.

If k0
M = [0.601, 0.607] it is consistent with Planck data.

Allowed range of k0
M is sensitive to the choice of ω, e.g. ω = 10−4 leads to the

scalar perturbation amplitude as As = 9.5× 10−11
(
k0
M

)3
which becomes

consistent with the Planck results for k0
M > 1

With k0
M > 1, the assumption of the background classical solution ceases to

hold true.
The observable quantities ns, r and As are simultaneously compatible with the
Planck constraints for the parameter ranges : ω = 10−3, 14 ≤ Rh

α ≤ 19,
k0
M = [0.601, 0.607] respectively.
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Summary and main results

We explore bouncing cosmology with radion which naturally arises in a
non-flat warped braneworld scenario from compactification.

In the effective 4-d theory it generates its own potential due to the presence of
the brane cosmological constant and unlike most of the scalar-tensor bounce
models where the scalar potentials are constructed by hand to explain the
observations and often their origin remains unexplained.

The radion exhbits a phantom era leading to violation of null energy condition
and a non-singular bounce.

Analysis of the background cosmological evolution of the Hubble parameter
and the radion field reveals that the radion field starts its journey from the
normal regime (i.e G(ξ) > 0 regime) and decreases monotonically in magnitude
with cosmic time until it transits to the phantom era where the bounce occurs.

The radion asymptotically stabilizes to ω
c2

, the inflection point of the modulus
potential. Such an asymptotic magnitude of the radion field can stabilize the
modulus to the appropriate value where the gauge-hierarchy issue can also be
adequately addressed.

We then investigate the cosmological evolution of the scalar and tensor
perturbations to the FRW metric from the present model. We compute ns, r
and As from the present model which turns out to be pleasantly in agreement
with the latest Planck 2018 observations well within the 1-σ regime.
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