Bouncing cosmology in a curved braneworld

Indrani Banerjee
Department of Physics and Astronomy National Institute of Technology, Rourkela, India

Beyond Standard Model:
From Theory to Experiment (BSM-2021)

Reference: IB, Tanmoy Paul \& Soumitra SenGupta, JCAP, 02,041 (2021)

- Bouncing scenario is interesting because:
- It can generate an almost scale invariant power spectrum and hence confront the observational constraints.
- Can give rise to a singularity free evolution of the early universe.
- The bouncing scenario consists of two eras - an era of contraction and an era of expansion of the scale factor, both the eras being connected by a non-singular bounce
- In this talk, we will see the role of radion in inducing a bouncing universe.
- The scalar field radion arises in higher dimensional models-the warped geometry model proposed by Randall \& Sundrum (RS)
- The RS model was proposed to resolve the gauge-hierarchy problem arising due to large radiative corrections to the Higgs mass

Plan of the talk

- Description of the non-flat warped braneworld scenario: Emergence of the radion field
- Radion Cosmology: Background evolution
- Radion Cosmology: Evolution of perturbations

EXTRA-DIMENSIONAL MODEL: THE NON-FLAT WARPED BRANEWORLD SCENARIO

RANDALL SUNDRUM MODEL

- Has two 3-branes extending in the x^{μ} directions, located at the fixed points $y=0$ (hidden brane), π (visible brane) (y represents the extra space coordinate)
- RS model consists of a spacetime with a single S_{1} / Z_{2} orbifold extra dimension \Longrightarrow The points (x, y) and $(x,-y)$ are identified.

Randall \& Sundrum (1999)

Randall-Sundrum model: The Original Setup

- The classical action is:

$$
\begin{gather*}
S=S_{\text {gravity }}+S_{v i s}+S_{h i d} \tag{1}\\
S_{\text {gravity }}=\int d^{4} x \int_{-\pi}^{\pi} d y \sqrt{-G}\left\{2 M^{3} \mathbf{R}-\Lambda\right\} \tag{2}\\
S_{v i s}=\int d^{4} x \sqrt{-g_{v i s}}\left\{\mathcal{L}_{v i s}-V_{v i s}\right\} ; \quad g_{\mu \nu}^{v i s}\left(x^{\mu}\right) \equiv G_{\mu \nu}\left(x^{\mu}, y=\pi\right) \tag{3}\\
S_{\text {hid }}=\int d^{4} x \sqrt{-g_{h i d}}\left\{\mathcal{L}_{\text {hid }}-V_{h i d}\right\} ; \quad g_{\mu \nu}^{h i d}\left(x^{\mu}\right) \equiv G_{\mu \nu}\left(x^{\mu}, y=0\right) \tag{4}
\end{gather*}
$$

- 5-d Einstein's equations for the above action,

$$
\begin{align*}
\sqrt{-G}\left(R_{M N}-\frac{1}{2} R G_{M N}\right) & =-\frac{1}{4 M^{3}}\left[\Lambda \sqrt{-G} G_{M N}+V_{v i s} \sqrt{-g_{v i s}} g_{\mu \nu}^{v i s} \delta_{M}^{\mu} \delta_{N}^{\nu} \delta(y-\pi)\right. \\
& \left.+V_{h i d} \sqrt{-g_{h i d}} g_{\mu \nu}^{h i d} \delta_{M}^{\mu} \delta_{N}^{\nu} \delta(y)\right] \tag{5}
\end{align*}
$$

- The metric ansatz

$$
\begin{equation*}
\mathrm{ds}^{2}=\mathbf{e}^{-2 \mathrm{~A}} \eta_{\mu \nu} \mathbf{d x} \mathbf{x}^{\mu} \mathbf{d x}^{\nu}+\mathbf{r}_{\mathbf{c}}^{2} \mathbf{d y}^{2}=\mathbf{e}^{-2 \sigma(\mathbf{y})} \eta_{\mu \nu} \mathbf{d x}^{\mu} \mathbf{d x ^ { \nu }}+\mathbf{r}_{\mathbf{c}}^{2} \mathbf{d y}^{2} \tag{6}
\end{equation*}
$$

Warped geometry and Randall-Sundrum model

- Solving the Einstein's equations with the metric ansatz gives,

$$
\begin{equation*}
\sigma(y)=-r_{c}|y| \sqrt{\frac{-\Lambda}{24 M^{3}}}=-r_{c}|y| k_{0} \tag{1}
\end{equation*}
$$

- The brane tensions are given by,

$$
\begin{equation*}
V_{v i s}=-V_{h i d}=-24 M^{3} k_{0} \tag{2}
\end{equation*}
$$

- The solution of the bulk metric is thus,

$$
\begin{equation*}
\mathbf{d s}^{2}=\mathbf{e}^{-2 \mathbf{k r}_{\mathbf{c}}|\mathbf{y}|} \eta_{\mu \nu} \mathbf{d x} \mathbf{x}^{\mu} \mathbf{d} \mathbf{x}^{\nu}+\mathbf{r}_{\mathbf{c}}^{2} \mathbf{d} \mathbf{y}^{2} \tag{3}
\end{equation*}
$$

- Any mass parameter v_{0} in the fundamental higher-dimensional theory will correspond to a physical mass v on the visible 3-brane

$$
\begin{equation*}
v=v_{0} e^{-k_{0} r_{c} \pi} \tag{4}
\end{equation*}
$$

- If $k r_{c} \sim 12$, the weak scale is generated on the "visible" brane from the Planck scale.

Randall \& Sundrum (1999)

Success and deficiencies of the Randall Sundrum model

Success

- The RS two-brane model is particularly successful in resolving the fine tuning problem without bringing in any arbitrary intermediate scale between the Planck and the TeV scale.
- Masses of the graviton KK excitations $m_{n}=k x_{n} e^{-k r_{c} \pi}$ of TeV scale and couplings to Standard Model particles TeV suppressed \rightarrow detectable in present day collider experiments.

Deficiencies

- In the RS model the 3-brane was taken to be flat \Rightarrow cosmological constant induced on the visible brane is zero.
- But we know our universe has a very small cosmological constant that explains the acceleration of the universe.

Can we improve upon this situation?

Warped geometry models with non-flat branes

- We consider generalized RS set-up, (a) curved 3-branes and (b) treat the distance between the two branes as a 4-d field, the so called radion field or the modular field, $T(x)$.
- The action is given by:

$$
\begin{equation*}
S=S_{\text {gravity }}+S_{v i s}+S_{h i d} \tag{1}
\end{equation*}
$$

where,

$$
\begin{align*}
S_{\text {gravity }} & =\int_{-\infty}^{\infty} d^{4} x \int_{-\pi}^{\pi} d y \sqrt{-G}\left(2 M^{3} \mathbf{R}-\Lambda\right) \tag{2}\\
S_{v i s} & =\int_{-\infty}^{\infty} d^{4} x \sqrt{-g_{v i s}}\left(L_{v i s}-V_{v i s}\right) \tag{3}\\
S_{h i d} & =\int_{-\infty}^{\infty} d^{4} x \sqrt{-g_{h i d}}\left(L_{h i d}-V_{h i d}\right) \tag{4}
\end{align*}
$$

- The metric ansatz we consider is the following:

$$
\begin{array}{r}
\mathbf{d s}^{\mathbf{2}}=\mathbf{e}^{-\mathbf{A}\left(\mathbf{x}_{\mu}, \mathbf{y}\right)} \mathbf{g}_{\mu \nu} \mathbf{d} \mathbf{x}^{\mu} \mathbf{d} \mathbf{x}^{\nu}+\mathbf{T}(\mathbf{x})^{\mathbf{2}} \mathbf{d y}^{\mathbf{2}} \\
e^{-A}=\omega \sinh \left(\ln \frac{c_{2}}{\omega}-k T(x)|y|\right) \quad \omega=\frac{\Omega}{3 k^{2}} \tag{6}
\end{array}
$$

Effective action in de-Sitter 3-branes

- The 4 -d effective action can be separated into 3 parts,

$$
\begin{equation*}
{ }^{(4)} \mathcal{A}_{\text {tot }}={ }^{(4)} \mathcal{A}_{\text {curv }}+{ }^{(4)} \mathcal{A}_{\text {kinetic }}+{ }^{(4)} \mathcal{A}_{\text {pot }} \tag{1}
\end{equation*}
$$

${ }^{(4)} \mathcal{A}_{\text {curv }}=2 M^{3} \int d^{4} x \sqrt{-g} \hat{R}\left\{\frac{c_{2}^{2}}{4 k}+\frac{\omega^{2}}{k} \ln \left(\frac{\Phi}{f}\right)+\frac{\omega^{4}}{4 k c_{2}^{2}}\left(\frac{f^{2}}{\Phi^{2}}\right)-\frac{\omega^{4}}{4 k c_{2}^{2}}-\frac{c_{2}^{2}}{4 k}\left(\frac{\Phi^{2}}{f^{2}}\right)\right\}$
${ }^{(4)} \mathcal{A}_{\text {kinetic }}=\int d^{4} x \sqrt{-g}\left(-\frac{1}{2} \partial_{\mu} \Phi \partial^{\mu} \Phi\right)\left\{1+8 \frac{M^{3}}{k} \omega^{2}\left(\frac{1}{\Phi^{2}} \ln \frac{\Phi}{f}\right)-\frac{6 M^{3}}{k} \frac{\omega^{4}}{c_{2}^{2}}\left(\frac{f^{2}}{\Phi^{4}}\right)\right\}$

$$
\begin{equation*}
{ }^{(4)} \mathcal{A}_{\mathrm{pot}}=\int d^{4} x \sqrt{-g} \hat{V}(\Phi / f) \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\hat{V}\left(\frac{\Phi}{f}\right)=6 \omega^{4} \ln \left(\frac{\Phi}{f}\right)-\frac{3}{2} \omega^{2} c_{2}^{2}\left(\frac{\Phi^{2}}{f^{2}}\right)+\frac{3}{2} \omega^{2} c_{2}^{2}+\frac{3}{2} \frac{\omega^{6}}{c_{2}^{2}}\left(\frac{f^{2}}{\Phi^{2}}\right)-\frac{3}{2} \frac{\omega^{6}}{c_{2}^{2}} \tag{5}
\end{equation*}
$$

where, $\Phi=f e^{-k T(x) \pi} ; f=\sqrt{\frac{6 M^{3} c_{2}^{2}}{k}} ; c_{2}=1+\sqrt{1+\omega^{2}}$
IB \& S. SenGupta, EPJC, 77, 277 (2017);
IB, S. Chakraborty \& S. SenGupta, PRD, 02, 023515 (2019)

Effective action in the Einstein frame

- The radion potential in the Einstein frame is given by,

$$
\begin{equation*}
V(\xi)=\frac{\hat{V}(\xi)}{h(\xi)^{2}}=\frac{6 \omega^{2}}{h(\xi)} \quad \xi \equiv \frac{\Phi}{f} \tag{1}
\end{equation*}
$$

where the non-minimal coupling term is,

$$
\begin{equation*}
h(\xi)=\left\{\frac{c_{2}^{2}}{4}+\omega^{2} \ln (\xi)+\frac{\omega^{4}}{4 c_{2}^{2}}\left(\frac{1}{\xi^{2}}\right)-\frac{\omega^{4}}{4 c_{2}^{2}}-\frac{c_{2}^{2}}{4} \xi^{2}\right\}=\frac{1}{6 \omega^{2}} \hat{V}(\xi) \tag{2}
\end{equation*}
$$

- The complete 4-d effective action in the Einstein frame is given by,

$$
\begin{equation*}
\text { (4) } \mathcal{A}_{\mathrm{tot}}^{\mathrm{E}}=\int d^{4} x \sqrt{-\hat{g}}[\underbrace{\frac{2 M^{3}}{k_{0}} R}_{L_{\text {curv }}} \underbrace{-\frac{1}{2} G(\Phi / f) \partial^{\mu} \Phi \partial_{\mu} \Phi}_{L_{\text {kinetic }}} \underbrace{-2 M^{3} k_{0} V(\Phi / f)}_{L_{\mathrm{pot}}}] \tag{3}
\end{equation*}
$$

where,

$$
\begin{gather*}
G(\xi)=\frac{\hat{G}(\xi)}{h(\xi)}+\frac{1}{c_{2}^{2}}\left[\frac{h^{\prime}(\xi)}{h(\xi)}\right]^{2} \tag{4}\\
\hat{G}(\xi)=1+\frac{4}{3} \frac{\omega^{2}}{c_{2}^{2}}\left(\frac{1}{\xi^{2}}\right) \ln (\xi)-\frac{\omega^{4}}{c_{2}^{4}}\left(\frac{1}{\xi^{4}}\right) \tag{5}
\end{gather*}
$$

Interesting consequences related to the form of the warp

factor

- Recall, $\Phi \equiv f \exp \{-k T(x) \pi\}$ where $f=\sqrt{6 M^{3} c_{2}^{2} / k}$ (order of Planck mass).
- Since $T(x)$ represents the distance between the two branes, it cannot be negative and hence $0 \lesssim(\Phi / f) \lesssim 1$.
- The warp factor can be written as,

$$
\begin{align*}
e^{-A} & =\frac{\omega}{2}\left\{\exp \left[\left(\ln \frac{c_{2}}{\omega}-k T(x)|\phi|\right)\right]-\exp \left[-\left(\ln \frac{c_{2}}{\omega}-k T(x)|\phi|\right)\right]\right\} \\
& =\frac{c_{2}}{2} \exp (-k T(x)|\phi|)-\frac{\omega^{2}}{2 c_{2}} \exp (k T(x)|\phi|) \tag{1}
\end{align*}
$$

where, $c_{2}=1+\sqrt{1+\omega^{2}}$.

- The warp factor has to be positive on the visible brane, i.e., $\phi=\pi$,

$$
\begin{align*}
& e^{-A}>0 \\
& \Longrightarrow(\Phi / f)=\exp \{-k T(x) \pi\}>\left(\omega / c_{2}\right) \tag{2}
\end{align*}
$$

- This implies $\frac{\omega}{c_{2}} \lesssim(\Phi / f) \lesssim 1$ is physically allowed region.

General properties of V and G

- The potential V has an inflection point at $\xi_{i}=\Phi_{i} / f=\omega / c_{2}$, where $c_{2}=1+\sqrt{1+\omega^{2}}$, implies $\xi_{i}=\Phi_{i} / f<1$.
- G becomes negative to positive at $\xi_{f}=\Phi_{f} / f>\xi_{i}$ where $\xi_{f}=\Phi_{f} / f \sim \omega$.

Figure: The above figure depicts the variation of (a) the radion potential V and (b) the non-canonical coupling to the kinetic term G in the Eintein frame, within the allowed range of the radion field ξ for $\omega=10^{-3}$.

- For any $\omega, \xi_{i}<\xi_{f}$, e.g., for $\omega=10^{-3}$ the value of $\xi_{i}=5 \times 10^{-4}$ whereas $\xi_{f}=1.483 \times 10^{-3}, \xi$ exhibits phantom - like behavior when $\xi_{\mathrm{i}} \leq \xi \leq \xi_{\mathrm{f}}$

EARLY UNIVERSE COSMOLOGY WITH RADION: BACKGROUND EVOLUTION

Background evolution with radion

- We study early universe cosmology with the radion field.
- We consider the Einstein frame metric to be described by the FRW spacetime,

$$
\begin{equation*}
d s^{2}=d t^{2}-a(t)^{2}\left[d x^{2}+d y^{2}+d z^{2}\right] \tag{1}
\end{equation*}
$$

- The Friedmann equations are given by,

$$
\begin{gather*}
H^{2}=\frac{\kappa^{2}}{3} \rho(t)=\frac{c_{2}^{2}}{4} G(\xi) \dot{\xi}^{2}+\frac{k_{0}^{2}}{6} V(\xi) ; \quad 2 \kappa^{2}=16 \pi G_{N}=\frac{k_{0}}{2 M^{3}} \tag{2}\\
\dot{H}=-\frac{\kappa^{2}}{2}(\rho+p)=-\frac{3}{4} c_{2}^{2} G(\xi) \dot{\xi}^{2} \tag{3}
\end{gather*}
$$

- The equation of motion for the radion field is given by,

$$
\begin{equation*}
\ddot{\xi}+3 H \dot{\xi}+\frac{G^{\prime}(\xi)}{2 G(\xi)} \dot{\xi}^{2}+\frac{k_{0}^{2}}{3 c_{2}^{2}} \frac{V^{\prime}(\xi)}{G(\xi)}=0 \tag{4}
\end{equation*}
$$

- We solve these equations to get background evolution of $H(t)$ and $\xi(t)$.

Evolution equations for radion and Hubble parameter near bounce

- The model can show a bounce phenomena when $G(\xi)<0$.
- Note: $\xi_{i}, \xi_{f} \sim \omega$, we analytically solve the background equations with $\xi \sim \omega$ near the bounce ($t=0$).
- We consider,

$$
\begin{equation*}
\xi(t)=\frac{\omega}{c_{2}}[1+\delta(t)] \quad \delta(t) \lll 1 \tag{5}
\end{equation*}
$$

- Using 5 the evolution equations for the Hubble parameter $H(t)$ and the radion field $\xi(t)$ turn out to be,

$$
\begin{equation*}
\dot{H}+3 H^{2}-\frac{12 k_{0}^{2} \omega^{2}}{c_{2}^{2}}=0 \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\dot{\delta}^{2}=\frac{c_{2}^{2}}{\omega^{2}} \frac{\dot{H}}{4 \ln \left(\frac{c_{2}}{\omega}\right)}\left[1+\delta\left\{\frac{4+2 \ln \left(\frac{c_{2}}{\omega}\right)}{\ln \left(\frac{c_{2}}{\omega}\right)}\right\}\right] \tag{7}
\end{equation*}
$$

Analytic solution of $H(t)$ and $\xi(t)$ near bounce

- The background solution for $H(t)$ and $\delta(t)$ in the regime $\xi(t)=\frac{\omega}{c_{2}}(1+\delta(t))$ with $\delta(t) \ll 1$,
$\xi(t)=\frac{\omega}{c_{2}}(1+\delta(t)),\left\{\begin{array}{l}H(t)=2 k_{0} \frac{\omega}{c_{2}} \tanh \left[6 \frac{\omega}{c_{2}} k_{0} t\right] \\ \delta(t)=\frac{2}{A}\left[\exp \left\{-\frac{A}{6} \frac{\omega}{c_{2}} \sqrt{\frac{3}{\ln \left(\frac{c_{2}}{\omega}\right)}}\left(\tan ^{-1} \tanh \left(\frac{3 \omega}{c_{2}} k_{0} t\right)-\frac{\pi}{4}\right)\right\}-1\right],\end{array}\right.$
where, $A=\frac{4+2 \ln \left(\frac{c_{2}}{\omega}\right)}{\ln \left(\frac{c_{2}}{\omega}\right)}$. We use $\lim _{t \rightarrow \infty} \delta(t) \rightarrow 0$ to arrive at above result.
- 8 clearly indicates $H(0)=0$ and $\dot{H}>0$ at $t=0$ (corresponding to the bounce time)
- The present model generically predits a bouncing universe in the visible brane when the radion field lies within the phantom regime i.e., $\xi \sim \omega$.
- In the phantom regime, the null energy condition (NEC) is violated, which makes the bounce possible at a certain finite time, in particular at $t=0$.
- The violation of NEC occurs irrespective of any value of $\frac{\omega}{c_{2}}$ and k_{0} (i.e the model parameters).

Numerical solution of $H(t)$ and $\xi(t)$ near bounce

- We check whether the radion field, starting from a value in the normal regime, will reach to the phantom regime by its dynamical evolution.
- We solve the Friedmann equations for a wide range of cosmic time.
- Boundary conditions used: $H(0)=0$ and $\xi(0)=6.0041 \times 10^{-4}$, where we consider $\omega=10^{-3}$

Figure: The above figure depicts the time evolution of (a) the Hubble parameter $H(t)$ and (b) the non-canonical kinetic term $G(\xi)$ (magenta curve) and the background radion field magnified 1000 times, i.e. $\xi(t) * 1000$ (blue curve). 2 b is illustrated near the zero crossing of $G(\xi)$, i.e. when $t \sim-4.7$. Note that bounce occurs after this at $t=0$ when the kinetic term of the radion is in the phantom regime. Both the above figures are illustrated for $\omega=10^{-3}$.

EARLY UNIVERSE COSMOLOGY WITH RADION: EVOLUTION OF PERTURBATIONS

Generation era of perturbations: Behavior of comoving Hubble radius

- In our model the comoving Hubble radius $1 /(a H)$ monotonically decreases with time and goes to zero asymptotically on both sides of the bounce.
- Hence, the perturbation modes generate near the bouncing regime where the Hubble radius has an infinite size such that all the perturbation modes are contained inside the horizon.
- Therefore we solve the perturbation equations near the bouncing point, i.e., $t=0$.

Figure: The above figure depicts the time evolution of (a) the comoving Hubble radius $\frac{1}{a H}$ and (b) the inverse Hubble parameter H^{-1}. Both the above figures are illustrated for $\omega=10^{-3}$.

I. Banerjee

Scalar metric perturbations

- The scalar metric perturbation over FRW metric can be written in the longitudinal gauge as,

$$
\begin{equation*}
d s^{2}=a^{2}(\eta)\left[(1+2 \Psi) d \eta^{2}-(1-2 \Psi) \delta_{i j} d x^{i} d x^{j}\right] \tag{9}
\end{equation*}
$$

where $d \eta=\frac{d t}{a(t)}$ and $\Psi(\eta, \vec{x})$ symbolizes the scalar metric fluctuation

- The spacelike and the timelike components of scalar perturbation are considered to be same as the background evolution has no anisotropic stress.
- We expand the radion field as,

$$
\begin{equation*}
\Phi(\eta, \vec{x})=\Phi_{0}(\eta)+\delta \Phi(\eta, \vec{x}) \tag{10}
\end{equation*}
$$

Perturbed Einstein's equations

- The perturbed Einstein's equations are given by,

$$
\begin{array}{r}
\nabla^{2} \Psi-3 \mathcal{H} \Psi^{\prime}-3 \mathcal{H} \Psi=\frac{\kappa^{2}}{2}\left[G\left(\Phi_{0}\right) \Phi_{0}^{\prime} \delta \Phi^{\prime}+\frac{1}{2} G^{\prime}\left(\Phi_{0}\right)\left(\Phi_{0}^{\prime}\right)^{2} \delta \Phi+2 a^{2} M^{3} k_{0} V^{\prime}\left(\Phi_{0}\right) \delta \Phi\right] \\
\Psi^{\prime \prime}+3 \mathcal{H} \Psi^{\prime}+\left(2 \mathcal{H}^{\prime}+\mathcal{H}^{2}\right) \Psi=\frac{\kappa^{2}}{2}\left[G\left(\Phi_{0}\right) \Phi_{0}^{\prime} \delta \Phi^{\prime}+\frac{\kappa^{2}}{2} G^{\prime}\left(\Phi_{0}\right)\left(\Phi_{0}^{\prime}\right)^{2} \delta \Phi\right.
\end{array}
$$

- Here the primes in $V\left(\Phi_{0}\right)$ and $G\left(\Phi_{0}\right)$ are with respect to Φ_{0} while the primes in \mathcal{H} and Φ_{0} are with respect to η.
- From above we obtain evolution of $\Psi(t, \vec{x})$,

$$
\begin{equation*}
\ddot{\Psi}-\frac{1}{a^{2}} \nabla^{2} \Psi+\left[7 H+\frac{2 k_{0}^{2} V^{\prime}\left(\xi_{0}\right)}{3 c_{2}^{2} G\left(\xi_{0}\right) \dot{\xi}_{0}}\right] \dot{\Psi}+\left[2 \dot{H}+6 H^{2}+\frac{2 k_{0}^{2} H V^{\prime}\left(\xi_{0}\right)}{3 c_{2}^{2} G\left(\xi_{0}\right) \dot{\xi}_{0}}\right] \Psi=0 \tag{12}
\end{equation*}
$$

ξ_{0} is the dimensionless unperturbed radion field.

- We solve the perturbation equations near $t=0$ using background evolution of $H(t)$ and $\xi(t)$ near bounce.

Perturbed Einstein's equations

- Using background evolution of $H(t)$ and $\xi(t)$ in 12 , the E.O.M. for $\Psi(t)$ becomes,

$$
\begin{equation*}
\ddot{\Psi}-\nabla^{2} \Psi+[-\sqrt{\alpha} p+(q+14) \alpha t] \dot{\Psi}+[4 \alpha-2 \alpha \sqrt{\alpha} p t] \Psi(\vec{x}, t)=0 \tag{13}
\end{equation*}
$$

$$
p=16 \sqrt{\frac{2}{3}}\left(\frac{B \sinh ^{2}(B \pi / 8)}{\left(3-2 e^{B \pi / 4}\right)\left(2-\ln \frac{\omega}{c_{2}}\right)}\right) \quad \text { and } \quad q=\frac{8(2-2 \cosh (B \pi / 4)+\sinh (B \pi / 4))}{\left(3-2 e^{B \pi / 4}\right)^{2}\left(2-\ln \frac{\omega}{c_{2}}\right)}
$$

where $B=\frac{A}{6} \frac{\omega}{c_{2}} \sqrt{\frac{3}{\ln \left(\frac{c_{2}}{\omega}\right)}}, \alpha=\frac{6 k_{0}^{2} \omega^{2}}{c_{2}^{2}}, A=\frac{4+2 \ln \frac{c_{2}}{\omega}}{\ln \frac{c_{2}}{\omega}}$.

- In terms of the Fourier transformed scalar perturbation variable $\Psi_{k}(t)=\int d \vec{x} e^{-i \vec{k} \cdot \vec{x}} \Psi(\vec{x}, t), 13$ can be written as,

$$
\begin{equation*}
\ddot{\Psi}_{k}+[-\sqrt{\alpha} p+(q+14) \alpha t] \dot{\Psi}_{k}+\left[k^{2}+4 \alpha-2 \alpha \sqrt{\alpha} p t\right] \Psi_{k}(t)=0 \tag{14}
\end{equation*}
$$

Perturbed Einstein's equations

- Solving 14 for $\Psi_{k}(t)$, we get

$$
\begin{equation*}
\Psi_{k}(t)=b_{1}(k) \exp \left[\sqrt{\alpha} p t-7 \alpha t^{2}-\frac{q}{2} \alpha t^{2}\right] H\left[-1+\frac{k^{2}+4 \alpha}{\alpha(q+14)}, \frac{-p+(q+14) \sqrt{\alpha} t}{\sqrt{2(q+14)}}\right] \tag{15}
\end{equation*}
$$

with $H[n, x]$ is the n-th order Hermite polynomial.

- $b_{1}(k)$ is determined from the initial Bunch-Davies vacuum condition:

$$
\begin{equation*}
\lim _{t \rightarrow 0} \Psi_{k}(t)=\frac{\kappa^{2} f}{2 k^{2}} \lim _{t \rightarrow 0}\left[\sqrt{G(\xi)} \dot{\xi} v_{k}^{\prime}(\eta)\right]=\frac{i \kappa^{2} f}{2 \sqrt{2} k^{3 / 2}} \lim _{t \rightarrow 0}[\sqrt{G(\xi)} \dot{\xi}] \tag{16}
\end{equation*}
$$

where, $\lim _{\eta \rightarrow 0} v_{k}(\eta)=\frac{1}{\sqrt{2 k}} e^{-i k \eta}$.

- Using the background evolution of $\xi(t)$ and $G(\xi)$ and comparing 15 and 16 ,

$$
b_{1}(k)=\frac{\sqrt{3}}{2 k^{3 / 2}}\left(\frac{\omega}{c_{2}}\right)\left(\frac{k_{0}}{M}\right)^{3 / 2}\left\{\frac{e^{B \pi / 4}\left(3-2 e^{B \pi / 4}\right)^{1 / 2}}{H\left[-1+\frac{k^{2}+4 \alpha}{\alpha(q+14)}, \frac{-p}{\sqrt{2(q+14)}}\right]}\right\}
$$

- The solution for the scalar perturbation variable,

$$
\begin{align*}
& \Psi_{k}(t)=\frac{\sqrt{3}}{2 k^{3 / 2}}\left(\frac{\omega}{c_{2}}\right)\left(\frac{k_{0}}{M}\right)^{3 / 2} e^{B \pi / 4}\left(3-2 e^{B \pi / 4}\right)^{1 / 2} e^{\left[p \sqrt{\alpha} t-7 \alpha t^{2}-\frac{q}{2} \alpha t^{2}\right]} \tag{17}\\
& \times\left\{\frac{H\left[-1+\frac{k^{2}+4 \alpha}{\alpha(q+14)}, \frac{-p+(q+14) \sqrt{\alpha} t}{\sqrt{2(q+14)}}\right]}{H\left[-1+\frac{k^{2}+4 \alpha}{\alpha(q+14)}, \frac{-p}{\sqrt{2(q+14)}}\right]}\right\}
\end{align*}
$$

- The scalar power spectrum for $k^{t h}$ mode,

$$
\begin{array}{r}
P_{\Psi}(k, t)=\frac{k^{3}}{2 \pi^{2}}\left|\Psi_{k}(t)\right|^{2} \\
=\frac{3}{8 \pi^{2}}\left(\frac{\omega}{c_{2}}\right)^{2}\left(\frac{k_{0}}{M}\right)^{3} e^{B \pi / 2}\left(3-2 e^{B \pi / 4}\right) e^{\left[2 p \sqrt{\alpha} t-14 \alpha t^{2}-q \alpha t^{2}\right]} \\
\times\left\{\frac{H\left[-1+\frac{k^{2}+4 \alpha}{\alpha(q+14)}, \frac{-p+(q+14) \sqrt{\alpha} t}{\sqrt{2(q+14)}}\right]}{H\left[-1+\frac{k^{2}+4 \alpha}{\alpha(q+14)}, \frac{-p}{\sqrt{2(q+14)}}\right]}\right\}^{2} \tag{18}
\end{array}
$$

- To match with Planck 2018 observations we need to calculate $P_{\Psi}(k, t)$ at CMB scale $k_{C M B} \approx 0.02 \mathrm{Mpc}^{-1} \approx 10^{-40} \mathrm{GeV}$.

Scalar power spectrum at horizon crossing

- With the background solution of Hubble parameter, we determine the time when $k_{C M B}$ crosses the horizon, i.e., $k=a H$, and is given by,

$$
\begin{equation*}
t_{h}=\frac{k_{C M B}}{12 k_{0}^{2}}\left(\frac{c_{2}^{2}}{\omega^{2}}\right) \tag{19}
\end{equation*}
$$

- Correspondingly, the scalar power spectrum at horizon crossing can be expressed as,

$$
\begin{align*}
\left.P_{\Psi}(k, t)\right|_{h . c}=\frac{3}{8 \pi^{2}}\left(\frac{\omega}{c_{2}}\right)^{2}\left(\frac{k_{0}}{M}\right)^{3} & e^{B \pi / 2}\left(3-2 e^{B \pi / 4}\right) e^{\left[2 p \sqrt{\alpha} t_{h}-14 \alpha t_{h}^{2}-q \alpha t_{h}^{2}\right]} \tag{20}\\
& \times\left\{\frac{H\left[-1+\frac{k^{2}+4 \alpha}{\alpha(q+14)}, \frac{-p+(q+14) \sqrt{\alpha} t_{h}}{\sqrt{2(q+14)}}\right]}{H\left[-1+\frac{k^{2}+4 \alpha}{\alpha(q+14)}, \frac{-p}{\sqrt{2(q+14)}}\right]}\right\}^{2}
\end{align*}
$$

Tensor perturbation

- We consider the tensor perturbation on the FRW metric background,

$$
\begin{equation*}
d s^{2}=-d t^{2}+a(t)^{2}\left(\delta_{i j}+h_{i j}\right) d x^{i} d x^{j} \tag{21}
\end{equation*}
$$

- The tensor perturbed action up to quadratic order is given by,

$$
\begin{equation*}
\delta S_{h}=\int d t d^{3} \vec{x} a(t) z_{T}(t)^{2}\left[\dot{h}_{i j} \dot{h}^{i j}-\frac{1}{a^{2}}\left(\partial_{l} h_{i j}\right)^{2}\right] \tag{22}
\end{equation*}
$$

where, $z_{T}(t)=\frac{a(t)}{\kappa}$.

- Equation for the tensor perturbed variable $h_{i j}$,

$$
\begin{equation*}
\frac{1}{a(t) z_{T}^{2}(t)} \frac{d}{d t}\left[a(t) z_{T}^{2}(t) \dot{h}_{i j}\right]-\frac{1}{a^{2}} \partial_{l} \partial^{l} h_{i j}=0 \tag{23}
\end{equation*}
$$

- In terms of the Fourier transformed tensor variable $h_{k}(t), 23$ can be expressed as,

$$
\begin{equation*}
\frac{1}{a(t) z_{T}^{2}(t)} \frac{d}{d t}\left[a(t) z_{T}^{2}(t) \dot{h}_{k}\right]+\frac{k^{2}}{a^{2}} h_{k}(t)=0 \tag{24}
\end{equation*}
$$

- $h_{i j}(t, \vec{x})=\int d \vec{k} \sum_{\gamma} \epsilon_{i j}^{(\gamma)} h_{(\gamma)}(\vec{k}, t) e^{i \vec{k} . \vec{x}}$, where $\gamma=^{\prime}+^{\prime}$ and $\gamma=^{\prime} \times^{\prime}$ represent two polarization modes.
- $\epsilon_{i j}^{(\gamma)}$ are the polarization tensors satisfying $\epsilon_{i i}^{(\gamma)}=k^{i} \epsilon_{i j}^{(\gamma)}=0$.

Near bounce equation for tensor perturbation

- Equation for the Fourier transformed tensor peturbation variable at leading order in t (near bounce where perturbation modes are generated)

$$
\begin{equation*}
\ddot{h}_{k}+6 \alpha \dot{h}_{k} t+k^{2} h_{k}(t)=0 \tag{25}
\end{equation*}
$$

- Solving 25 for $h_{k}(t)$, we get,

$$
\begin{equation*}
h_{k}(t)=b_{2}(k) e^{-3 \alpha t^{2}} H\left[-1+\frac{k^{2}}{6 \alpha}, \sqrt{3 \alpha} t\right] \tag{26}
\end{equation*}
$$

- We determine $b_{2}(k)$ assuming tensor perturbation field starts from the adiabatic vacuum: $\lim _{t \rightarrow 0}\left[z_{T}(t) h_{k}(t)\right]=\frac{1}{\sqrt{2 k}}$ where at $t \rightarrow 0$, $a(t) \simeq 1+\frac{6 \omega^{2}}{c_{2}^{2}} k_{0}^{2} t^{2}$ and $z_{T}(t \rightarrow 0)=a(t) / \kappa=1 / \kappa$
- Therefore the integration constant $b_{2}(k)$ is given by,

$$
\begin{equation*}
b_{2}(k)=\frac{1}{z_{T}(t \rightarrow 0)}\left[\frac{2 \Gamma\left(1-\frac{k^{2}}{12 \alpha}\right)}{\sqrt{2 \pi k} 2^{\frac{k^{2}}{6 \alpha}}}\right]=\kappa\left[\frac{2 \Gamma\left(1-\frac{k^{2}}{12 \alpha}\right)}{\sqrt{2 \pi k} 2^{\frac{k^{2}}{6 \alpha}}}\right] \tag{27}
\end{equation*}
$$

- The solution of $h_{k}(t)$ is given by,

$$
\begin{equation*}
h_{k}(t)=\left(\frac{2 \kappa \Gamma\left(1-\frac{k^{2}}{12 \alpha}\right)}{\sqrt{2 \pi k} 2^{\frac{k^{2}}{6 \alpha}}}\right) e^{-3 \alpha t^{2}} H\left[-1+\frac{k^{2}}{6 \alpha}, \sqrt{3 \alpha} t\right] \tag{28}
\end{equation*}
$$

28 represents the solution of the tensor perturbation for both the polarization modes.

- The tensor power spectrum is,

$$
\begin{aligned}
P_{h}(k, t) & =\frac{k^{3}}{2 \pi^{2}} \sum_{\gamma}\left|h_{k}^{(\gamma)}(t)\right|^{2} \\
& =\frac{2 k^{2}}{\pi^{3}} \frac{\left(\kappa \Gamma\left(1-\frac{k^{2}}{12 \alpha}\right)\right)^{2}}{2^{\frac{k^{2}}{3 \alpha}}} e^{-6 \alpha t^{2}}\left\{H\left[-1+\frac{k^{2}}{6 \alpha}, \sqrt{3 \alpha} t\right]\right\}^{2}(29)
\end{aligned}
$$

- Tensor power spectrum at horizon crossing $k=a H \simeq 2 \alpha t_{h}\left(\alpha=6 k_{0}^{2} \frac{\omega^{2}}{c_{2}^{2}}\right)$

$$
\begin{equation*}
\left.P_{h}(k, t)\right|_{h . c}=\frac{12 k_{0}^{3} \omega^{2}}{\pi^{3} M^{3} c_{2}^{2}} \alpha t_{h}^{2} \frac{\left(\kappa \Gamma\left(1-\frac{\alpha t_{h}^{2}}{3}\right)\right)^{2}}{2^{\frac{4 \alpha t_{h}^{2}}{3}}} e^{-6 \alpha t_{h}^{2}}\left\{H\left[-1+\frac{2}{3} \alpha t_{h}^{2}, \sqrt{3 \alpha} t_{h}\right]\right\}^{2} \tag{30}
\end{equation*}
$$

Contact with observations

- Ee calculate the scalar spectral index of the primordial curvature perturbations n_{s} and the tensor-to-scalar ratio r.

$$
\begin{equation*}
n_{s}-1=\left.\frac{\partial \ln P_{\Psi}}{\partial \ln k}\right|_{H . C} \quad, \quad r=\left.\frac{P_{h}(k, t)}{P_{\Psi}(k, t)}\right|_{H . C} \tag{31}
\end{equation*}
$$

- The perturbation modes are generated and also cross the horizon near the bounce \Longrightarrow we can use the near-bounce scale factor in the horizon crossing condition to determine $k=a H=2 \alpha t_{h}$ (where t_{h} is the horizon crossing time).

$$
\begin{align*}
n_{s}=1- & \frac{16 \alpha t_{h}^{2}}{(q+14)}\left\{\frac{H^{(1,0)}\left[-1+\frac{4\left(\alpha t_{h}^{2}+1\right)}{(q+14)}, \frac{-p}{\sqrt{2(q+14)}}\right]}{H\left[-1+\frac{4\left(\alpha t_{h}^{2}+1\right)}{(q+14)}, \frac{-p}{\sqrt{2(q+14)}}\right]}-\right. \tag{32}\\
& \left.\frac{H^{(1,0)}\left[-1+\frac{4\left(\alpha t_{h}^{2}+1\right)}{(q+14)}, \frac{-p+(q+14) \sqrt{\alpha} t_{h}}{\sqrt{2(q+14)}}\right]}{H\left[-1+\frac{4\left(\alpha t_{h}^{2}+1\right)}{(q+14)}, \frac{-p+(q+14) \sqrt{\alpha} t_{h}}{\sqrt{2(q+14)}}\right]}\right\}_{h . c}
\end{align*}
$$

where $q=\frac{8(2-2 \cosh (B \pi / 4)+\sinh (B \pi / 4))}{\left(3-2 e^{B \pi / 4}\right)^{2}\left(2-\ln \frac{\omega}{c_{2}}\right)}$ and $B=\frac{A}{6} \frac{\omega}{c_{2}} \sqrt{\frac{3}{\ln \left(\frac{c_{2}}{\omega}\right)}}, \alpha=\frac{6 k_{0}^{2} \omega^{2}}{c_{2}^{2}}$, $A=\frac{4+2 \ln \frac{c_{2}}{\omega}}{\ln \frac{c_{2}}{\omega}}$.

- n_{s} depend on the dimensionless parameters ω and αt_{h}^{2}

Contact with Planck 2018 data

- The tensor-to-scalar ratio

$$
\begin{gather*}
r=\left.\frac{P_{h}(k, t)}{P_{\Psi}(k, t)}\right|_{H . C} \tag{33}\\
\left.P_{h}(k, t)\right|_{h . c}=\frac{12 k_{0}^{3} \omega^{2}}{\pi^{3} M^{3} c_{2}^{2}} \alpha t_{h}^{2} \frac{\left(\kappa \Gamma\left(1-\frac{\alpha t_{h}^{2}}{3}\right)\right)^{2}}{2^{\frac{4 \alpha t_{h}^{2}}{3}}} e^{-6 \alpha t_{h}^{2}}\left\{H\left[-1+\frac{2}{3} \alpha t_{h}^{2}, \sqrt{3 \alpha} t_{h}\right]\right\}^{2} \tag{34}\\
\left.P_{\Psi}(k, t)\right|_{h . c}=\frac{3}{8 \pi^{2}}\left(\frac{\omega}{c_{2}}\right)^{2}\left(\frac{k_{0}}{M}\right)^{3} e^{B \pi / 2}\left(3-2 e^{B \pi / 4}\right) e^{\left[2 p \sqrt{\alpha} t_{h}-14 \alpha t_{h}^{2}-q \alpha t_{h}^{2}\right]} \tag{35}\\
\\
\times\left\{\frac{H\left[-1+\frac{k^{2}+4 \alpha}{\alpha(q+14)}, \frac{-p+(q+14) \sqrt{\alpha} t_{h}}{\sqrt{2(q+14)}}\right]}{H\left[-1+\frac{k^{2}+4 \alpha}{\alpha(q+14)}, \frac{-p}{\sqrt{2(q+14)}}\right]}\right\}^{2}
\end{gather*}
$$

- n_{s} depend on the dimensionless parameters ω and $\alpha t_{h}^{2}=\frac{R_{h}}{12 \alpha}-1\left(R_{h}\right.$ is Ricci scalar at horizon crossing)
- The observable quantities n_{s} and r depend on ω and R_{h} / α.

Constraints from Planck 2018 data

- We estimate the allowed values of $\frac{R_{h}}{\alpha}$ and ω which in turn can give rise to n_{s} and r in agreement with the Planck data.

Figure: 1σ (yellow) and 2σ (light blue) contours for Planck 2018 results, on $n_{s}-r$ plane. Additionally, we present the predictions of the present bounce scenario with $\frac{R_{h}}{\alpha}=14$ (blue point), $\frac{R_{h}}{\alpha}=16$ (black point) and $\frac{R_{h}}{\alpha}=19$ (red point). Here $\omega=10^{-3}$.

Constraints from Planck 2018 data

- The scalar perturbation amplitude $\left(A_{s}\right)$ is constrained to $\ln \left[10^{10} A_{s}\right]=3.044 \pm 0.014$ from the Planck results.
- The amplitude of scalar perturbations A_{s} not only depends on ω and $\frac{R_{h}}{\alpha}$ but also on the ratio of the 5D bulk curvature (k_{0}) and the 5D Planck mass (M) i.e $\frac{k_{0}}{M}$.
- With $\omega=10^{-3}$ and $\frac{R_{h}}{\alpha}=16, A_{s}=9.5 \times 10^{-9}\left(\frac{k_{0}}{M}\right)^{3}$.
- If $\frac{k_{0}}{M}=[0.601,0.607]$ it is consistent with Planck data.
- Allowed range of $\frac{k_{0}}{M}$ is sensitive to the choice of ω, e.g. $\omega=10^{-4}$ leads to the scalar perturbation amplitude as $A_{s}=9.5 \times 10^{-11}\left(\frac{k_{0}}{M}\right)^{3}$ which becomes consistent with the Planck results for $\frac{k_{0}}{M}>1$
- With $\frac{k_{0}}{M}>1$, the assumption of the background classical solution ceases to hold true.
- The observable quantities n_{s}, r and A_{s} are simultaneously compatible with the Planck constraints for the parameter ranges : $\omega=10^{-3}, 14 \leq \frac{R_{h}}{\alpha} \leq 19$, $\frac{k_{0}}{M}=[0.601,0.607]$ respectively.

Summary and main results

- We explore bouncing cosmology with radion which naturally arises in a non-flat warped braneworld scenario from compactification.
- In the effective 4-d theory it generates its own potential due to the presence of the brane cosmological constant and unlike most of the scalar-tensor bounce models where the scalar potentials are constructed by hand to explain the observations and often their origin remains unexplained.
- The radion exhbits a phantom era leading to violation of null energy condition and a non-singular bounce.
- Analysis of the background cosmological evolution of the Hubble parameter and the radion field reveals that the radion field starts its journey from the normal regime (i.e $G(\xi)>0$ regime) and decreases monotonically in magnitude with cosmic time until it transits to the phantom era where the bounce occurs.
- The radion asymptotically stabilizes to $\frac{\omega}{c_{2}}$, the inflection point of the modulus potential. Such an asymptotic magnitude of the radion field can stabilize the modulus to the appropriate value where the gauge-hierarchy issue can also be adequately addressed.
- We then investigate the cosmological evolution of the scalar and tensor perturbations to the FRW metric from the present model. We compute n_{s}, r and A_{s} from the present model which turns out to be pleasantly in agreement with the latest Planck 2018 observations well within the 1- σ regime.

