The BSM Conference-2021 (CFP) at Zewail City of Science and Technology FENS at Sabancı University

Neutrino masses and mixing in D₄ model

Miskaoui Mohamed

Mohammed V university, Faculty of Science, LHEP-MS Rabat, Morocco

Beyond Standard Model: From Theory to Experiment-2021 CPE & FENS 31-03-2021

MISKAOUI Mohamed

Neutrino model from $SU(5)xD_4$ model 1/22

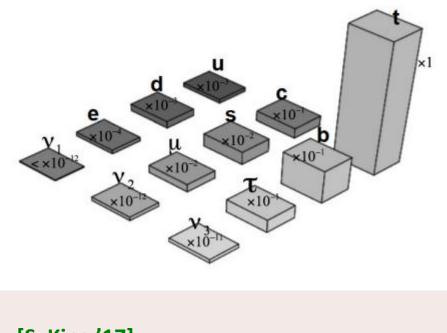
Beyond Standard Model

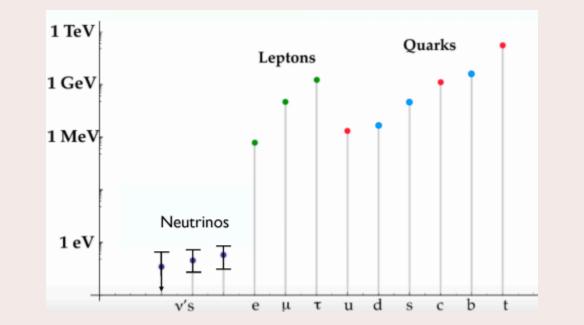
- Despite the standard model being the most successful theory of particle physics to date, going **Beyond it** is required
- Many of the unresolved problems combine with the so-called Flavor Problem.

Introduction and Motivation

Flavor Problem

Why such large hierarchy among fermion masses ?



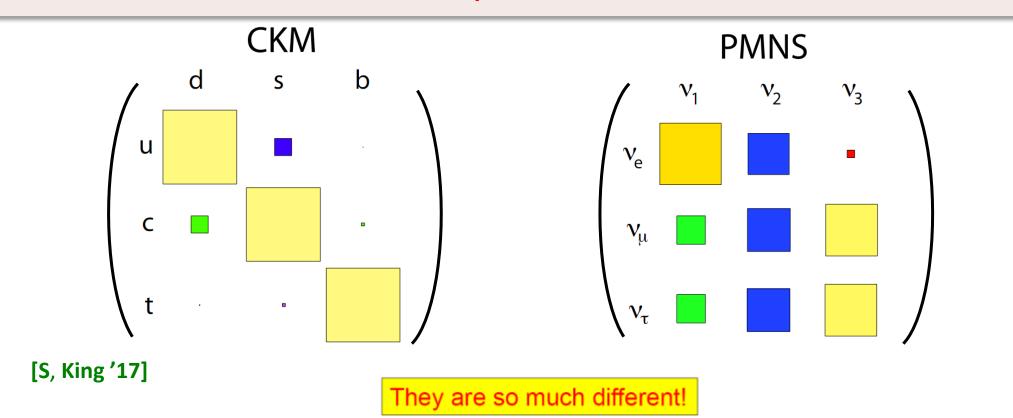


[S, King '17]

Introduction and Motivation

Flavor Problem

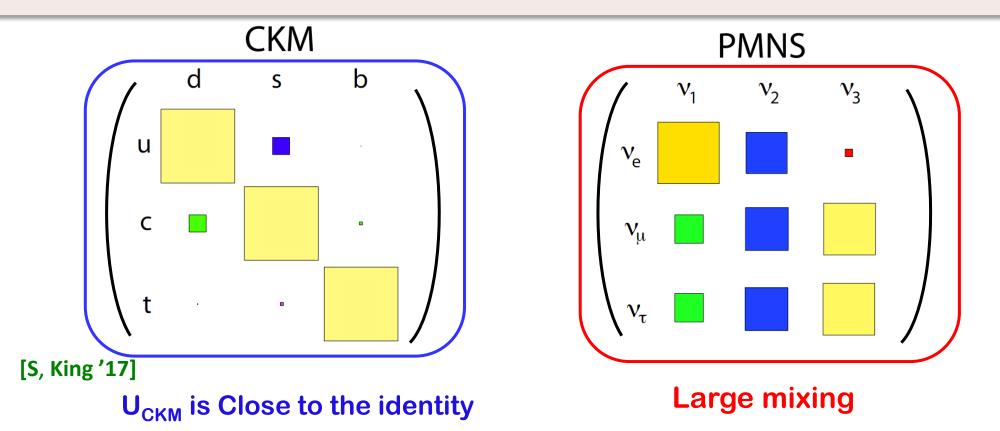
Why is flavor mixing in the quark sector small compared to the lepton sector?



Introduction and Motivation

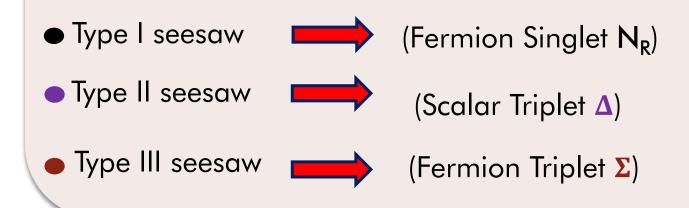
Flavor Problem

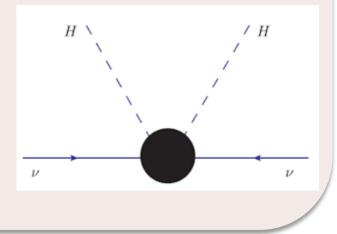
Why is flavor mixing in the quark sector small compared to the lepton sector?



Seesaw mechanism:

Seesaw mechanisms from Weinberg dimension 5 operator



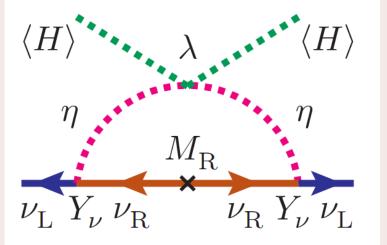


Seesaw mechanism:

Seesaw mechanisms from Weinberg dimension 5 operator

Radiative neutrino mass generation:

complete Weinberg operator via loops



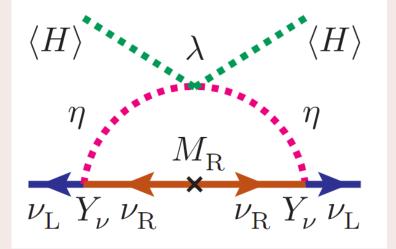
[T, Ohlsson and S, Zhou 2013]

Radiative neutrino mass generation:

complete Weinberg operator via loops

- A canonical example: "scotogenic model"
 [E, Ma 2006]
- Introduce new electroweak doublet(s) and right-handed neutrinos

(new states can be DM candidates)



[T, Ohlsson and S, Zhou 2013]

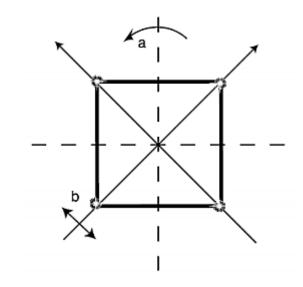
Flavor Symmetries approach

Flavor Symmetries approach

Non-abelian discrete groups as FS

Finite groups with triplet representations (S_4, A_4, A_5) are often used in Flavor Symmetry based models.

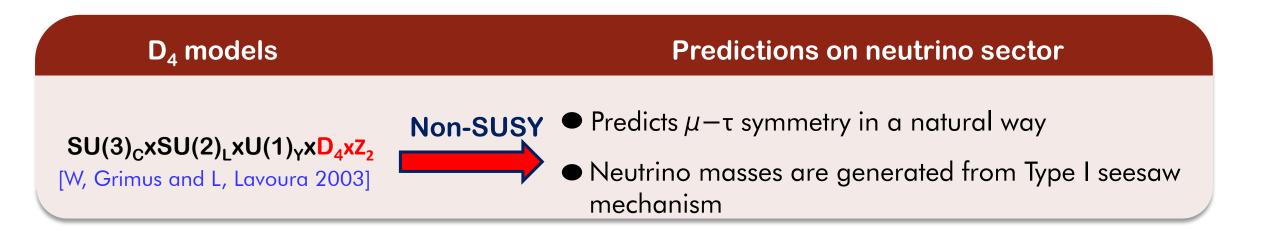
D₄ is a group of square $b^2 = a^4 = Id$

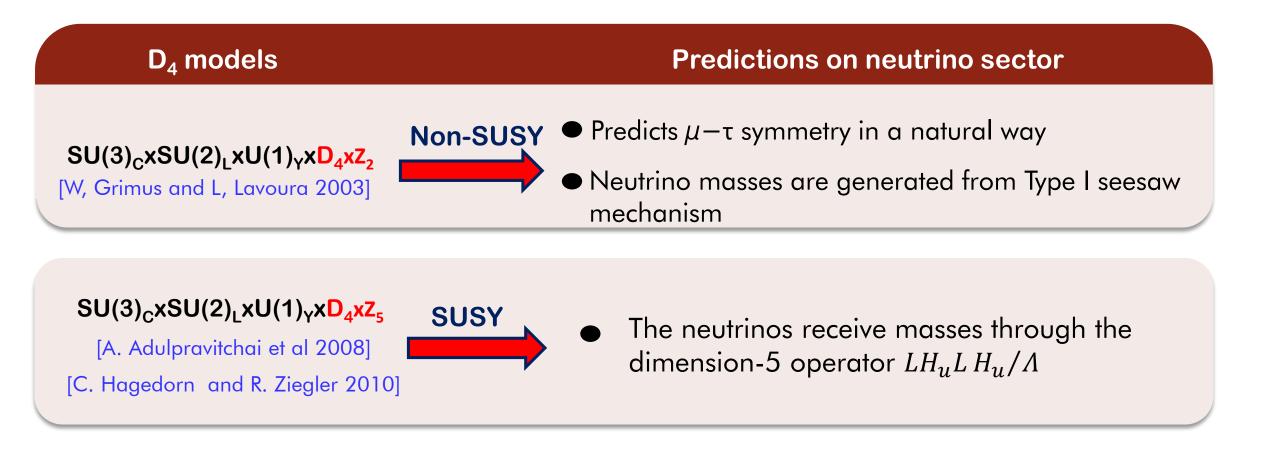


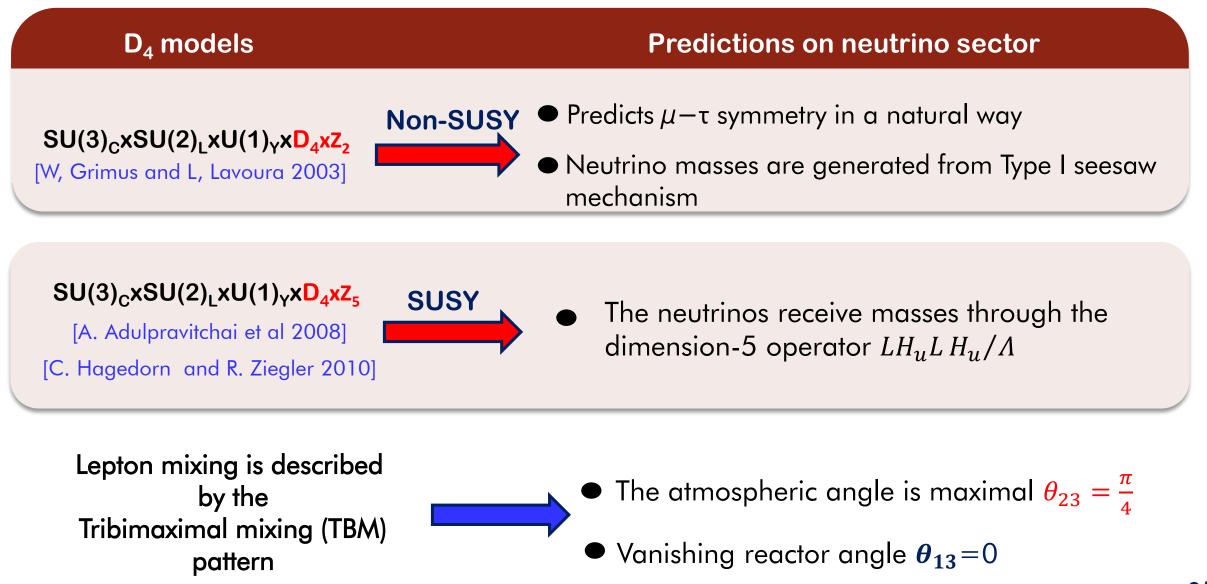
D₄ Irreducible representations

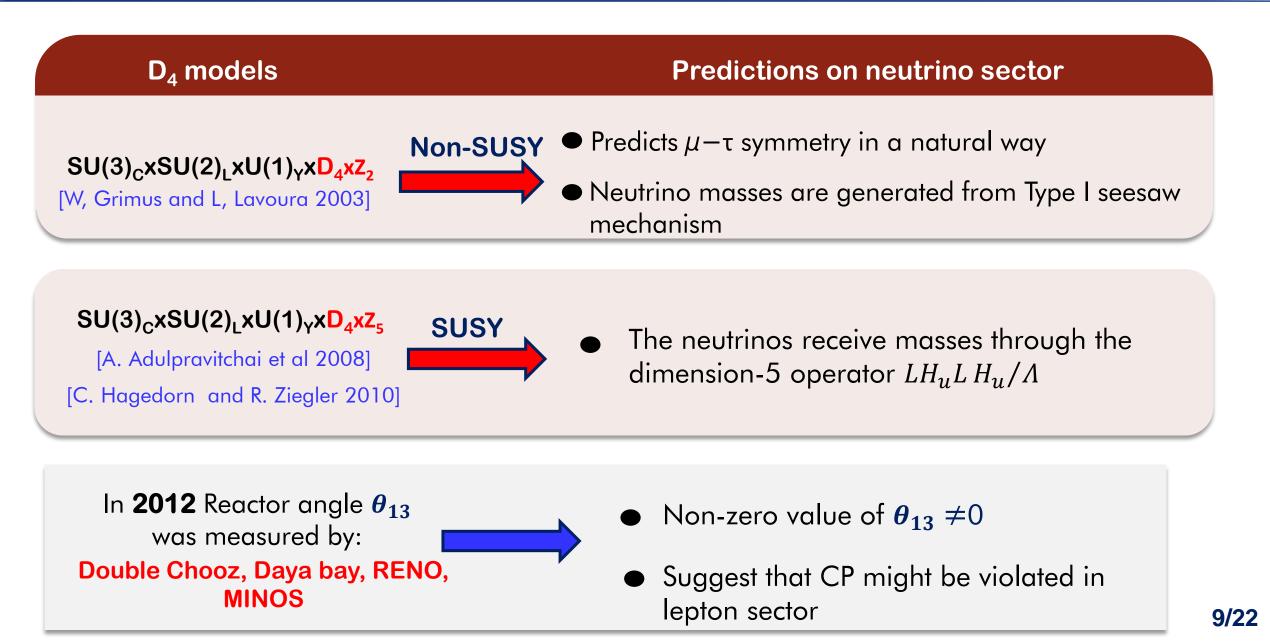
Four singlets 1_{++} , 1_{+-} , 1_{-+} and 1_{--} One doublet 2_{00}

 $2_{00}\otimes 2_{00} = \mathbf{1}_{++} \oplus \mathbf{1}_{+-} \oplus \mathbf{1}_{-+} \oplus \mathbf{1}_{--}$

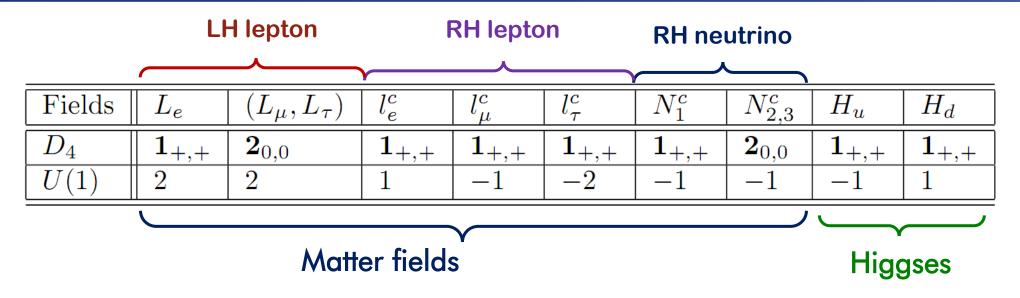




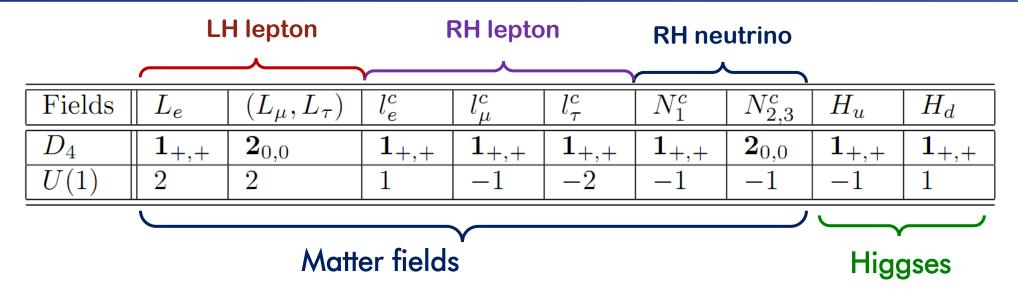


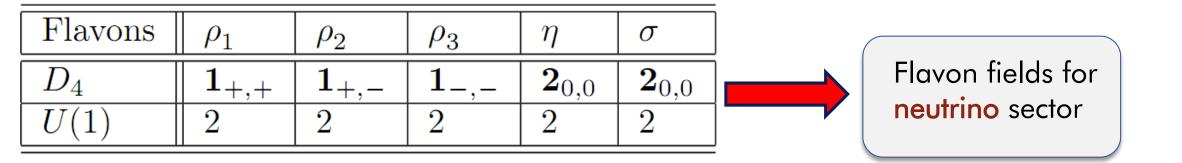


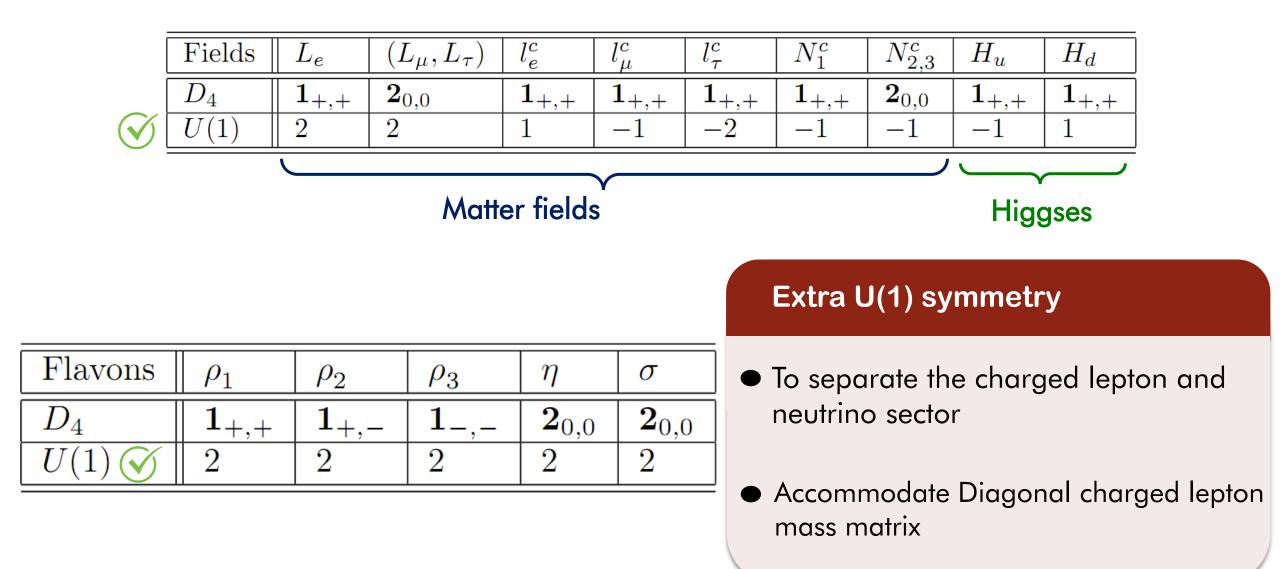
Our D4xU(1) model



Our D4xU(1) model







The neutrino superpotential invariant under $D_4 \times U(1)$ reads as $\mathcal{W}_{\nu} = \lambda_1 N_1^c L_e H_5 + \lambda_2 N_{2,3}^c L_{\mu,\tau} H_5 + \lambda_3 N_1^c N_1^c \rho_1 + \lambda_4 N_{2,3}^c N_{2,3}^c \rho_1 + \lambda_5 N_1^c N_{2,3}^c \eta + \lambda_7 N_{2,3}^c N_{2,3}^c \rho_2 + \lambda_6 N_1^c N_{2,3}^c \sigma + \lambda_8 N_{2,3}^c N_{2,3}^c \rho_3$

Vacuum alignment

Vacuum alignment required for the symmetry breaking pattern

$$\langle \rho_1 \rangle = \upsilon_{\rho_1} \quad , \quad \langle \rho_2 \rangle = \upsilon_{\rho_2} \quad , \quad \langle \rho_3 \rangle = \upsilon_{\rho_3} \langle H_u \rangle = \upsilon_u \quad , \quad \langle \eta \rangle = (\upsilon_\eta, \upsilon_\eta)^T \quad , \quad \langle \sigma \rangle = (\upsilon_\sigma, 0)^T$$

The neutrino superpotential invariant under $D_4 \times U(1)$ reads as

$$\mathcal{W}_{\nu} = \underbrace{\lambda_{1} N_{1}^{c} L_{e} H_{5} + \lambda_{2} N_{2,3}^{c} L_{\mu,\tau} H_{5}}_{+ \lambda_{5} N_{1}^{c} N_{1}^{c} \rho_{1} + \lambda_{4} N_{2,3}^{c} N_{2,3}^{c} \rho_{1}}_{+ \lambda_{5} N_{1}^{c} N_{2,3}^{c} \eta + \lambda_{7} N_{2,3}^{c} N_{2,3}^{c} \rho_{2} + \lambda_{6} N_{1}^{c} N_{2,3}^{c} \sigma + \lambda_{8} N_{2,3}^{c} N_{2,3}^{c} \rho_{3}$$

The Dirac mass matrix is obtained from the first two terms in $W_{
u}$

Dirac mass matrix $m_D = v_u \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_2 \end{pmatrix}$

The neutrino superpotential invariant under $D_4 \times U(1)$ reads as $\mathcal{W}_{\nu} = \lambda_1 N_1^c L_e H_5 + \lambda_2 N_{2,3}^c L_{\mu,\tau} H_5 + \lambda_3 N_1^c N_1^c \rho_1 + \lambda_4 N_{2,3}^c N_{2,3}^c \rho_1$ $+ \lambda_5 N_1^c N_{2,3}^c \eta + \lambda_7 N_{2,3}^c N_{2,3}^c \rho_2 + \lambda_6 N_1^c N_{2,3}^c \sigma + \lambda_8 N_{2,3}^c N_{2,3}^c \rho_3$

The other terms lead to the Majorana mass matrix

Majorana mass matrix

$$m_{M} = \Lambda \begin{pmatrix} a & b & b + k \\ b & k & c \\ b + k & c & 0 \end{pmatrix}$$

Where

$$a = rac{\lambda_3 v_{
ho_1}}{\Lambda}, \ b = rac{\lambda_5 v_{\gamma}}{\Lambda}$$
 $c = rac{2\lambda_4 v_{
ho_1}}{\Lambda}, \ k = rac{\lambda_6 v_{\sigma}}{\Lambda}$

The neutrino superpotential invariant under $D_4 \times U(1)$ reads as $\mathcal{W}_{\nu} = \lambda_1 N_1^c L_e H_5 + \lambda_2 N_{2,3}^c L_{\mu,\tau} H_5 + \lambda_3 N_1^c N_1^c \rho_1 + \lambda_4 N_{2,3}^c N_{2,3}^c \rho_1$ $+ \lambda_5 N_1^c N_{2,3}^c \eta + \lambda_7 N_{2,3}^c N_{2,3}^c \rho_2 + \lambda_6 N_1^c N_{2,3}^c \sigma + \lambda_8 N_{2,3}^c N_{2,3}^c \rho_3$

Predicts TBM mixing

TB mixing is violated by small term $k \neq 0$ (k is taken to be complex $k = |k|e^{i\phi_k}$)

The neutrino superpotential invariant under $D_4 \times U(1)$ reads as $\mathcal{W}_{\nu} = \lambda_1 N_1^c L_e H_5 + \lambda_2 N_{2,3}^c L_{\mu,\tau} H_5 + \lambda_3 N_1^c N_1^c \rho_1 + \lambda_4 N_{2,3}^c N_{2,3}^c \rho_1$ $+ \lambda_5 N_1^c N_{2,3}^c \eta + \lambda_7 N_{2,3}^c N_{2,3}^c \rho_2 + \lambda_6 N_1^c N_{2,3}^c \sigma + \lambda_8 N_{2,3}^c N_{2,3}^c \rho_3$

Predicts TBM mixing

TB mixing is violated by small term $k \neq 0$ (k is taken to be complex $k = |k|e^{i\phi_k}$)

Neutrino sector

Neutrino masses

Assuming that $\lambda_1 = \lambda_2$ and c = a + b The light neutrino mass matrix is then given by the see-saw formula

 $m_{\nu} = m_D m_M^{-1} m_D^T$ (Type-I see-saw mechanism)

Where we obtain the three light neutrino masses

$$|m_{1}| = \frac{m_{0}}{\sqrt{(a-b)^{2} - |\mathbf{k}| (a-b) \cos \phi_{k} + (|\mathbf{k}|^{2}/4)}} \qquad |m_{2}| = \frac{m_{0}}{\sqrt{(a+2b)^{2} + 2 |\mathbf{k}| (a+2b) \cos \phi_{k} + |\mathbf{k}|^{2}}}$$

$$|m_{3}| = \frac{m_{0}}{\sqrt{(a+b)^{2} - |\mathbf{k}| (a+b) \cos \phi_{k} + (|\mathbf{k}|^{2}/4)}} \qquad \text{Where} \qquad m_{0} = \frac{(\lambda_{1}v_{u})^{2}}{\Lambda}$$

$$14/22$$

Neutrino sector

Trimaximal mixing

Therefore, Neutrino matrix m_{ν} is diagonalized by Trimaximal mixing matrix $\sqrt{\frac{2}{3}\cos\theta} = \frac{1}{\sqrt{\frac{2}{3}}} \sqrt{\frac{2}{3}\sin\theta} e^{-i\gamma}$

$$\mathcal{U}_{TM_2} = \begin{pmatrix} -\frac{\cos\theta}{\sqrt{6}} - \frac{\sin\theta}{\sqrt{2}} e^{i\gamma} & \frac{1}{\sqrt{3}} & \frac{\cos\theta}{\sqrt{2}} - \frac{\sin\theta}{\sqrt{6}} e^{-i\gamma} \\ -\frac{\cos\theta}{\sqrt{6}} + \frac{\sin\theta}{\sqrt{2}} e^{i\gamma} & \frac{1}{\sqrt{3}} & -\frac{\cos\theta}{\sqrt{2}} - \frac{\sin\theta}{\sqrt{6}} e^{-i\gamma} \end{pmatrix} . \mathcal{U}_P$$

 θ and γ : arbitrary angle and phase

Mixing angles

Comparing U_{PMNS} matrix with trimaximal mixing matrix U_{TM2} we obtain

Neutrino sector

Trimaximal mixing

Therefore, Neutrino matrix m_{ν} is diagonalized by Trimaximal mixing matrix $\sqrt{\frac{2}{3}\cos\theta} = \frac{1}{\sqrt{\frac{2}{3}}\sin\theta} e^{-i\gamma}$

$$\mathcal{U}_{TM_2} = \begin{pmatrix} \sqrt{3} & \sqrt{3} & \sqrt{3} & \sqrt{3} \\ -\frac{\cos\theta}{\sqrt{6}} - \frac{\sin\theta}{\sqrt{2}} e^{i\gamma} & \frac{1}{\sqrt{3}} & \frac{\cos\theta}{\sqrt{2}} - \frac{\sin\theta}{\sqrt{6}} e^{-i\gamma} \\ -\frac{\cos\theta}{\sqrt{6}} + \frac{\sin\theta}{\sqrt{2}} e^{i\gamma} & \frac{1}{\sqrt{3}} & -\frac{\cos\theta}{\sqrt{2}} - \frac{\sin\theta}{\sqrt{6}} e^{-i\gamma} \end{pmatrix} \mathcal{U}_P$$

 θ and γ : arbitrary angle and phase

Model free parameters

Observables

Five independent parameters $(m_0, a, b, k \text{ and } \phi_k)$ in the neutrino sector

Squared-mass differences Δm_{ij}

Three mixing angles θ_{ij}

Dirac CP violating phase δ_{CP}

Constraining parameters from neutrino mixing

Observable	Best fit	3σ range
$\sin^2\theta_{13}$	0.02219	$0.02032 \rightarrow 0.02410$
$\sin^2\theta_{12}$	0.304	$0.269 \rightarrow 0.343$
$\sin^2\theta_{23}$	0.573	$0.415 \rightarrow 0.616$
$\Delta m_{21}^2 / 10^{-5}$	7.42	$6.82 \rightarrow 8.04$
$\Delta m_{3l}^2 / 10^{-3}$	2.517	$2.435 \rightarrow 2.598$
δ_{CP}°	197	$120 \rightarrow 369$

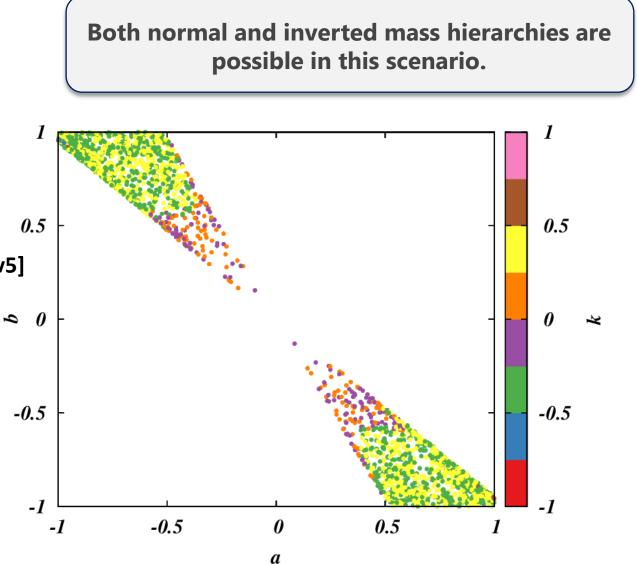
Updated compared to the published version, to use nu-fit v5] 2020

Both normal and inverted mass hierarchies are possible in this scenario.

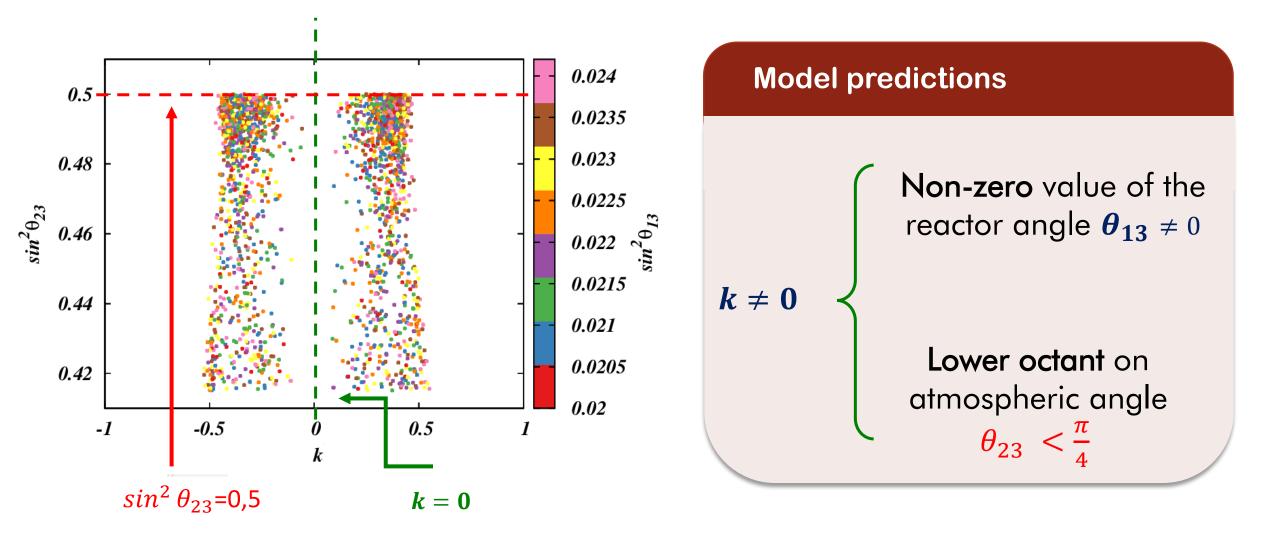
Constraining parameters from neutrino mixing

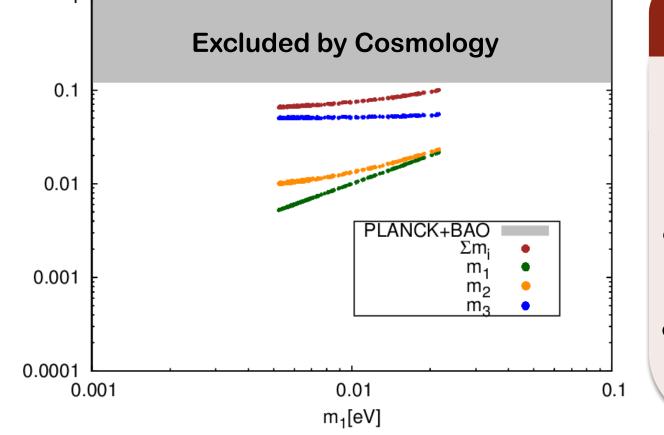
Observable	Best fit	3σ range
$\sin^2\theta_{13}$	0.02219	$0.02032 \rightarrow 0.02410$
$\sin^2\theta_{12}$	0.304	$0.269 \rightarrow 0.343$
$\sin^2 \theta_{23}$	0.573	$0.415 \rightarrow 0.616$
$\Delta m_{21}^2 / 10^{-5}$	7.42	$6.82 \rightarrow 8.04$
$\Delta m_{3l}^2 / 10^{-3}$	2.517	$2.435 \rightarrow 2.598$
δ_{CP}°	197	$120 \rightarrow 369$

Updated compared to the published version, to use nu-fit v5] 2020



Constraining parameters from neutrino mixing





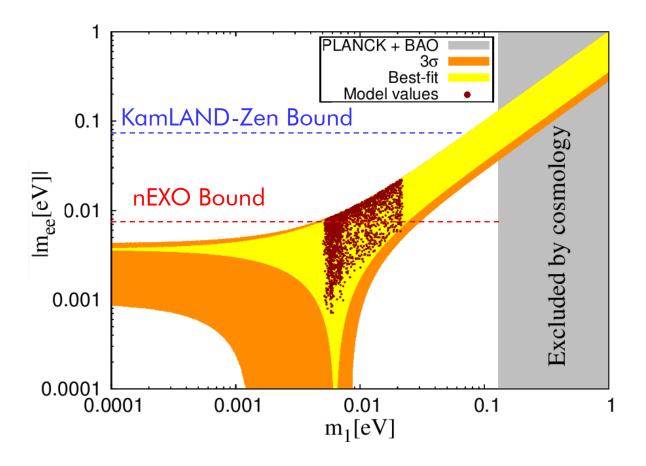
The sum of neutrino masses

Cosmological limite (
$$\sum_i m_i < 0,12 \text{ eV}$$
)
[Planck Collaboration 2018]

• The sum of neutrinos $0,0613 \lesssim \sum_i m_i \text{ [eV]} \lesssim 0.117$

• The lightest neutrino mass (NO)

 $0,005 \lesssim m_1 \text{ [eV]} \lesssim 0,021$



 $0,000715 \lesssim m_{etaeta}$ [eV] $\lesssim 0,022$

Neutrinoless double beta decay m_{etaeta}

$$\left|m_{\beta\beta}\right| = \left|\sum_{i} U_{ei}^2 m_i\right|$$

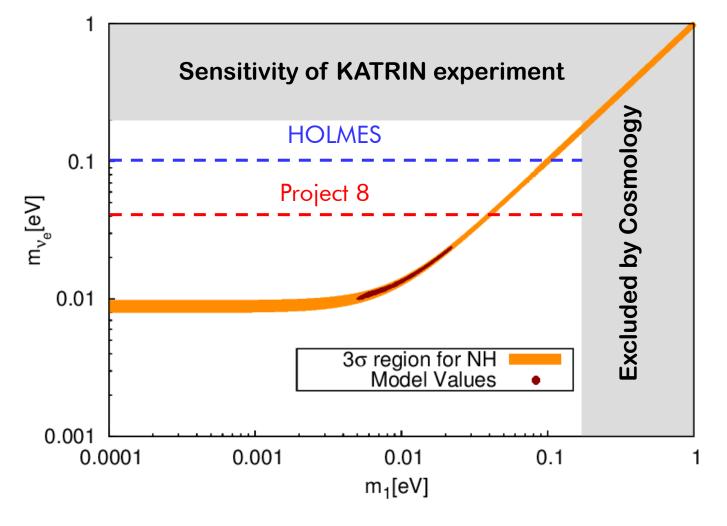
KamLAND-Zen Bound $m_{\beta\beta}$ [eV] < 0.061 - 0.165</th>[KamLAND-Zen Collaboration 2016]

GERDA

 $m_{\beta\beta}$ [eV] < 0,104 - 0,228 [GERDA 2018]

Expected nEXO Bound $m_{\beta\beta}$ [eV] < 0.005 [nEXO Collaboration 2018]

Search for absolute mass scale (NH)



Tritium Beta decay

$$m_{\beta} = \left(\sum_{i} |U_{ei}|^2 m_i^2\right)^{1/2}$$

The sensitivity of KATRIN is to $m_{\beta} \lesssim 0.2 \text{ eV}$ HOLMES $m_{\beta} \lesssim 0.1 \text{ eV}$

Project 8 $m_\beta \leq 0.04 \text{ eV}$

 $0,01 \lesssim m_{eta}[ext{eV}] \lesssim 0,023$

THANK YOU!