SMEFT Constraints on New Physics Beyond the Standard Model

"...the direct method may be used...but indirect methods will be needed in order to secure victory...."

"The direct and the indirect lead on to each other in turn. It is like moving in a circle...." Who can exhaust the possibilities of their combination?"

Sun Tzu, The Art of War

John Ellis

Where are we?

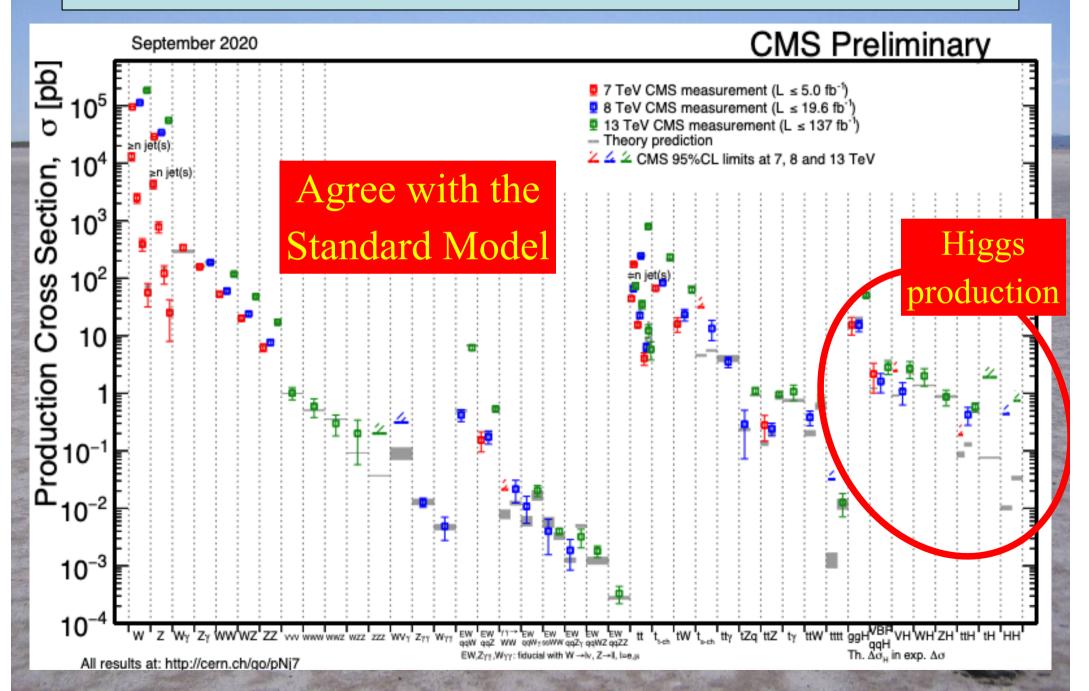
Summary of the Standard Model

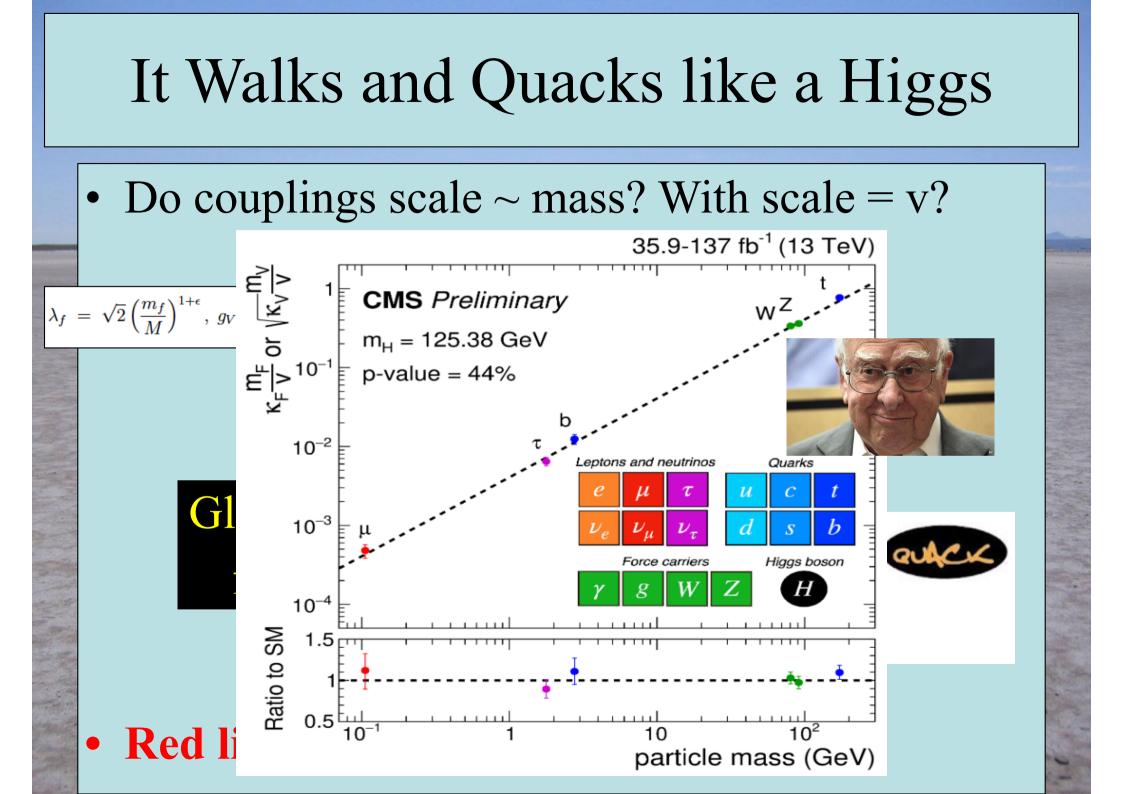
• Particles and $SU(3) \times SU(2) \times U(1)$ quantum numbers:

L_L E_R	$ \begin{pmatrix} \nu_e \\ e^- \end{pmatrix}_L, \begin{pmatrix} \nu_\mu \\ \mu^- \end{pmatrix}_L, \begin{pmatrix} \nu_\tau \\ \tau^- \end{pmatrix}_L \\ e_R^-, \mu_R^-, \tau_R^- \end{pmatrix} $	(1,2, -1) (1,1, -2)	
Q_L U_R D_R	$ \begin{pmatrix} u \\ d \end{pmatrix}_{L}, \begin{pmatrix} c \\ s \end{pmatrix}_{L}, \begin{pmatrix} t \\ b \end{pmatrix}_{L} $ $ u_{R}, c_{R}, t_{R} $ $ d_{R}, s_{R}, b_{R} $	$(\mathbf{3,2,+1/3})$ $(\mathbf{3,1,+4/3})$ $(\mathbf{3,1,-2/3})$	

• Lagrangian:

 $\mathcal{L} = -\frac{1}{4} F^{a}_{\mu\nu} F^{a\ \mu\nu} \qquad gav \\ + i\bar{\psi} \not D\psi + h.c. \\ + \psi_{i}y_{ij}\psi_{j}\phi + h.c. \\ + |D_{\mu}\phi|^{2} - V(\phi) \qquad Hi$

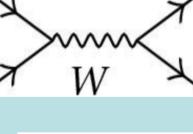

gauge interactions To matter fermions Yukawa interactions Higgs potential

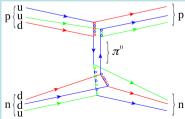

Tested < 0.1% before LHC

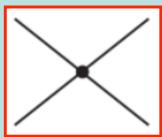
Testing now

in progress

LHC Measurements


Everything about Higgs is Puzzling $\mathcal{L} = yH\psi\overline{\psi} + \mu^2|H|^2 - \lambda|H|^4 - V_0$ • Pattern of Yukawa couplings y: - Flavour problem Magnitude of mass term μ : - Naturalness/hierarchy problem • Magnitude of quartic coupling λ : Stability of electroweak vacuum


- Cosmological constant term V_0 :
 - Dark energy


Higher-dimensional interactions?

Effective Field Theories (EFTs) a long and glorious History

- 1930's: "Standard Model" of QED had d=4
- Fermi's four-fermion theory of the weak force
- Dimension-6 operators: form = S, P, V, A, T?
 Due to exchanges of massive particles?
- V-A \rightarrow massive vector bosons \rightarrow gauge theory
- Yukawa's meson theory of the strong N-N force
 Due to exchanges of mesons? → pions
- Chiral dynamics of pions: $(\partial \pi \partial \pi)\pi\pi$ clue \rightarrow QCD

Standard Model Effective Field Theory a more powerful way to analyze the data

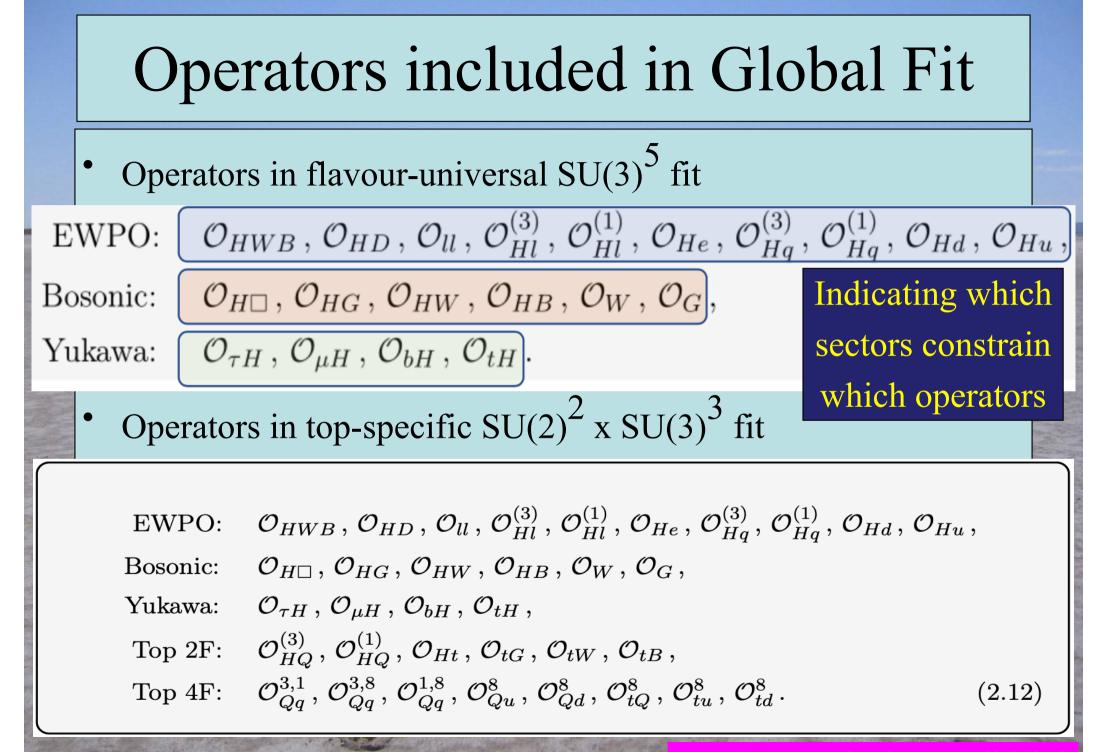
- Assume the Standard Model Lagrangian is correct (quantum numbers of particles) but incomplete
- Look for additional interactions between SM particles
- Analyze Higgs data together with electroweak precision data and top data
- Most efficient way to extract largest amount of information from LHC and other data
- Model-independent way to look for physics beyond the Standard Model (BSM)

JE, Madigan, Mimasu, Sanz & You, arXiv:2012.02779

Summarize Analysis Framework

• Include all leading dimension-6 operators?

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i=1}^{2499} \frac{C_i}{\Lambda^2} \mathcal{O}_i$$

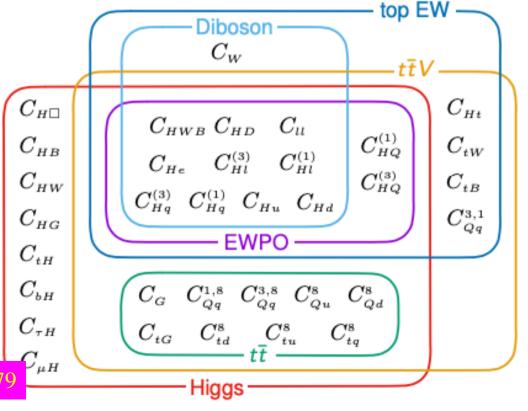

- Simplify by assuming SU(3)⁵ or
 SU(2)² x SU(3)³ symmetry for fermions
- Work to linear order in operator coefficients
- Use G_F , M_Z , α as input parameters

Dimension-6 Operators in Detail

- Including 2- and 4fermion operators
- Various colours for different data sectors
- Grey cells violate SU(3)⁵ symmetry
- Important when including top observables

JE, Madigan, Mimasu, Sanz & You, arXiv:2012.02779

İ	X ³			H^6 and H^4D^2	$\psi^2 H^3$			
	\mathcal{O}_{G}	$f^{ABC}G^{A u}_{\mu}G^{B ho}_{ u}G^{C\mu}_{ ho}$	\mathcal{O}_{H}	$(H^{\dagger}H)^3$	\mathcal{O}_{eH}	$(H^{\dagger}H)(\bar{l}_{p}e_{r}H)$		
	$\mathcal{O}_{ ilde{G}}$	$f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$\mathcal{O}_{H\square}$	$(H^{\dagger}H)\square(H^{\dagger}H)$	${\cal O}_{uH}$	$(H^{\dagger}H)(\bar{q}_p u_r \widetilde{H})$		
	\mathcal{O}_{W}	$\varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	$\mathcal{O}_{_{HD}}$	$\left(H^{\dagger}D^{\mu}H\right)^{\star}\left(H^{\dagger}D_{\mu}H\right)$	${\cal O}_{_{dH}}$	$(H^{\dagger}H)(\bar{q}_{p}d_{r}H)$		
	$\mathcal{O}_{\widetilde{W}} = \varepsilon^{IJK} \widetilde{W}_{\mu}^{I\nu} W_{\nu}^{J\rho} W_{\rho}^{K\mu}$							
	X^2H^2			$\psi^2 X H$	$\psi^2 H^2 D$			
	\mathcal{O}_{HG}	$H^{\dagger}HG^{A}_{\mu\nu}G^{A\mu\nu}$	${\cal O}_{eW}$	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I H W^I_{\mu\nu}$	${\cal O}_{Hl}^{(1)}$	$(H^{\dagger}i \overset{\smile}{D}_{\mu} H)(\bar{l}_{p} \gamma^{\mu} l_{r})$		
	${\cal O}_{H\widetilde{G}}$	$H^{\dagger}H\widetilde{G}^{A}_{\mu\nu}G^{A\mu\nu}$	${\cal O}_{eB}$	$(\bar{l}_p \sigma^{\mu\nu} e_r) H B_{\mu\nu}$	${\cal O}_{_{Hl}}^{_{(3)}}$	$(H^{\dagger}i D_{\underline{\mu}}^{I} H) (\bar{l}_{p} \tau^{I} \gamma^{\mu} l_{r})$		
	\mathcal{O}_{HW}	$H^{\dagger}H W^{I}_{\mu\nu}W^{I\mu\nu}$	${\cal O}_{uG}$	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{H} G^A_{\mu\nu}$	${\cal O}_{_{He}}$	$(H^{\dagger}i D_{\mu} H)(\bar{e}_p \gamma^{\mu} e_r)$		
	${\cal O}_{H\widetilde{W}}$	$H^{\dagger}H\widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}$	${\cal O}_{uW}$	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \widetilde{H} W^I_{\mu\nu}$	$\mathcal{O}_{Hq}^{(1)}$	$(H^{\dagger}i D_{\mu} H)(\bar{q}_p \gamma^{\mu} q_r)$		
	$\mathcal{O}_{_{HB}}$	$H^{\dagger}H B_{\mu u}B^{\mu u}$	${\cal O}_{uB}$	$(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{H} B_{\mu\nu}$	${\cal O}_{{\scriptscriptstyle H} q}^{(3)}$	$(H^{\dagger}i D_{\underline{\mu}}^{I} H)(\bar{q}_{p} \tau^{I} \gamma^{\mu} q_{r})$		
	${\cal O}_{H\widetilde{B}}$	$H^{\dagger}H\widetilde{B}_{\mu u}B^{\mu u}$	${\cal O}_{dG}$	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) H G^A_{\mu\nu}$	${\cal O}_{Hu}$	$(H^{\dagger}i {D}_{\mu} H)(\bar{u}_p \gamma^{\mu} u_r)$		
	$\mathcal{O}_{HWB} \qquad H^{\dagger} \tau^{I} H W^{I}_{\mu\nu} B^{\mu\nu}$		${\cal O}_{dW}$	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I H W^I_{\mu\nu}$	${\cal O}_{Hd}$	$(H^{\dagger}i D_{\mu} H)(\bar{d}_p \gamma^{\mu} d_r)$		
	$\mathcal{O}_{H\widetilde{W}B} \qquad H^{\dagger}\tau^{I}H\widetilde{W}_{\mu\nu}^{I}B^{\mu\nu}$		\mathcal{O}_{dB}	$(\bar{q}_p \sigma^{\mu\nu} d_r) H B_{\mu\nu}$	${\cal O}_{{}_{Hud}}$	$i(\tilde{H}^{\dagger}D_{\mu}H)(\bar{u}_{p}\gamma^{\mu}d_{r})$		
ĺ		$(\bar{L}L)(\bar{L}L)$		$(\bar{R}R)(\bar{R}R)$		$(\bar{L}L)(\bar{R}R)$		
	\mathcal{O}_{ll}	$(\bar{l}_p \gamma_\mu l_r) (\bar{l}_s \gamma^\mu l_t)$	\mathcal{O}_{ee}	$(\bar{e}_p \gamma_\mu e_r)(\bar{e}_s \gamma^\mu e_t)$	\mathcal{O}_{le}	$(\bar{l}_p \gamma_\mu l_r)(\bar{e}_s \gamma^\mu e_t)$		
	$(\mathbf{O}(1))$	(-) (-) (-) (-)	\mathcal{O}_{uu}	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$	\mathcal{O}_{lu}	$(\bar{l}_p \gamma_\mu l_r)(\bar{u}_s \gamma^\mu u_t)$		
	$\mathcal{O}_{_{qq}}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{q}_s \gamma^\mu q_t)$		$(-p)(\mu - r)(-s)(-t)$				
	$\mathcal{O}_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	\mathcal{O}_{dd}	$(\bar{d}_p \gamma_\mu d_r) (\bar{d}_s \gamma^\mu d_t)$	\mathcal{O}_{ld}	$(\bar{l}_p \gamma_\mu l_r) (\bar{d}_s \gamma^\mu d_t)$		
	$egin{array}{c} \mathcal{O}^{(3)}_{qq} \ \mathcal{O}^{(1)}_{lq} \end{array}$	$egin{aligned} & (ar{q}_p \gamma_\mu au^I q_r) (ar{q}_s \gamma^\mu au^I q_t) \ & (ar{l}_p \gamma_\mu l_r) (ar{q}_s \gamma^\mu q_t) \end{aligned}$	$egin{array}{c} {\mathcal O}_{dd} \ {\mathcal O}_{eu} \end{array}$	$egin{aligned} & (ar{d}_p\gamma_\mu d_r)(ar{d}_s\gamma^\mu d_t) \ & (ar{e}_p\gamma_\mu e_r)(ar{u}_s\gamma^\mu u_t) \end{aligned}$	\mathcal{O}_{qe}	$(\bar{q}_p \gamma_\mu q_r) (\bar{e}_s \gamma^\mu e_t)$		
	$\mathcal{O}_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	$egin{array}{c} {\mathcal O}_{dd} \ {\mathcal O}_{eu} \ {\mathcal O}_{ed} \end{array}$	$egin{aligned} & (ar{d}_p\gamma_\mu d_r)(ar{d}_s\gamma^\mu d_t) \ & (ar{e}_p\gamma_\mu e_r)(ar{u}_s\gamma^\mu u_t) \ & (ar{e}_p\gamma_\mu e_r)(ar{d}_s\gamma^\mu d_t) \end{aligned}$	$egin{array}{c} {\mathcal O}_{qe} \ {\mathcal O}_{qu}^{(1)} \end{array}$	$egin{aligned} &(ar{q}_p\gamma_\mu q_r)(ar{e}_s\gamma^\mu e_t)\ &(ar{q}_p\gamma_\mu q_r)(ar{u}_s\gamma^\mu u_t) \end{aligned}$		
	$egin{array}{c} \mathcal{O}^{(3)}_{qq} \ \mathcal{O}^{(1)}_{lq} \end{array}$	$egin{aligned} & (ar{q}_p \gamma_\mu au^I q_r) (ar{q}_s \gamma^\mu au^I q_t) \ & (ar{l}_p \gamma_\mu l_r) (ar{q}_s \gamma^\mu q_t) \end{aligned}$	$egin{array}{c} \mathcal{O}_{dd} \ \mathcal{O}_{eu} \ \mathcal{O}_{ed} \ \mathcal{O}_{ud} \end{array}$	$egin{aligned} &(ar{d}_p\gamma_\mu d_r)(ar{d}_s\gamma^\mu d_t)\ &(ar{e}_p\gamma_\mu e_r)(ar{u}_s\gamma^\mu u_t)\ &(ar{e}_p\gamma_\mu e_r)(ar{d}_s\gamma^\mu d_t)\ &(ar{u}_p\gamma_\mu u_r)(ar{d}_s\gamma^\mu d_t) \end{aligned}$	$egin{array}{c} \mathcal{O}_{qe} \ \mathcal{O}_{qu}^{(1)} \ \mathcal{O}_{qu}^{(8)} \end{array}$	$\begin{array}{c} (\bar{q}_p \gamma_\mu q_r) (\bar{e}_s \gamma^\mu e_t) \\ (\bar{q}_p \gamma_\mu q_r) (\bar{u}_s \gamma^\mu u_t) \\ (\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t) \end{array}$		
	$egin{array}{c} \mathcal{O}^{(3)}_{qq} \ \mathcal{O}^{(1)}_{lq} \end{array}$	$egin{aligned} & (ar{q}_p \gamma_\mu au^I q_r) (ar{q}_s \gamma^\mu au^I q_t) \ & (ar{l}_p \gamma_\mu l_r) (ar{q}_s \gamma^\mu q_t) \end{aligned}$	$egin{array}{c} {\mathcal O}_{dd} \ {\mathcal O}_{eu} \ {\mathcal O}_{ed} \end{array}$	$egin{aligned} & (ar{d}_p\gamma_\mu d_r)(ar{d}_s\gamma^\mu d_t) \ & (ar{e}_p\gamma_\mu e_r)(ar{u}_s\gamma^\mu u_t) \ & (ar{e}_p\gamma_\mu e_r)(ar{d}_s\gamma^\mu d_t) \end{aligned}$	$egin{array}{c} \mathcal{O}_{qe} \ \mathcal{O}_{qu}^{(1)} \ \mathcal{O}_{qu}^{(8)} \ \mathcal{O}_{qd}^{(1)} \end{array}$	$\begin{array}{c} (\bar{q}_p \gamma_\mu q_r) (\bar{e}_s \gamma^\mu e_t) \\ (\bar{q}_p \gamma_\mu q_r) (\bar{u}_s \gamma^\mu u_t) \\ (\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t) \\ (\bar{q}_p \gamma_\mu q_r) (\bar{d}_s \gamma^\mu d_t) \end{array}$		
	$\mathcal{O}_{qq}^{(3)} \ \mathcal{O}_{lq}^{(1)} \ \mathcal{O}_{lq}^{(3)}$	$ \begin{array}{l} (\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t) \\ (\bar{l}_p \gamma_\mu l_r) (\bar{q}_s \gamma^\mu q_t) \\ (\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t) \end{array} $	$egin{array}{c} \mathcal{O}_{dd} \ \mathcal{O}_{eu} \ \mathcal{O}_{ed} \ \mathcal{O}_{ud} \end{array}$	$\begin{array}{c} (\bar{d}_p \gamma_\mu d_r) (\bar{d}_s \gamma^\mu d_t) \\ (\bar{e}_p \gamma_\mu e_r) (\bar{u}_s \gamma^\mu u_t) \\ (\bar{e}_p \gamma_\mu e_r) (\bar{d}_s \gamma^\mu d_t) \\ (\bar{u}_p \gamma_\mu u_r) (\bar{d}_s \gamma^\mu d_t) \\ (\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t) \end{array}$	$egin{aligned} &\mathcal{O}_{qe} \ &\mathcal{O}_{qu}^{(1)} \ &\mathcal{O}_{qu}^{(8)} \ &\mathcal{O}_{qd}^{(1)} \ &\mathcal{O}_{qd}^{(8)} \ &\mathcal{O}_{qd}^{(8)} \end{aligned}$	$\begin{array}{c} (\bar{q}_p \gamma_\mu q_r) (\bar{e}_s \gamma^\mu e_t) \\ (\bar{q}_p \gamma_\mu q_r) (\bar{u}_s \gamma^\mu u_t) \\ (\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t) \end{array}$		
	$\left(\begin{array}{c} \mathcal{O}_{qq}^{(3)} \\ \mathcal{O}_{lq}^{(1)} \\ \mathcal{O}_{lq}^{(3)} \\ \mathcal{O}_{lq}^{(3)} \end{array} ight)$	$(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t) (\bar{l}_p \gamma_\mu l_r) (\bar{q}_s \gamma^\mu q_t) (\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t))(\bar{R}L) \text{ and } (\bar{L}R) (\bar{L}R)$	$egin{array}{c} \mathcal{O}_{dd} \ \mathcal{O}_{eu} \ \mathcal{O}_{ed} \ \mathcal{O}_{ud} \end{array}$	$ \begin{array}{c} (\bar{d}_p \gamma_\mu d_r) (\bar{d}_s \gamma^\mu d_t) \\ (\bar{e}_p \gamma_\mu e_r) (\bar{u}_s \gamma^\mu u_t) \\ (\bar{e}_p \gamma_\mu e_r) (\bar{d}_s \gamma^\mu d_t) \\ (\bar{u}_p \gamma_\mu u_r) (\bar{d}_s \gamma^\mu d_t) \\ (\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t) \end{array} \\ \end{array} $	$\begin{array}{c} \mathcal{O}_{qe} \\ \mathcal{O}_{qu}^{(1)} \\ \mathcal{O}_{qu}^{(8)} \\ \mathcal{O}_{qd}^{(1)} \\ \mathcal{O}_{qd}^{(8)} \\ \end{array}$	$ \begin{array}{c} (\bar{q}_p \gamma_\mu q_r) (\bar{e}_s \gamma^\mu e_t) \\ (\bar{q}_p \gamma_\mu q_r) (\bar{u}_s \gamma^\mu u_t) \\ (\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t) \\ (\bar{q}_p \gamma_\mu q_r) (\bar{d}_s \gamma^\mu d_t) \\ (\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t) \end{array} $		
	$\begin{array}{c} \mathcal{O}_{qq}^{(3)}\\ \mathcal{O}_{lq}^{(1)}\\ \mathcal{O}_{lq}^{(3)} \end{array} \\ \end{array} \\ \hline \left(\bar{L}R \right) \\ \mathcal{O}_{ledq} \end{array}$	$\frac{(\bar{q}_p \gamma_\mu \tau^I q_r)(\bar{q}_s \gamma^\mu \tau^I q_t)}{(\bar{l}_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_t)}$ $(\bar{l}_p \gamma_\mu \tau^I l_r)(\bar{q}_s \gamma^\mu \tau^I q_t)$ $\frac{(\bar{R}L) \text{ and } (\bar{L}R)(\bar{L}R)}{(\bar{l}_p^j e_r)(\bar{d}_s q_t^j)}$	$\begin{array}{c} \mathcal{O}_{dd} \\ \mathcal{O}_{eu} \\ \mathcal{O}_{ed} \\ \mathcal{O}_{ud}^{(1)} \\ \mathcal{O}_{ud}^{(8)} \end{array}$	$\frac{(\bar{d}_{p}\gamma_{\mu}d_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})}{(\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{u}_{s}\gamma^{\mu}u_{t})}$ $(\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})$ $(\bar{u}_{p}\gamma_{\mu}u_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})$ $(\bar{u}_{p}\gamma_{\mu}T^{A}u_{r})(\bar{d}_{s}\gamma^{\mu}T^{A}d_{t})$ $B-\text{viol}$ $\frac{B-\text{viol}}{\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}}\left[(d_{r}^{\alpha})^{\beta\gamma}\varepsilon_{jk}\right]$	$ \begin{array}{c} \mathcal{O}_{qe} \\ \mathcal{O}_{qu}^{(1)} \\ \mathcal{O}_{qu}^{(8)} \\ \mathcal{O}_{qd}^{(1)} \\ \mathcal{O}_{qd}^{(8)} \\ \end{array} \\ \begin{array}{c} \mathcal{O}_{qd}^{(8)} \\ \mathcal{O}_{qd}^{(8)} \\ \end{array} \end{array} $	$\frac{(\bar{q}_p\gamma_\mu q_r)(\bar{e}_s\gamma^\mu e_t)}{(\bar{q}_p\gamma_\mu q_r)(\bar{u}_s\gamma^\mu u_t)}$ $\frac{(\bar{q}_p\gamma_\mu T^A q_r)(\bar{u}_s\gamma^\mu T^A u_t)}{(\bar{q}_p\gamma_\mu q_r)(\bar{d}_s\gamma^\mu d_t)}$ $\frac{(\bar{q}_p\gamma_\mu T^A q_r)(\bar{d}_s\gamma^\mu T^A d_t)}{[(\bar{q}_s\gamma^j)^T Cl_t^k]}$		
	$ \begin{array}{c} \mathcal{O}_{qq}^{(3)} \\ \mathcal{O}_{lq}^{(1)} \\ \mathcal{O}_{lq}^{(3)} \\ \end{array} \\ \hline \\ \hline \\ \hline \\ \hline \\ \mathcal{O}_{ledq} \\ \mathcal{O}_{quqd}^{(1)} \\ \end{array} \\ \end{array} $	$\frac{(\bar{q}_p \gamma_\mu \tau^I q_r)(\bar{q}_s \gamma^\mu \tau^I q_t)}{(\bar{l}_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_t)}$ $(\bar{l}_p \gamma_\mu \tau^I l_r)(\bar{q}_s \gamma^\mu \tau^I q_t)$ $(\bar{R}L) \text{ and } (\bar{L}R)(\bar{L}R)$ $(\bar{l}_p^j e_r)(\bar{d}_s q_t^j)$ $(\bar{q}_p^j u_r) \varepsilon_{jk}(\bar{q}_s^k d_t)$	$\begin{array}{c} \mathcal{O}_{dd} \\ \mathcal{O}_{eu} \\ \mathcal{O}_{ed} \\ \mathcal{O}_{ud}^{(1)} \\ \mathcal{O}_{ud}^{(8)} \end{array}$	$\frac{(\bar{d}_p\gamma_\mu d_r)(\bar{d}_s\gamma^\mu d_t)}{(\bar{e}_p\gamma_\mu e_r)(\bar{u}_s\gamma^\mu u_t)}$ $\frac{(\bar{e}_p\gamma_\mu e_r)(\bar{d}_s\gamma^\mu d_t)}{(\bar{u}_p\gamma_\mu u_r)(\bar{d}_s\gamma^\mu d_t)}$ $\frac{(\bar{u}_p\gamma_\mu T^A u_r)(\bar{d}_s\gamma^\mu T^A d_t)}{B\text{-viol}}$ $\frac{\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk} \left[(d_p^\alpha)^{\alpha\beta\gamma}\varepsilon_{jk}\right]}{\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk} \left[(q_p^\alpha)^{\alpha\beta\gamma}\varepsilon_{jk}\right]}$	$\begin{array}{ } \mathcal{O}_{qe} \\ \mathcal{O}_{qu}^{(1)} \\ \mathcal{O}_{qu}^{(8)} \\ \mathcal{O}_{qd}^{(1)} \\ \mathcal{O}_{qd}^{(8)} \\ \end{array}$ $\begin{array}{ } \text{lating} \\ \begin{array}{c} {}^{\alpha} \\ {}^{\gamma} \end{array} \right)^{T} C u_{r}^{\beta} \\ \\ {}^{j} \end{array} \right)^{T} C q_{r}^{\beta} \\ \end{array}$	$ \begin{array}{c} (\bar{q}_p \gamma_\mu q_r)(\bar{e}_s \gamma^\mu e_t) \\ (\bar{q}_p \gamma_\mu q_r)(\bar{u}_s \gamma^\mu u_t) \\ (\bar{q}_p \gamma_\mu T^A q_r)(\bar{u}_s \gamma^\mu T^A u_t) \\ (\bar{q}_p \gamma_\mu q_r)(\bar{d}_s \gamma^\mu d_t) \\ (\bar{q}_p \gamma_\mu T^A q_r)(\bar{d}_s \gamma^\mu T^A d_t) \end{array} \\ \\ \hline		
	$ \begin{array}{c} \mathcal{O}_{qq}^{(3)} \\ \mathcal{O}_{lq}^{(1)} \\ \mathcal{O}_{lq}^{(3)} \\ \end{array} \\ \hline \\ \hline \\ \hline \\ \hline \\ \mathcal{O}_{ledq} \\ \mathcal{O}_{quqd}^{(1)} \\ \mathcal{O}_{quqd}^{(8)} \\ \end{array} \\ \end{array} $	$\frac{(\bar{q}_p \gamma_\mu \tau^I q_r)(\bar{q}_s \gamma^\mu \tau^I q_t)}{(\bar{l}_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_t)}$ $(\bar{l}_p \gamma_\mu \tau^I l_r)(\bar{q}_s \gamma^\mu \tau^I q_t)$ $\frac{(\bar{R}L) \text{ and } (\bar{L}R)(\bar{L}R)}{(\bar{l}_p^j e_r)(\bar{d}_s q_t^j)}$ $(\bar{q}_p^j u_r) \varepsilon_{jk}(\bar{q}_s^k d_t)$ $(\bar{q}_p^j T^A u_r) \varepsilon_{jk}(\bar{q}_s^k T^A d_t)$	$\begin{array}{c} \mathcal{O}_{dd} \\ \mathcal{O}_{eu} \\ \mathcal{O}_{ed} \\ \mathcal{O}_{ud}^{(1)} \\ \mathcal{O}_{ud}^{(8)} \\ \end{array}$	$\frac{(\bar{d}_p\gamma_\mu d_r)(\bar{d}_s\gamma^\mu d_t)}{(\bar{e}_p\gamma_\mu e_r)(\bar{u}_s\gamma^\mu u_t)}$ $\frac{(\bar{e}_p\gamma_\mu e_r)(\bar{d}_s\gamma^\mu d_t)}{(\bar{u}_p\gamma_\mu u_r)(\bar{d}_s\gamma^\mu d_t)}$ $\frac{(\bar{u}_p\gamma_\mu T^A u_r)(\bar{d}_s\gamma^\mu T^A d_t)}{B\text{-viol}}$ $\frac{\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk} \left[(d_p^\alpha \varepsilon^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km}\right](q_p^\alpha \varepsilon^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km})}{\varepsilon^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km}} \left[(q_p^\alpha \varepsilon^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km})\right]$	$ \begin{array}{ } \mathcal{O}_{qe} \\ \mathcal{O}_{qu}^{(1)} \\ \mathcal{O}_{qu}^{(8)} \\ \mathcal{O}_{qd}^{(d)} \\ \mathcal{O}_{qd}^{(l)} \\ \end{array} \\ \hline \begin{array}{ } \mathbf{lating} \\ \mathbf{lating} \\ \mathbf{lat} \\ \mathbf{j} \\ \mathbf{j} \\ \mathbf{j} \\ \mathbf{r} \\ \mathbf{C} \\ \mathbf{q} \\ \mathbf{k} \\$	$ \begin{array}{c} (\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{e}_{s}\gamma^{\mu}e_{t}) \\ (\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \\ (\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{u}_{s}\gamma^{\mu}T^{A}u_{t}) \\ (\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{d}_{s}\gamma^{\mu}T^{A}d_{t}) \end{array} \\ \hline \\$		
	$ \begin{array}{c} \mathcal{O}_{qq}^{(3)} \\ \mathcal{O}_{lq}^{(1)} \\ \mathcal{O}_{lq}^{(3)} \\ \end{array} \\ \hline \\ \hline \\ \hline \\ \hline \\ \mathcal{O}_{ledq} \\ \mathcal{O}_{quqd}^{(1)} \\ \end{array} \\ \end{array} $	$\frac{(\bar{q}_p \gamma_\mu \tau^I q_r)(\bar{q}_s \gamma^\mu \tau^I q_t)}{(\bar{l}_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_t)}$ $(\bar{l}_p \gamma_\mu \tau^I l_r)(\bar{q}_s \gamma^\mu \tau^I q_t)$ $(\bar{R}L) \text{ and } (\bar{L}R)(\bar{L}R)$ $(\bar{l}_p^j e_r)(\bar{d}_s q_t^j)$ $(\bar{q}_p^j u_r) \varepsilon_{jk}(\bar{q}_s^k d_t)$	$\begin{array}{c} \mathcal{O}_{dd} \\ \mathcal{O}_{eu} \\ \mathcal{O}_{ed} \\ \mathcal{O}_{ud}^{(1)} \\ \mathcal{O}_{ud}^{(8)} \end{array}$	$\frac{(\bar{d}_p\gamma_\mu d_r)(\bar{d}_s\gamma^\mu d_t)}{(\bar{e}_p\gamma_\mu e_r)(\bar{u}_s\gamma^\mu u_t)}$ $\frac{(\bar{e}_p\gamma_\mu e_r)(\bar{d}_s\gamma^\mu d_t)}{(\bar{u}_p\gamma_\mu u_r)(\bar{d}_s\gamma^\mu d_t)}$ $\frac{(\bar{u}_p\gamma_\mu T^A u_r)(\bar{d}_s\gamma^\mu T^A d_t)}{B\text{-viol}}$ $\frac{\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk} \left[(d_p^\alpha)^{\alpha\beta\gamma}\varepsilon_{jk}\right]}{\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk} \left[(q_p^\alpha)^{\alpha\beta\gamma}\varepsilon_{jk}\right]}$	$ \begin{array}{ } \mathcal{O}_{qe} \\ \mathcal{O}_{qu}^{(1)} \\ \mathcal{O}_{qu}^{(8)} \\ \mathcal{O}_{qd}^{(d)} \\ \mathcal{O}_{qd}^{(l)} \\ \end{array} \\ \hline \begin{array}{ } \mathbf{lating} \\ \mathbf{lating} \\ \mathbf{lat} \\ \mathbf{j} \\ \mathbf{j} \\ \mathbf{j} \\ \mathbf{r} \\ \mathbf{C} \\ \mathbf{q} \\ \mathbf{k} \\$	$ \begin{array}{c} (\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{e}_{s}\gamma^{\mu}e_{t}) \\ (\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \\ (\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{u}_{s}\gamma^{\mu}T^{A}u_{t}) \\ (\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{d}_{s}\gamma^{\mu}T^{A}d_{t}) \end{array} \\ \hline \\$		


Global SMEFT Fit to Top, Higgs, Diboson, Electroweak Data

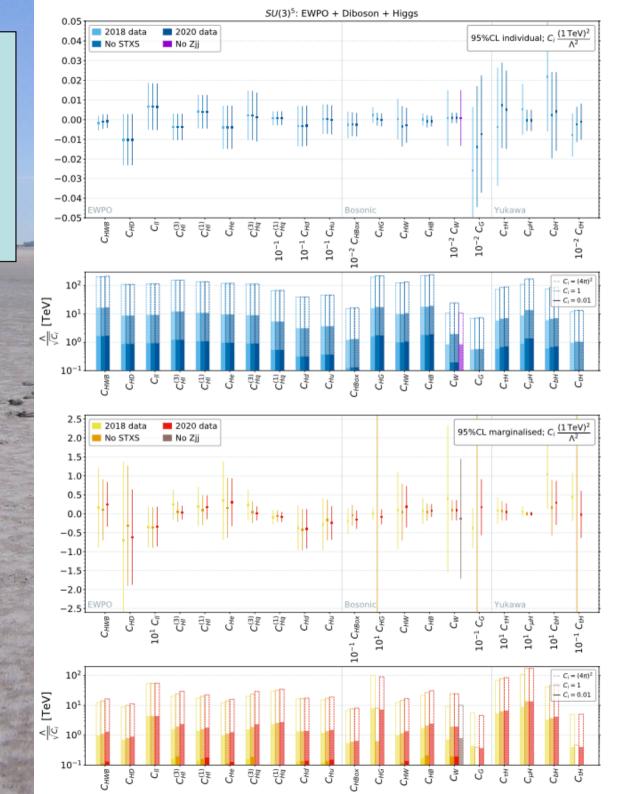
- Global fit to dimension-6 operators using precision electroweak data, W+W- at LEP, top, Higgs and diboson data from LHC Runs 1 and 2
- Constraints on BSM

You

- At tree level
- At loop level

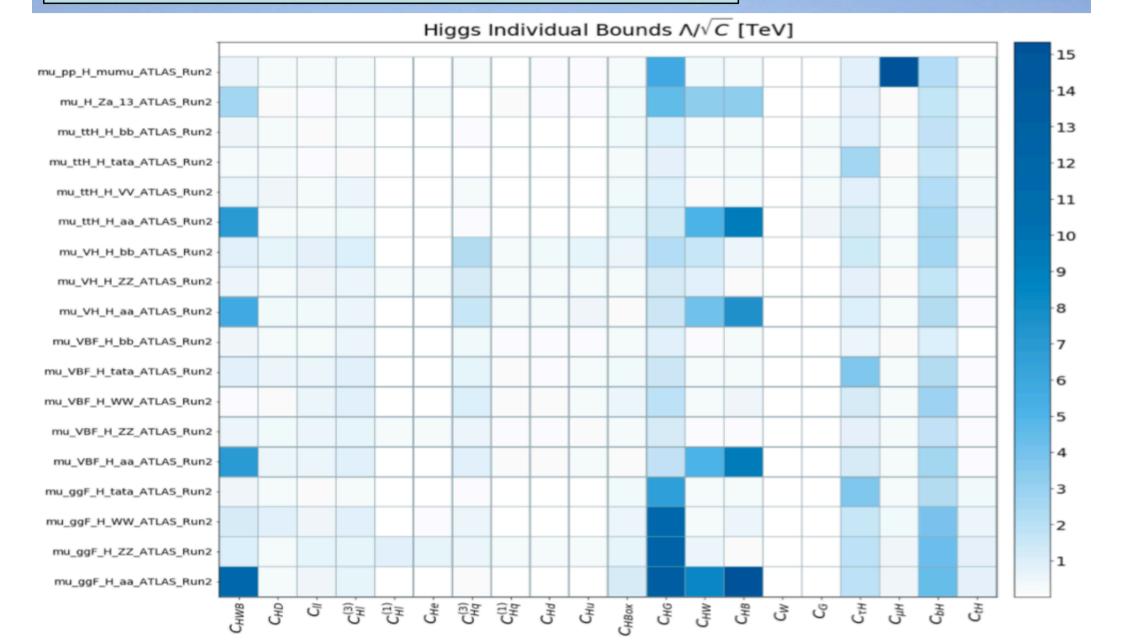
Madigan, Mimasu, Sanz &

Data included in Global Fit


ſ	EW precision observables		Def		
		LHC Run 2 Higgs	Tevatron & Run 1 top nobs	Ref.	
	Precision electroweak measurem $D = -0$ $P_{0}^{0} A_{0}^{0} A_{0}^{0} (SLD) A_{0}^{0}$	ATLAS combination (Tevatron combination of differential t t forward-backward asymmetry, 4	[7]	
	$\Gamma_Z, \sigma_{\text{had.}}^0, R_\ell^0, A_{FB}^\ell, A_\ell(\text{SLD}), A$	including ratios of bra	$A_{FB}(m_{i\bar{i}})$.		
	Combination of CDF and D0 W	Signal strengths coars	ATLA Run 2 top	nobs	Ref.
	LHC run 1 W boson mass measu	CMS LHC combinatic	$\frac{\frac{d\sigma}{dm_{t\bar{t}}}}{\text{ATLA}} \xrightarrow{\text{CMS } t\bar{t} \text{ differential distributions in the dilepton channel.}}$	6	36,
١	Diboson LEP & LHC	Production: ggF , VB	$\frac{d\sigma}{dm_{t\bar{t}}}$		231]
i i	$W^+ W^-$ angular distribution me	Decay: $\gamma\gamma$, ZZ, W ⁺ W	$\frac{dm_{t\bar{t}}}{CMS}$ CMS $t\bar{t}$ differential distributions in the ℓ +jets channel.	10	[37]
	W^+W^- total cross section meas	CMS stage 1.0 STXS	$\frac{d\sigma}{dm_{t\bar{t}}} = \frac{d\sigma}{dm_{t\bar{t}}}$		
	final states for 8 energies	13 parameter fit 7 pa	CMS ATLAS measurement of differential t \bar{t} charge asymmetry, $A_C(m_{t\bar{t}})$.	5	[38]
	W^+W^- total cross section meas	CMS stage 1.0 STXS	dilepte ATLAS $t\bar{t}W$ & $t\bar{t}Z$ cross section measurements. $\sigma_{t\bar{t}W} \sigma_{t\bar{t}Z}$ ATLA CMS $t\bar{t}W$ & $t\bar{t}Z$ cross section measurements. $\sigma_{t\bar{t}W} \sigma_{t\bar{t}Z}$	2	[39]
	qqqq final states for 7 energies	CMS stage 1.1 STXS	ATLA CMS $t\bar{t}W$ & $t\bar{t}Z$ cross section measurements. $\sigma_{t\bar{t}W} \sigma_{t\bar{t}Z}$ dilepte CMS $t\bar{t}Z$ differential distributions.	11	[40]
	W^+W^- total cross section meas	CMS differential cross	ATLA $d\sigma$ $d\sigma$	4 4	[41]
	& $qqqq$ final states for 8 energies	tion in the $WW^* \to \ell$	AC(III TA	5 5	[42]
	ATLAS W^+W^- differential cre	$\frac{d\sigma}{dn_{jet}}$ $\frac{d\sigma}{dp_H^T}$	CMS <i>i</i> CMS measurement of differential cross sections and charge ratios for $t-\frac{d\sigma}{dm_{s_1}dy}$ channel single-top quark production.	55	[+2]
		$\frac{an_{\text{jet}}}{\text{ATLAS } H \to Z\gamma \text{ sign}}$	$\frac{dm_{i\bar{i}}dy}{\text{ATLA}} = \frac{d\sigma}{dp_{t+\bar{i}}^T} + R_t \left(p_{t+\bar{i}}^T \right)$		
	$p_T > 120 \text{ GeV}$ overflow bin ATLAS $W^+ W^-$ fiducial differen	ATLAS $H \to \mu^+ \mu^-$ si	decay. CMS measurement of t-channel single-top and anti-top cross sections.	4	[43]
			ATLA $\sigma_t, \sigma_{\bar{t}}, \sigma_{t+\bar{t}} \& R_t$	1	
	$\frac{d\sigma}{dp_{\ell_1}^T}$		$\frac{f_0, f_L}{\text{CMS}} \xrightarrow{\text{CMS measurement of the } t-\text{channel single-top and anti-top cross sections.}}$	1111	[44]
	ATLAS $W^{\pm} Z$ fiducial differentia	l cross section in the ℓ^+	$ \begin{array}{c} \text{CMS} \\ f_0, f_L \end{array} \sigma_t \mid \sigma_{\bar{t}} \mid \sigma_{t+\bar{t}} \mid R_t. \end{array} $		
	$\frac{d\sigma}{dp_z^T}$		ATLA CMS <i>t</i> -channel single-top differential distributions.	4 4	[45]
	CMS $W^{\pm}Z$ normalised fiducial d	ifferential cross section	$\frac{\text{CMS}}{dp_{t+i}^T} \left \frac{d\sigma}{d y_{t+i} } \right = \frac{d\sigma}{d y_{t+i} }$		
1	channel, $\frac{1}{\sigma} \frac{d\sigma}{dp_{T}^{T}}$		$\begin{array}{c} \begin{array}{c} \text{ATLA} \\ \frac{d\sigma}{d\sigma} \end{array} & \text{ATLAS } tW \text{ cross section measurement.} \end{array} \\ \begin{array}{c} 328 \text{ meas} \end{array}$	uremen	nts 🗌
	ATLAS Z_{jj} fiducial differential c	ross section in the $\ell^+\ell^-$	$\frac{d\sigma}{dp_t^T} \xrightarrow{\text{CMS } tZ \text{ cross section measurement.}} $		
			CMS tW cross section measurement.	ed in	
	LHC Run 1 Higgs		$\frac{1}{dn^T}$		
	ATLAS and CMS LHC Run 1 co	mbination of Higgs sign	CMS_{t} CMS $tZ (Z \rightarrow \ell^+ \ell^-)$ cross section measurement	1 •	
	Production: ggF, VBF, ZH, W.	H & ttH	$\frac{\sigma_t \sigma_{t+\bar{t}} R_t}{global a}$	nalys <u>is</u>	5
	Decay: $\gamma\gamma$, ZZ, W^+W^- , $\tau^+\tau^-$ 8	$z b\bar{b}$	ATLAS s-channel single-top cross section measurement.	[33]	-
ATLAS inclusive $Z\gamma$ signal strength measurement			ATLAS <i>tW</i> cross section measurement in the single lepton channel 1	[34]	State of
	The state of the state of the		ATLAS tW cross section measuremen JE, Madigan, Mimasu, Sanz & You	arXiv:2012.	02779

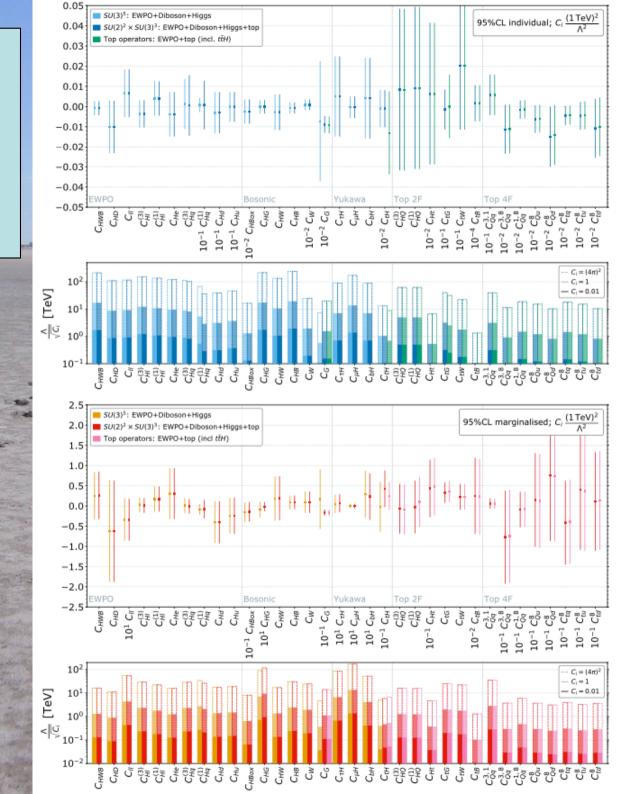
Dimension-6 Constraints with Flavour-Universal SU(3)⁵ Symmetry

- Individual operator coefficients
- Marginalised


 over all other
 operator
 coefficients

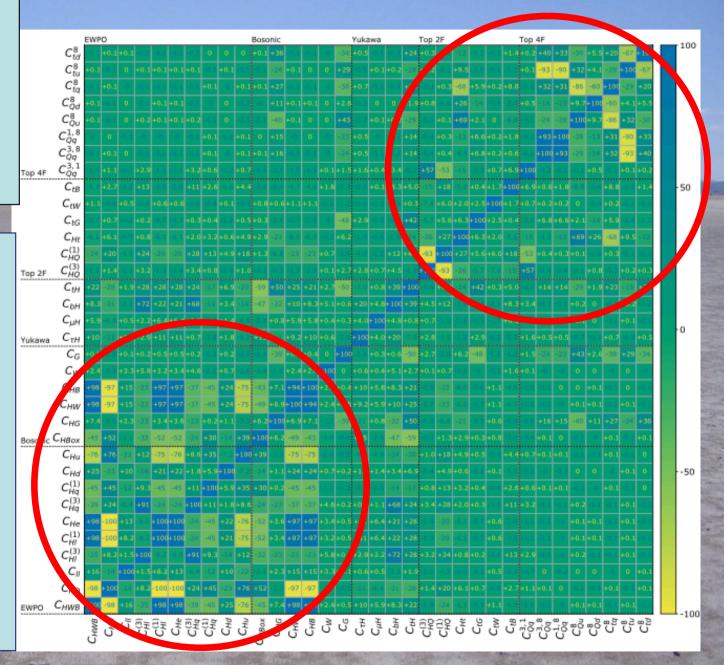
JE, Madigan, Mimasu, Sanz & You arXiv:2012.02779

Impacts of Measurements $\left| \frac{X}{X_{SM}} = 1 + \sum_{i} \frac{a_{i}^{X} C_{i}}{\Lambda^{2}} + \mathcal{O} \right|$



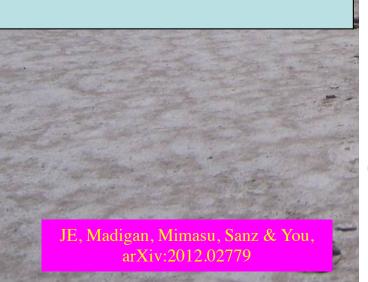
Dimension-6 Constraints with Top-Specific $SU(2)^2 \times SU(3)^3$

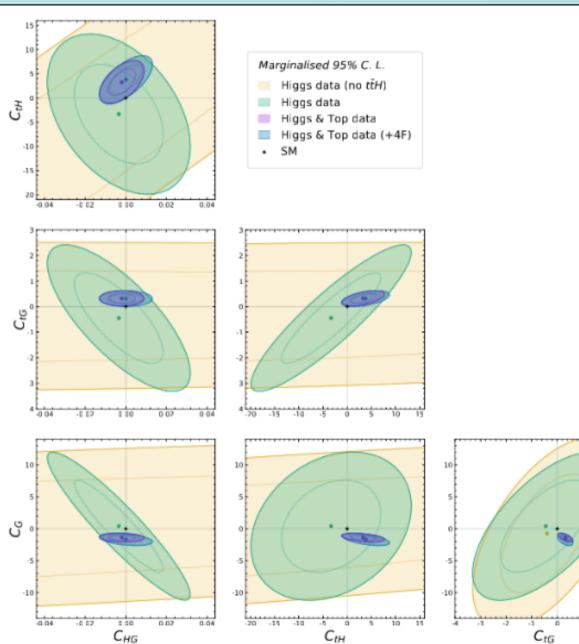
- Individual operator coefficients
 - Marginalised
 over all other
 operator
 coefficients


JE, Madigan, Mimasu, Sanz & You arXiv:2012.02779

Correlation Analysis

- EWPO and boson sectors correlated
- Also within top sector
- Weaker correlations between sectors


JE, Madigan, Mimasu, Sanz & You arXiv:2012.02779

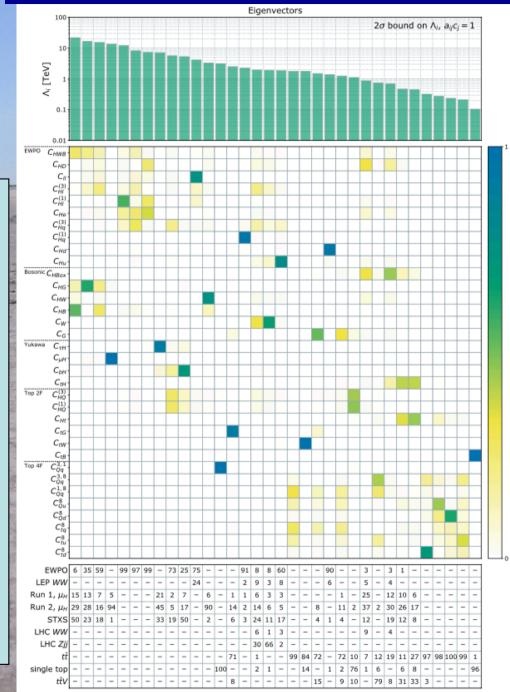


Example of Interplay between Data Sets

- Include ttH
- Include top data
- Global analysis

Principal Component Analysis

- Diagonalise correlation matrix
- Analyze eigenvectors and eigenvalues
- Scales from 20 TeV to 100 GeV
- Strongest constraints from Electroweak, H


JE, Madigan, Mimasu, Sanz & You. arXiv:2012.02779

Less constrained operator combinations \rightarrow

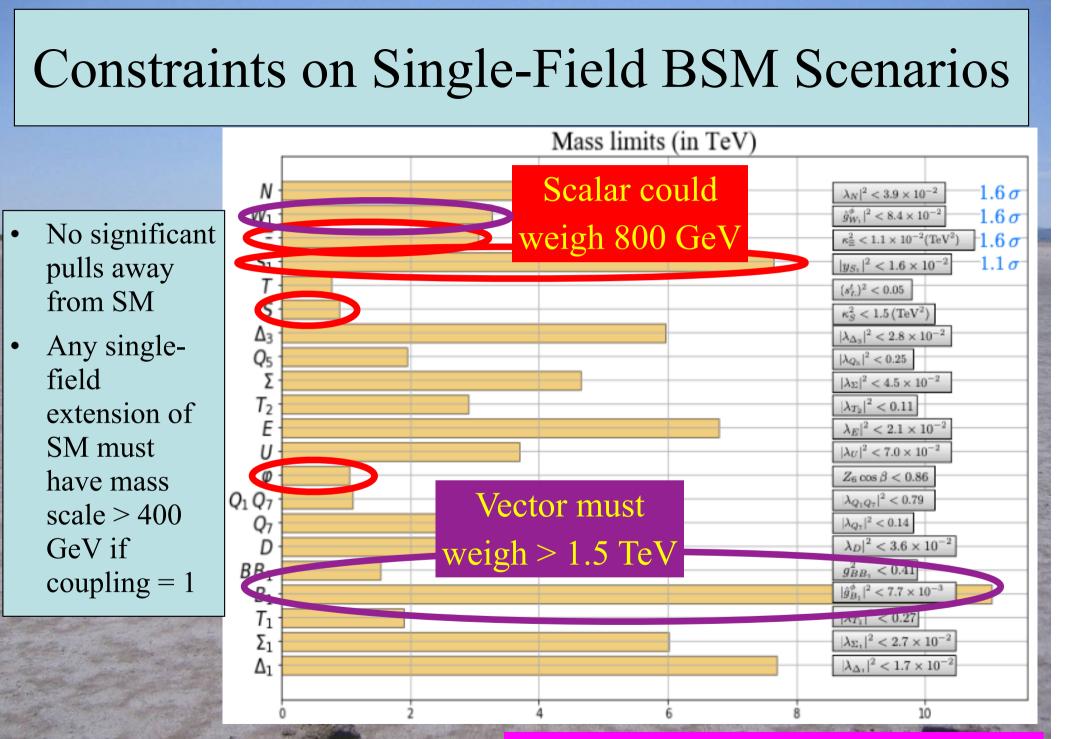
Relative

importance

%

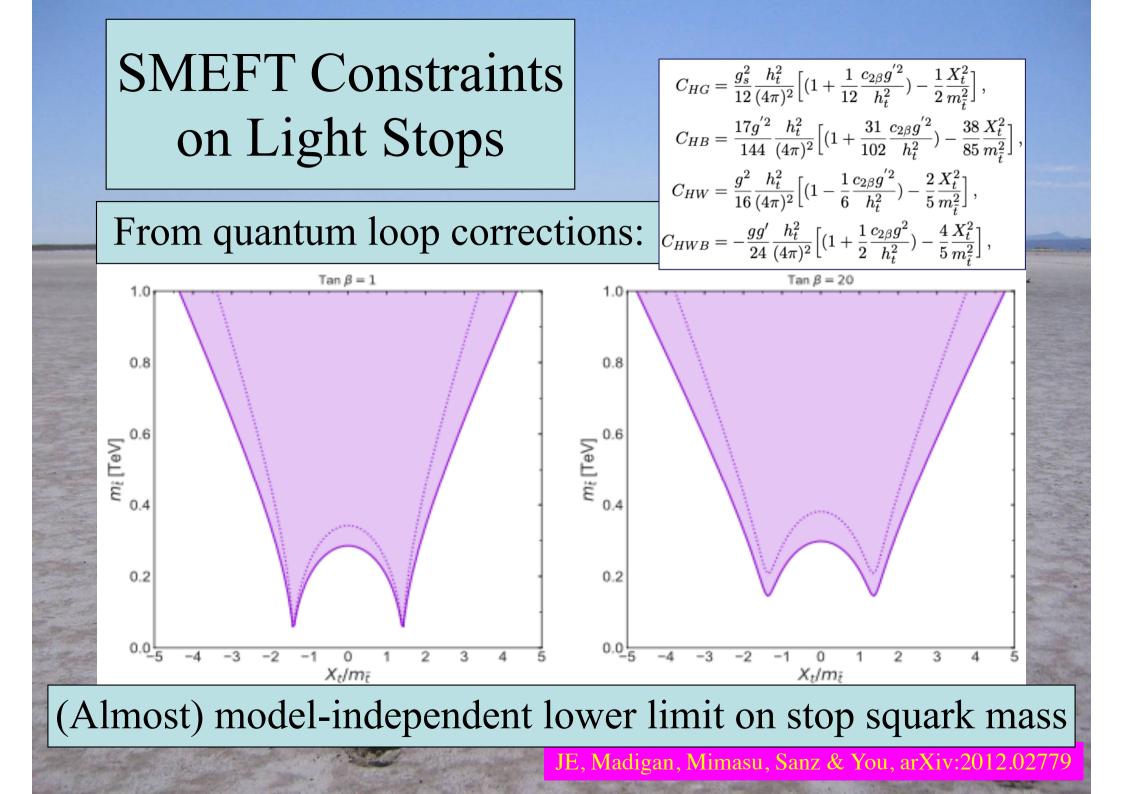
Relative constraining power (%)

Single-Field Extensions of the Standard Model

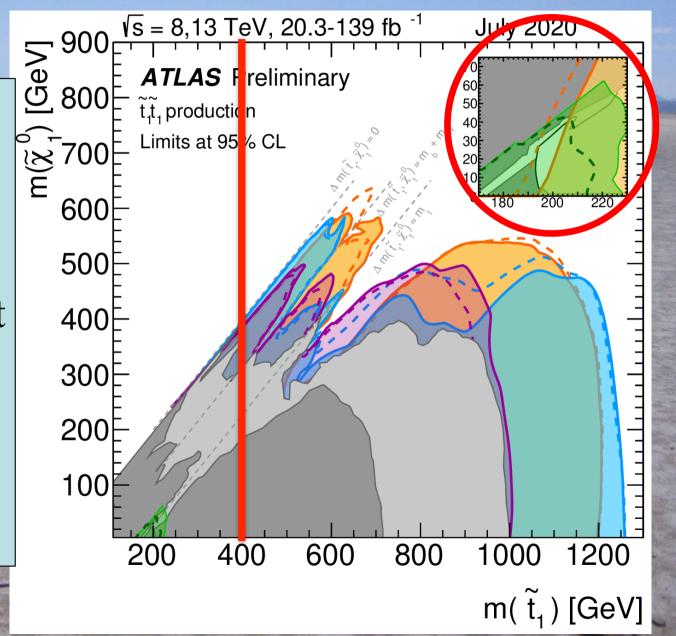

	Name	Spin	SU(3)	SU(2)	U(1)	Name	Spin	SU(3)	SU(2)	U(1)
	S	0	1	1	0	Δ_1	$\frac{1}{2}$	1	2	$-\frac{1}{2}$
1	S_1	0	1	1	1	Δ_3	$\frac{1}{2}$	1	2	$-\frac{1}{2}$
	arphi	0	Spin ze	ero <mark>2</mark>	$\frac{1}{2}$	Σ	$\frac{1}{2}$	1	3	0
	[I]	0	1	3	0	Σ_1	$\frac{1}{2}$	1	3	-1
	Ξ_1		1	3	1	U	$\frac{1}{2}$	3	1	$\frac{2}{3}$
	B		1	1	0	D	$\frac{1}{2}$	3	1	$-\frac{1}{3}$
11111	B_1	1	Vector-	1	1	Q_1	$\frac{1}{2}$	3	2	$\frac{1}{6}$
ANN A	W	1		3	0	Q_5	$\frac{1}{2}$	3	2	$-\frac{5}{6}$
	W_1	1	1	3	1	Q_7	$\frac{1}{2}$	3	2	$\frac{7}{6}$
A LA	N	$\frac{1}{2}$	1	1	0	T_1	$\frac{1}{2}$	3	3	$-\frac{1}{3}$
ALC: NO	E	$\frac{1}{2}$	1	1	-1	T_2	$\frac{1}{2}$	3	3	$\frac{2}{3}$
A and a little	T	$\frac{1}{2}$	3	1	$\frac{2}{3}$	TB	$\frac{1}{2}$	3	2	$\frac{1}{6}$

JE, Madigan, Mimasu, Sanz & You, arXiv:2012.02779

Contributions to SMEFT Coefficients

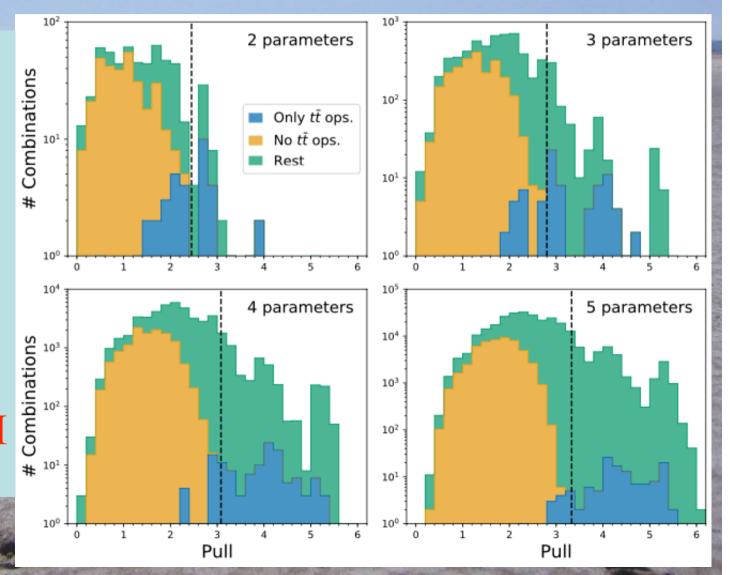

	Model	C_{HD}	C_{ll}	C_{Hl}^3	C^1_{Hl}	C_{He}	$C_{H\Box}$	$C_{ au H}$	C_{tH}	C_{bH}
Spin ze							-1			
Spin Z	S_1		1		-					
	Σ			58	$\frac{\frac{3}{16}}{-\frac{3}{16}}$			$\frac{y_{ au}}{4}$		
	Σ_1			$-\frac{5}{8}$ $-\frac{1}{4}$	$-\frac{3}{16}$			$\frac{y_{ au}}{8}$		
	N			$-\frac{1}{4}$	$\frac{\frac{1}{4}}{1}$			21		
				$-\frac{1}{4}$	$-\frac{1}{4}$	1		$\frac{\frac{y_{\tau}}{2}}{u_{\tau}}$		
	Δ_1					$\frac{\frac{1}{2}}{1}$		$rac{y_{ au}}{2} \ u_{ au}$		
	Δ_3	1				$-\frac{1}{2}$	1	$rac{y_{ au}}{2} \\ rac{y_{ au}}{y_{ au}}$	y_t	y_b
Coin T	B_1						$-\frac{1}{2}$	$-\frac{y_{\tau}}{2}$	$-\frac{y_t}{2}$	$-\frac{y_b}{2}$
Spin ze							$\frac{\frac{1}{2}}{-\frac{1}{8}}$	$rac{y_ au}{-rac{y_ au}{8}}$	$rac{y_t}{-rac{y_t}{8}}$	$egin{array}{c} y_b \ -rac{y_b}{8} \end{array}$
Spin ze	$\varphi = \varphi$	$-\frac{1}{4}$					8	$-\frac{8}{-y_{ au}}$	$-\frac{8}{-y_t}$	$\frac{8}{-y_b}$
	$\{B,B_1\}$	<i>l</i> ector					1	$y_{ au}$	$\frac{g_t}{y_t}$	y_b
Ser.	$\overline{\{Q_1,Q_7\}}$								$\frac{y_t}{y_t}$	
	Model	C_{HG}	C_{Hq}^3	C^1_{Hq}	$(C^{3}_{Hq})_{33}$	$(C^{1}_{Hq})_{33}$	C_{Hu}	C_{Hd}	C_{tH}	C_{bH}
	U		$-\frac{1}{4}$	$\frac{1}{4}$	$-\frac{1}{4}$	$\frac{1}{4}$			$rac{y_t}{2}$	
	D		$-\frac{1}{4}$	$-\frac{1}{4}$	$\frac{-\frac{1}{4}}{-\frac{1}{4}}$	$-\frac{1}{4}$				$\frac{\frac{y_b}{2}}{\frac{y_b}{2}}$
Frank Street	Q_5							$-\frac{1}{2}$		$\frac{y_b}{2}$
Longer ?	Q_7					0	$\frac{1}{2}$		$\frac{y_t}{2}$	
	T_1		$-\frac{5}{8}$ $-\frac{5}{8}$	$\frac{-\frac{3}{16}}{\frac{3}{16}}$	$-\frac{5}{8} \\ -\frac{5}{8} \\ -\frac{1}{2} \frac{M_T^2}{v^2}$	$-rac{3}{16} \ rac{3}{16} \ rac{1}{2} rac{M_T^2}{v^2}$			$\frac{y_t}{4}$	$\frac{\frac{y_b}{8}}{\frac{y_b}{4}}$
The second second	T_2	$M^2 = (0.02)$	$-\frac{5}{8}$	$\frac{3}{16}$	$-\frac{2}{8}$	$\frac{\frac{3}{16}}{16}$			$rac{rac{y_t}{8}}{y_trac{M_T^2}{v^2}}$	$\frac{g_b}{4}$
The state as	T	$-rac{M_T^2}{v^2}rac{lpha_s(0.02)}{8\pi}$			$-rac{1}{2}rac{NTT}{v^2}$	$\frac{1}{2} \frac{w_{\bar{T}}}{v^2}$			$y_t rac{m_T}{v^2}$	

JE, Madigan, Mimasu, Sanz & You, arXiv:2012.02779


JE, Madigan, Mimasu, Sanz & You, arXiv:2012.02779

and the second s

Direct Search Constraints on Light Stops


- Patchwork of many modeldependent searches
- Indirect constraint excludes lowmass region (almost) modelindependently

Model-Independent BSM Survey

- Top-less sector fits SM very well
- Top sector does not fit so well
- Overall, pulls not excessive
- No hint of BSM

Summary

- **Remember Sun Tzu:** search for new physics indirectly as well as directly
- SMEFT is an effective, model-independent tool for probing indirectly possible physics beyond the SM
- It can be used to analyze jointly precision electroweak, diboson and top quark data from LHC and elsewhere
- Our current analysis indicates that the scale of new physics is probably > TeV
- Useful for assessing sensitivities of proposed future accelerators

Dimension 4

Standard Model

SMEFT dimensions > 4