CP Violation in Rare Lepton-Number-Violating W Decays at the LHC

David London

Université de Montréal

BSM-2021 *Thursday, April 1, 2021*

Talk based on work done in collaboration with F. Najafi and J. Kumar [arXiv:2011.03686 [hep-ph]].

Introduction

Baryon asymmetry of universe: requires (i) baryon number violation, (ii) CP violation, (iii) out of equilibrium.

Leptogenesis: create lepton-number asymmetry via CP-violating (CPV) lepton-number-violating (LNV) processes, convert to baryon-number asymmetry via (B - L-conserving) sphaleron processes.

Common scenario in leptogenesis models: \exists pair of almost-degenerate heavy sterile neutrinos. Good for CPV (I will show later how this works).

Seesaw mechanism w/ 1 LH and 1 RH (sterile) neutrino:

$$M = \left(egin{array}{cc} 0 & m_D \ m_D & m_R \end{array}
ight) \implies m_
u = rac{m_D^2}{m_R} \ , \qquad m_N = m_R \ .$$

Standard choice: $m_D \sim m_t$, $m_R \sim 10^{15}$ GeV. But can also have (e.g.) $m_D \sim m_e$, $m_R \sim 1$ TeV.

David London (UdeM)

With 3 LH and 3 RH neutrinos, have more free parameters. Find: can obtain 3 ultralight neutrinos ν_i and 3 heavy Majorana neutrinos N_i , with N_1 and N_2 nearly degenerate and with masses of O(GeV). L. Canetti et al., Phys. Rev. D **90**, 125005 (2014)

Also, \exists heavy-light neutrino mixing:

$$u_{\ell} = \sum_{j=1}^{3} B_{\ell j} \nu_j + \sum_{i=1}^{3} B_{\ell N_i} N_i \; .$$

Here the parameters $B_{\ell N_i}$ parametrize the mixing.

Point: with $B_{\ell N_i} \neq 0$ and $M_N < M_W$, can have $W^- \to \ell_1^- N_i$, with $N_i \to \ell_2^- \ell_3^+ \nu_{\ell_3}$, $\ell_2^- (q'\bar{q})^+$ (LNV) or $N_i \to \ell_2^+ \ell_3^- \bar{\nu}_{\ell_3}$ (LNC). Searches for such decays constrain

$$|B_{\ell N}|^2 \le 10^{-5}$$
 ($\ell = e, \mu$), for 1 GeV $\le m_N \le$ 80 GeV.

⇒ can look for CPV LNV processes in decays of mesons and tau leptons. E.g., $B^{\pm} \rightarrow D^0 \ell_1^{\pm} \ell_2^{\pm} \pi^{\mp}$. Occurs via $B^{\pm} \rightarrow D^0 W^{*\pm} (\rightarrow \ell_1^{\pm} N_i)$, with $N_i \rightarrow \ell_2^{\pm} W^{*\mp} (\rightarrow \pi^{\mp})$. G. Cvetič et al., Eur. Phys. J. C **80**, 1052 (2020)

Key point: can search for similar effects in the decays of *real* Ws at the LHC, in $W^- \rightarrow \ell_1^- \ell_2^- (f'\bar{f})^+$.

This decay has been studied extensively as a signal of LNV. Here we push further and study CP violation in this decay.

Note: in $W^- \to \ell_1^- \ell_2^- (f'\bar{f})^+$, in our study we focus on the pure LNV decay $W^- \to \ell_1^- \ell_2^- (q'\bar{q})^+$.

A difference between the rates of $W^- \to \ell_1^- \ell_2^- (q'\bar{q})^+$ and its CP-conjugate decay $W^+ \to \ell_1^+ \ell_2^+ (q'\bar{q})^-$ is a signal of CP violation.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

CP Violation – Review

Suppose the decay $W^- \rightarrow F$ has two contributing amplitudes, A and B:

$$A_{
m tot} = A + B = |A|e^{i\phi_A}e^{i\delta_A} + |B|e^{i\phi_B}e^{i\delta_B}$$

where $\phi_{A,B}$ and $\delta_{A,B}$ are CP-odd and CP-even phases, respectively. The CP asymmetry is

$$A_{\rm CP} = \frac{BR(W^- \to F) - BR(W^+ \to \bar{F})}{BR(W^- \to F) + BR(W^+ \to \bar{F})}$$

=
$$\frac{2|A||B|\sin(\phi_A - \phi_B)\sin(\delta_A - \delta_B)}{|A|^2 + |B|^2 + 2|A||B|\cos(\phi_A - \phi_B)\cos(\delta_A - \delta_B)}.$$

Point: a nonzero $A_{\rm CP}$ requires $\phi_A - \phi_B \neq 0$ and $\delta_A - \delta_B \neq 0$. Also, $A_{\rm CP}$ is sizeable only when the two amplitudes are of similar size $(|A| \sim |B|)$.

In $W^- \to \ell_1^- \ell_2^- (q'\bar{q})^+$, the two amplitudes are $W^- \to \ell_1^- \bar{N}_{1,2}$, with each of $\bar{N}_{1,2} \to \ell_2^- (q'\bar{q})^+$. Here $\phi_1 = \arg[B_{\ell_1 N_1} B_{\ell_2 N_1}]$ and $\phi_2 = \arg[B_{\ell_1 N_2} B_{\ell_2 N_2}]$, $\phi_1 - \phi_2$ can be nonzero.

David London (UdeM)

 \exists two sources of CP-even phases. First, the N_i propagator:

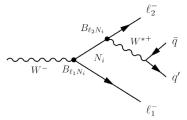
$$\begin{array}{lcl} \displaystyle \frac{1}{(p_N^2 - M_{N_i}^2) + i M_{N_i} \Gamma_{N_i}} & = & \displaystyle \frac{1}{\sqrt{(p_N^2 - M_{N_i}^2)^2 + M_{N_i}^2 \Gamma_{N_i}^2}} \, e^{i \eta_i} \ , \\ \\ & \text{with} & \tan \eta_i & = & \displaystyle \frac{-M_{N_i} \Gamma_{N_i}}{(p_N^2 - M_{N_i}^2)} \ . \end{array}$$

 N_1 and N_2 do not have exactly the same mass $\implies \eta_1 - \eta_2 \neq 0$. E.g., if $\eta_1 = -\pi/2$ (N_1 on-shell), then $|\eta_2| < \pi/2$. This is resonant CP violation.

Note: since the N_i are nearly degenerate., the two amplitudes are of similar size, and $A_{\rm CP}$ can be sizeable.

Second, \exists oscillations of heavy neutrinos. The time evolution of a heavy N_i mass eigenstate involves e^{-iE_it} . $M_{N_1} \neq M_{N_2} \Longrightarrow E_1 \neq E_2 \Longrightarrow$ different e^{-iE_it} factors. This is another type of CP-even phase difference, and can also lead to CP violation.

$$\mathcal{M}(\mathcal{W}^- \to \ell_1^- \bar{\mathcal{N}}_i, \mathcal{N}_i \to \ell_2^- \mathcal{W}^{*+} (\to (\boldsymbol{q}' \bar{\boldsymbol{q}})^+)$$



The decay amplitude is

$$\begin{aligned} \mathcal{M}_{i}^{\mu\nu} &= \bar{\ell}_{1}\gamma^{\mu}P_{L}\left(\frac{g}{\sqrt{2}}B_{\ell_{1}N_{i}}\right)N_{i}\times e^{-\Gamma_{i}t/2}e^{-iE_{i}t}\times \bar{\ell}_{2}\gamma^{\nu}P_{L}\left(\frac{g}{\sqrt{2}}B_{\ell_{2}N_{i}}\right)N_{i} \\ &\rightarrow \frac{\frac{g^{2}}{2}B_{\ell_{1}N_{i}}B_{\ell_{2}N_{i}}M_{i}e^{-\Gamma_{i}t/2}e^{-iE_{i}t}}{p_{N}^{2}-M_{i}^{2}+i\Gamma_{i}M_{i}}L^{\mu\nu} , \end{aligned}$$

where $L^{\mu\nu} = \bar{\ell}_1 \gamma^{\mu} \gamma^{\nu} P_R \ell_2^c$.

< ∃ > < ∃

The total amplitude is $\mathcal{M}^{\mu\nu} = \mathcal{M}^{\mu\nu}_1 + \mathcal{M}^{\mu\nu}_2$.

Writing $B_{\ell_1 N_1} B_{\ell_2 N_1} = B_1 e^{i\phi_1}$, $B_{\ell_1 N_2} B_{\ell_2 N_2} = B_2 e^{i\phi_2}$, we have

$$\mathcal{M}^{\mu\nu} = \frac{g^2}{2} \left(\frac{M_1 B_1 e^{i\phi_1} e^{-\Gamma_1 t/2} e^{-iE_1 t}}{p_N^2 - M_1^2 + i\Gamma_1 M_1} + \frac{M_2 B_2 e^{i\phi_2} e^{-\Gamma_2 t/2} e^{-iE_2 t}}{p_N^2 - M_2^2 + i\Gamma_2 M_2} \right) L^{\mu\nu} .$$

Note the two amplitudes have relative CP-odd phases and (2 sources of) relative CP-even phases $\implies \exists$ CP violation.

With this expression, we (i) compute $|\mathcal{M}^{\mu\nu}|^2$ using the narrow-width approximation, (ii) integrate over time (we do not aim to measure the neutrino oscillations), (iii) perform the phase-space integrals, and (iv) construct $A_{\rm CP}$.

A_{CP}

With the assumption that $B_1 = B_2$, we find

$$A_{
m CP} = rac{2(2y-x)\sin\delta\phi}{(1+x^2)(1+4y^2)+2(1-2xy)\cos\delta\phi} \; ,$$

with

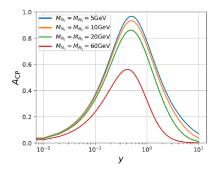
$$x \equiv \frac{\Delta E}{\Gamma}$$
, $y \equiv \frac{\Delta M}{\Gamma}$ with $x = y \frac{M_N}{M_W}$.

x and y each play the role of the CP-even phase-difference term $\sin(\delta_A - \delta_B)$. x arises from neutrino oscillations (ΔE); y is due to the neutrino propagator (ΔM).

y is always present; x is generally subdominant, except for large values of M_N . $|2y - x| \le |2y| \Longrightarrow$ as |x| increases, $A_{\rm CP}$ decreases. We therefore expect to see smaller CP-violating effects for larger values of M_N .

イロト イ団ト イヨト --

Estimate potential size of $A_{\rm CP}$: set $\delta \phi = \pi/2$, plot $A_{\rm CP}$ as a function of y, for various values of M_N :



Find

- Large values of $|A_{\rm CP}|$ (\geq 0.9) can be produced for light M_N .
- Maximal values of |A_{CP}| are found when y ≃ ±¹/₂, with |A_{CP}| decreasing for larger/smaller values of |y|.
- As expected, the size of $|A_{\rm CP}|$ decreases as M_N increases, with $|A_{\rm CP}|_{\rm max} < 0.6$ for larger values of M_N .

David London (UdeM)

CPV in LNV W Decays

Experimental Prospects

 $A_{\rm CP}$: compare N_{--} (# events of $W^- \to \ell_1^- \ell_2^- (q'\bar{q})^+$) and N_{++} (# events of $W^+ \to \ell_1^+ \ell_2^+ (q\bar{q}')^-$). Take into account fact that number of W^- and W^+ bosons produced is not the same: $R_W \equiv \sigma^+ / \sigma^- = 1.295 \pm 0.003 \ (stat) \pm 0.010 \ (syst)$ at $\sqrt{s} = 13$ TeV.

Given an $A_{\rm CP}$, number of events required to show it is nonzero at $n\sigma$ is

$$N_{\rm events} = rac{n^2}{A_{CP}^2 \epsilon} \; ,$$

where ϵ is the experimental efficiency \implies given N_{events} , can compute smallest value of $|A_{\text{CP}}|$ measurable at $n\sigma$.

Consider three versions of the LHC: (i) the high-luminosity LHC (HL-LHC, $\sqrt{s} = 14 \text{ TeV}$), (ii) the high-energy LHC (HE-LHC, $\sqrt{s} = 27 \text{ TeV}$), (iii) the future circular collider (FCC-hh, $\sqrt{s} = 100 \text{ TeV}$). Use FeynRules and MadGraph to generate events, take $|B_{\ell N}|^2 \leq 10^{-5}$.

David London (UdeM)

Note: N_{events} not whole story, need number of *measurable* events \implies look at the *N* lifetime and determine what percentage of the heavy neutrinos actually decay in the detector. E.g., CMS: for $M_N = 1$ GeV, 5 GeV and 10 GeV, multiplicative reduction factor was 10^{-3} , 0.1 and $\simeq 1$.

Results using overall efficiency of $\epsilon \sim 1\%$ (CMS):

Minimum $A_{ m CP}$ measurable at 3σ			
Machine	$M_N = 5 { m GeV}$	$M_N = 10 { m GeV}$	$M_N = 50 { m GeV}$
HL-LHC	15.0%	4.8%	7.4%
HE-LHC	5.1%	1.6%	2.5%
FCC-hh	2.1%	0.7%	1.0%

- As LHC increases in energy and integrated luminosity, smaller values of A_{CP} are measurable.
- At a given machine, measurable $A_{\rm CP}$ decreases as M_N increases. (But there is a reduction factor due to the N lifetime for small M_N .
- Most promising results are for $M_N = 10$ GeV, but in all cases reasonably small values of $A_{\rm CP}$ can be probed.

David London (UdeM)

CPV in LNV W Decays

Conclusions

In many leptogenesis models, a lepton-number asymmetry arises through CP-violating decays of a pair of nearly-degenerate heavy neutrinos N_1 and N_2 . Intriguing: the masses of $N_{1,2}$ can be small, O(GeV).

Heavy-light neutrino mixing leads to LNV processes at the LHC such as $W^{\pm} \rightarrow \ell_1^{\pm} \ell_2^{\pm} (q'\bar{q})^{\mp}$. A CPV rate asymmetry $A_{\rm CP}$ between the W^- and W^+ decays can arise due to the interference of the N_1 and N_2 contributions. The different W- ℓ - N_1 and W- ℓ - N_2 couplings produces the CP-odd phase difference; The CP-even phase difference is generated via propagator effects or oscillations of the heavy neutrino.

We consider 5 GeV $\leq M_N \leq$ 80 GeV and examine three versions of the LHC: (i) HL-LHC ($\sqrt{s} = 14$ TeV), (ii) HE-LHC ($\sqrt{s} = 27$ TeV), (iii) FCC-hh ($\sqrt{s} = 100$ TeV). Most promising result: FCC-hh with $M_N = 10$ GeV, $A_{\rm CP} = O(1\%)$ is measurable. But even in worst case, HL-LHC with $M_N = 5$ GeV, $A_{\rm CP} = O(10\%)$ can be measured.