AXION MODELS WITH FLAVOR-DEPENDENT COUPLINGS

based on

- Quentin Bonnefoy, E.D and Stefan Pokorski JHEP01 (2020), 191 [arXiv:1909.05336 [hep-ph]]
- Quentin Bonnefoy, Peter Cox, E.D., Tony Gherghetta and Minh Nguyen, [arXiv:2012.09728 [hep-ph]], JHEP, to appear.

april 1, 2021 BSM-2021

- 1) Flavorful axions : phenomenology
- 2) Flavorful axion : models
- Froggatt-Nielsen models
- Holographic axion
- Conclusions

INSTITUT POLYTECHNIQUE **DE PARIS**

Even if a total derivative, the famous CP-violating QCD term

$$\frac{\theta_{QCD}}{32\pi^2} tr(G_{\mu\nu}\tilde{G}^{\mu\nu})$$

has physical effects and breaks CP in strong interactions

The strong CP problem

Best solution: axion a, a pseudo-goldstone boson of a global Peccei-Quinn symmetry, which couples to gluons via anomalies

$$\frac{a}{f_a} tr(G_{\mu\nu} \tilde{G}^{\mu\nu}) \qquad \text{such that} \\ \theta_{QCD} \to \theta_{eff} = \theta_{QCD} + \frac{32\pi^2 \langle a \rangle}{f_a} = 0 \\ \text{Good Dark Matter candidate (talk M. Hertzberg)} \\ \text{E. Dudas - CNRS and E. Polytechnique} \end{cases}$$

1) Flavorful axions: phenomenology

The axion couples to fermions via derivative couplings

$$\mathcal{L}_{aff} = \frac{\partial_{\mu}a}{2f_a} \,\overline{f}_i \gamma^{\mu} \big(c_{f_i f_j}^V + c_{f_i f_j}^A \gamma_5 \big) f_j$$

The vector and axial couplings can be non-diagonal in the quarks/leptons flavors. Define

$$F_{f_i f_j}^{V,A} \equiv \frac{2f_a}{c_{f_i f_j}^{V,A}}$$

There are experimental constraints from flavor changing processes

E. Dudas – CNRS and E. Polytechnique

CITS POLYTECHNIQUE DE PARIS				
Flavors	Process	$F_{ij}^V [\text{GeV}]$	$F_{ij}^A \; [\text{GeV}]$	Ref.
	$K^+ \to \pi^+ a$	$\mathbf{6.8 imes 10^{11}}$	_	[85]
		$(2 imes \mathbf{10^{12}})$	—	
	$K^+ \to \pi^+ \pi^0 a$	—	1.7×10^{7}	[104]
			$(7 imes \mathbf{10^8})$	
	$\Lambda \to n \ a \ (\text{decay})$	6.9×10^{6}	5.0×10^{6}	[10]
		(1×10^9)	$(8 imes \mathbf{10^8})$	
	$\Lambda \rightarrow n \ a \ (SN)$	7.4×10^{9} [†]	$5.4 imes10^{9}$ †	
$s \rightarrow d$	$\Sigma^+ \to pa$	$6.7 imes 10^{6}$	2.3×10^{6}	[10]
		(7×10^8)	(3×10^8)	
	$\Xi^- \rightarrow \Sigma^- a$	1.0×10^{7}	1.3×10^{7} _	[10]
	$\Xi^0 \to \Sigma^0 a$	$1.6 imes 10^{7}$	$\mathbf{2.0 imes10^7}$	[10]
		(2×10^8)	(3×10^8)	
	$\Xi^0 \to \Lambda a$	5.4×10^{7}	1.0×10^{7}	[10]
		(9×10^8)	(2×10^8)	
	$K - \overline{K} \ (\Delta m_K)$	5.1×10^{5} †	2.0×10^{6}	[10]
	(ϵ_K)	0.9×10^{6} [†]	$\boldsymbol{4.4\times10^{7}}$	[133]

Taken from Camalich et al, hep-ph/2002.04623

5

INSTITUT POLYTECHNIQUE **DE PARIS**

2) Flavorful axions: models

- Froggatt-Nielsen models

- Standard Model gives no hint on the hierarchies of fermion masses and mixings (talks J. Ellis, S.King).
- An old profilic idea (Froggatt-Nielsen, 79) :
 - flavor U(1), spontaneously broken family symmetry.

Fermions of different generations have different charges

Fields:
$$Q_i$$
 , U_i^c , D_i^c
Charges q_i , u_i^c , d_i^c

One needs charged « flavons » Φ breaking the symmetry.

Yukawas (except top/bottom masses) are generated via nonrenormalizable operators

$$\mathcal{L}_{Yuk} = y_{ij}^{u} \left(\frac{\Phi}{M}\right)^{-\frac{q_i + u_j + h_2}{X_{\Phi}}} Q_i U_i^c h_2 + y_{ij}^d \left(\frac{\Phi}{M}\right)^{-\frac{q_i + d_j + h_1}{X_{\Phi}}} Q_i D_i^c h_1 + \cdots$$

after symmetry breaking

$$\begin{split} m_{ij}^u &= y_{ij}^u \ \epsilon^{-\frac{q_i + u_j + h_2}{X_{\Phi}}} v_2 \ , \ m_{ij}^d = y_{ij}^d \ \epsilon^{-\frac{q_i + d_j + h_1}{X_{\Phi}}} v_1 \\ \end{split}$$
where $\epsilon &= \frac{\langle \Phi \rangle}{M} \sim \lambda = 0.22$

8

- Origin of non-renormalizable operators ?
- String theory/supergravity In this case $M = M_P$
- Mixing of light fermions with heavy fermions of mass $M\sim \langle \Phi_2
 angle$

9

Global versus gauge symmetry :

- Often FN models imply $U(1)_X \times G^2_{SM}$ mixed anomalies.
- OK if $U(1)_X$ is global. In this case, the model has an axion with flavor-dependent couplings to fermions : flavorful axion (Wilczek;Calibbi,Goertz,Redigolo,Ziegler,Zupan; Ema, Hamaguchi,Moroi,Nakayama)
- Stronger couplings to light quarks:

$$\frac{q_i}{V} \partial_m a \ \bar{q}_i \gamma^m \ q_i$$

Couplings to gauge fields similar to DFSZ models

$$\frac{E}{N} = \frac{A_1 + A_2}{A_3} \sim \frac{8}{3}$$

Quantum Gravity does not like global symmetries: typically broken by gravity and nonperturbative effects.

If $U(1)_X$ is gauged, models with one spurion and heavy vector-like fermions generally incompatible with anomaly cancelation

- Stringy origin, Green-Schwarz mechanism
- Field theory, but heavy chiral fermions

Model with chiral heavy fermions

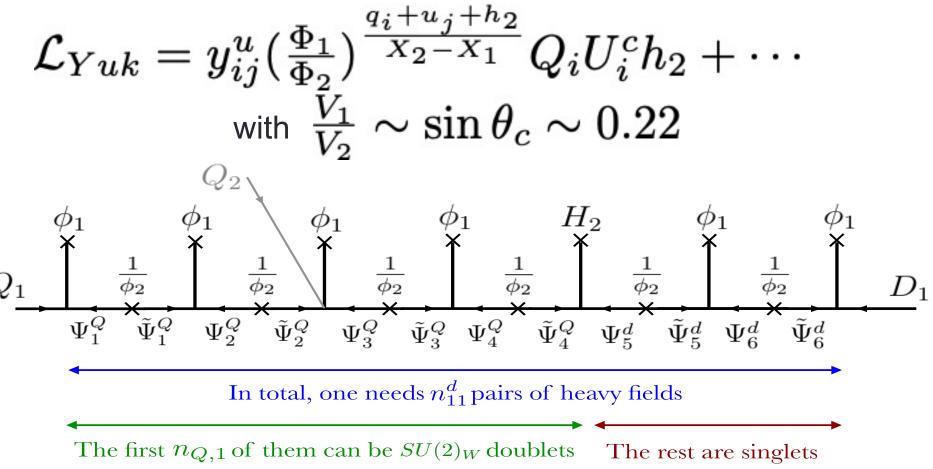
$$-\mathcal{L}_{\text{mass}} = y_i \Phi_2 \Psi_i \Psi_i^c$$

Anomaly cancels between heavy and light fermions

$$A_a^{SM} + A_a^{\rm heavy} = 0 \label{eq:seealso}$$
 (see also talk S. King)

INSTITUT POLYTECHNIQUE **DE PARIS**

Use one flavon Φ_1 , second field for fixing heavy fermion masses $M=\langle\Phi_2\rangle$



E. Dudas – CNRS and E. Polytechnique

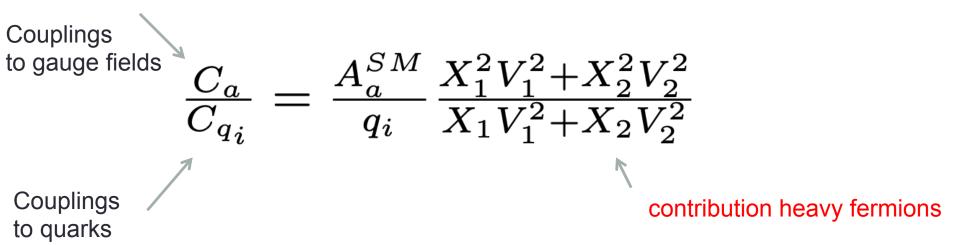
The model has a physical axion

$$\Phi_i = (V_i + r_i) \ e^{\frac{ia_i}{V_i}} \quad \blacksquare$$

$$a_{PQ} \sim X_2 V_2 a_1 - X_1 V_1 a_2$$

PQ symmetry is accidental, protected by the gauge symmetry

The low-energy couplings to gauge fields are determined both by heavy and light fermions :



Usual flavorful axion couplings correspond to $X_2 = 0$

E. Dudas - CNRS and E. Polytechnique

15

- Holographic axion (see also talk E.Kiritsis)
- 5d setup with AdS_5 geometry, UV (Planck) and IR (PQ) branes
- Bulk gauge group $G = G_{SM} imes U(1)_{PQ}$
- SM fields, two Higgses $H_{u,d}$, one singlet Φ
- Gauged PQ symmetry, broken explicitly UV brane
- Fields localized towards UV : elementary
- Fields localized towards IR: composites
- 4d Yukawas, axion couplings : overlap integrals

Bulk Fields Ψi;sn, Ha, d, f= ηe ia VIV (Hund) 1, SM PQ esplicit brealerip (a^{Co}) Hud group GSM × UNPR u Bulk browl brane

Due to the non-trivial profile of the fermions and the axion, axionfermion couplings are flavor non-diagonal

$$\frac{1}{(F_u^{V,A})_{ij}} \equiv \frac{(c_u^{V,A})_{ij}}{F_a} = X_{H_u} \int_{z_{UV}}^{z_{IR}} \frac{dz}{(kz)^4} \hat{f}_{a_X}^0 \left((A_R^u)_{ik} (f_{U_{kR}}^0)^2 (A_R^u^\dagger)_{kj} \mp (A_L^u)_{ik} (f_{Q_{kL}}^0)^2 (A_L^u^\dagger)_{kj} \right)$$

axion profile quark profiles

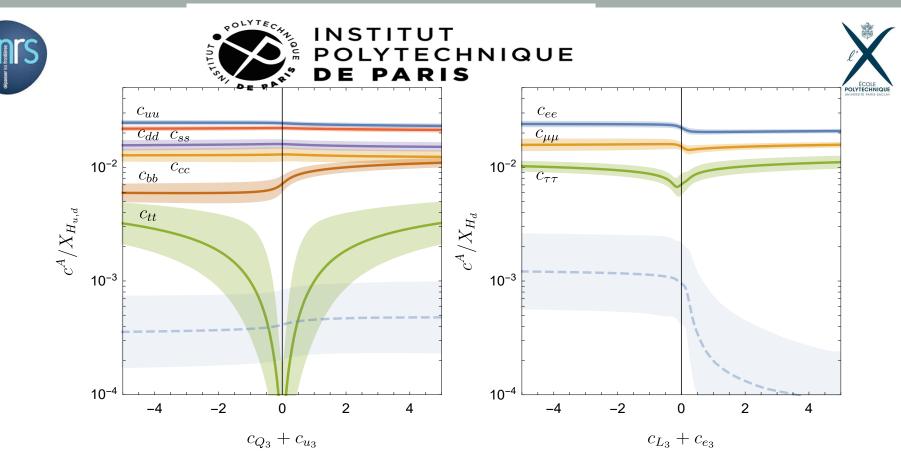


Figure 4: Left: absolute values of the diagonal axion-quark couplings c_{uu}^A (blue), c_{cc}^A (orange) and c_{tt}^A (green) in units of X_{H_u} , and c_{dd}^A (red), c_{ss}^A (purple) and c_{bb}^A (tan) in units of X_{H_d} as functions of $c_{Q_3} + c_{u_3}$. Right: absolute values of the diagonal axion-charged lepton couplings c_{ee}^A (blue), $c_{\mu\mu}^A$ (orange) and $c_{\tau\tau}^A$ (green) in units of X_{H_d} as functions of $c_{L_3} + c_{e_3}$. We fix $kz_{\rm IR} = 10^{10}, g_5^2 k = 1, \Delta = 10$ and $\sigma_0 = 3$, corresponding to $F_a \simeq 10^9$ GeV. The curves and bands depict the mean and standard deviation of $\log_{10} F^V$ obtained from a scan over anarchic 5D Yukawa couplings. The dashed line shows (left) c_{uc}^A and (right) $c_{e\mu}^A$ for reference.

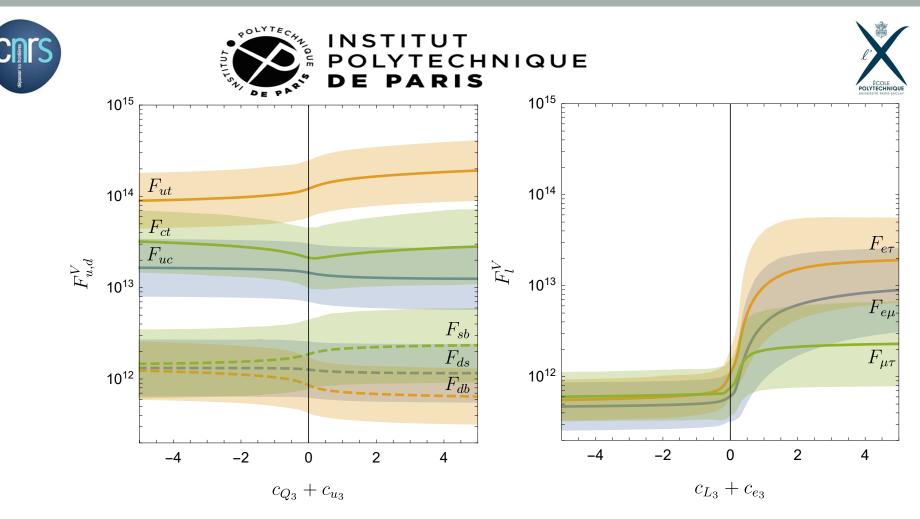


Figure 5: Absolute values of the off-diagonal elements of the axion-quark coupling matrix F_u^V (left, solid) and F_d^V (left, dashed) as functions of $c_{Q_3} + c_{u_3}$, and F_l^V (right) as a function of $c_{L_3} + c_{e_3}$. We fix $kz_{\rm IR} = 10^{10}, g_5^2 k = 1, \Delta = 10$ and $\sigma_0 = 3$, corresponding to $F_a \simeq 10^9$ GeV. The curves and bands depict the mean and standard deviation of $\log_{10} F^V$ obtained from a scan over anarchic 5D Yukawa couplings.

E. Dudas - CNRS and E. Polytechnique

- Gauged FN models with chiral heavy fermions more natural: dynamical mass, cancelation anomalies, axion. Low-energy axion couplings slightly modified compared to the flavorful axion. Explicit examples, perturbativity in minimal setup favors large axion decay constants $f \ge 10^{14} \ GeV$
- Composite axion arises naturally in holographic setups. Flavordependent axion couplings to bulk fermions, if axion profile is not flat. One needs one-two more orders of magnitude improvement in the data to test such models.

THANK YOU

Backup slides

