CP-violation measurements at the LHC

Where is the rest of it?

R. Santos

ISEL \& CFTC-UL

BSM2021 - Special Edition

1 April 2021

Previously on "Searches for CPV at the LHC"

\odot A benchmark model was born for CPV searches - The Complex 2HDM or C2HDM
\odot Unexpected twist - large CP-odd components of Yukawa couplings
\odot Season finale - combination of 3 decays as a sign of CP-violation

Season 2

\odot CP-violation in the Yukawas
© $\mathbf{C P}$-violation in the couplings to gauge bosons?
\odot Conclusions

The C2HDM

A benchmark model was born for CPV searches the Complex 2HDM

$$
\begin{aligned}
V= & m_{11}^{2}\left|\Phi_{1}\right|^{2}+m_{22}^{2}\left|\Phi_{2}\right|^{2}-m_{12}^{2}\left(\Phi_{1}^{\dagger} \Phi_{2}+h . c .\right) \\
& +\frac{\lambda_{1}}{2}\left(\Phi_{1}^{\dagger} \Phi_{1}\right)^{2}+\frac{\lambda_{2}}{2}\left(\Phi_{2}^{\dagger} \Phi_{2}\right)^{2}+\lambda_{3}\left(\Phi_{1}^{\dagger} \Phi_{1}\right)\left(\Phi_{2}^{\dagger} \Phi_{2}\right)+\lambda_{4}\left(\Phi_{1}^{\dagger} \Phi_{2}\right)\left(\Phi_{2}^{\dagger} \Phi_{1}\right)+\frac{\lambda_{5}}{2}\left[\left(\Phi_{1}^{\dagger} \Phi_{2}\right)+h . c .\right]
\end{aligned}
$$

and CP is explicitly and not spontaneously broken
$\left\langle\Phi_{1}\right\rangle=\binom{0}{\frac{v_{1}}{\sqrt{2}}} \quad\left\langle\Phi_{2}\right\rangle=\binom{0}{\frac{v_{2}}{\sqrt{2}}}$

- $m^{2}{ }_{12}$ and λ_{5} real 2HDM
- $m^{2}{ }_{12}$ and λ_{5} complex C2HDM
$\tan \beta=\frac{v_{2}}{v_{1}}$ ratio of vacuum expectation values
$\longrightarrow 2$ charged, $H^{ \pm}$, and 3 neutral $C P$-conserving $-h, H$ and A CP-violating - h_{1}, h_{2} and h_{3}
\Rightarrow rotation angles in the neutral sector
soft breaking parameter

$$
\begin{aligned}
& C P \text {-conserving - } \mathrm{m}_{12} \\
& \text { CP-violating }-\operatorname{Re}\left(m_{12}\right)
\end{aligned}
$$

$g_{2 H D M}^{h V V}=\sin (\beta-\alpha) g_{S M}^{h V V}$
$g_{C 2 H D M}^{h V V}=\cos \widehat{\alpha_{2}} g_{2 H D M}^{h V V}$

$$
\begin{aligned}
& \sin \alpha_{2}=0 \Longrightarrow \mathrm{~h} \text { is a pure scalar } \\
& \sin \alpha_{2}=1 \Longrightarrow \mathrm{~h} \text { is a pure pseudoscalar }
\end{aligned}
$$

THE EFFECTIVE LAGRANGIAN IS WRITTEN AS

$$
\mathscr{L}_{h Z Z}=\kappa \frac{m_{Z}^{2}}{v} h Z_{\mu} Z^{\mu}+\frac{\alpha}{v} h Z_{\mu} \partial_{\alpha} \partial^{\alpha} Z^{\mu}+\frac{\beta}{v} h Z_{\mu \nu} Z^{\mu \nu}+\frac{\gamma}{v} h Z_{\mu \nu} \tilde{Z}^{\mu \nu}
$$

h_{125} couplings measurements

C2HDM parametrisation

$$
\mathscr{L}_{C 2 H D M}^{h u u}=g_{S M}^{h f f} \bar{u}\left[\frac{R_{12}}{\sin \beta}-i \frac{R_{13}}{\tan \beta} \gamma_{5}\right] u h
$$

ALL TYPES

$$
\mathscr{L}_{C 2 H D M}^{h d d}=g_{S M}^{h f f} \bar{d}\left[\frac{R_{12}}{\cos \beta}-i R_{13} \tan \beta \gamma_{5}\right] d h \quad \text { TYPE II }
$$

$$
\left[h_{i}\right]_{\text {mass }}=\left[R_{i j}\right]\left[h_{j}\right]_{\text {gauge }} \quad\left[R_{i j}\right]=\left(\begin{array}{ccc}
c_{1} c_{2} & s_{1} c_{2} & s_{2} \\
-\left(c_{1} s_{2} s_{3}+s_{1} c_{3}\right) & c_{1} c_{3}-s_{1} s_{2} s_{3} & c_{2} s_{3} \\
-c_{1} s_{2} c_{3}+s_{1} s_{3} & -\left(c_{1} s_{3}+s_{1} s_{2} c_{3}\right) & c_{2} c_{3}
\end{array}\right)
$$

THE EFFECTIVE LAGRANGIAN IS WRITTEN AS

$$
\mathscr{L}_{h f f}=\kappa_{f} y_{f} \bar{f}\left(\cos \alpha+i \gamma_{5} \sin \alpha\right) f h
$$

Yukawa types

For the real 2HDM (again for the lightest)
Type I $\quad \kappa_{U}^{\prime}=\kappa_{D}^{\prime}=\kappa_{L}^{\prime}=\frac{\cos \alpha}{\sin \beta}$
Type II $\quad \kappa_{U}^{\prime \prime}=\frac{\cos \alpha}{\sin \beta} \quad \kappa_{D}^{\prime \prime}=\kappa_{L}^{\prime \prime}=-\frac{\sin \alpha}{\cos \beta}$
Type $F(Y) \quad \kappa_{U}^{F}=\kappa_{L}^{F}=\frac{\cos \alpha}{\sin \beta} \quad \kappa_{D}^{F}=-\frac{\sin \alpha}{\cos \beta} \quad$ FLIPPED
Type LS(X) $\quad \kappa_{U}^{L S}=\kappa_{D}^{L S}=\frac{\cos \alpha}{\sin \beta} \quad \kappa_{L}^{L S}=-\frac{\sin \alpha}{\cos \beta} \quad$ LEPTON-SPECIFIC

For the C2HDM

$$
Y_{C 2 H D M}=\cos \alpha_{2} Y_{2 H D M} \pm i \gamma_{5} \sin \alpha_{2} \tan \beta(1 / \tan \beta)
$$

What are the bounds on the Yukawa couplings from rates only?

With the most relevant experimental and theoretical constraints

Figure 1. C2HDM Type I: for sample 1 (dark) and sample 2 (light) left: mixing angles α_{1} and α_{2} of the C2HDM mixing matrix R only including scenarios where $H_{1}=h_{125}$; right: Yukawa couplings.

$$
\begin{gathered}
g_{C 2 H D M}^{h V V}=\cos \alpha_{2} \cos \left(\beta-\alpha_{1}\right) g_{S M}^{h V V} \\
g_{C 2 H D M}^{h u u}=\left(\cos \alpha_{2} \frac{\sin \alpha_{1}}{\sin \beta}-i \frac{\sin \alpha_{2}}{\tan \beta} \gamma_{5}\right) g_{S M}^{h f f}
\end{gathered}
$$

$$
\mu_{V V}>0.79 \Rightarrow \cos \alpha_{2}>0.89 \Rightarrow \alpha_{2}<27^{\circ}
$$

$$
\begin{gathered}
{\left[\begin{array}{cc}
\cos 20^{\circ}=0.94 & \sin 20^{\circ}=0.34 \\
\tan \beta>1
\end{array}\right.} \\
g_{C 2 H D M}^{h b b}=\left(\cos \alpha_{2} \frac{\cos \alpha_{1}}{\cos \beta}-i \sin \alpha_{2} \tan \beta \gamma_{5}\right) g_{S M}^{h f f}
\end{gathered}
$$

EDMs

Unexpected twist! - large CP-odd components of Yukawa couplings

EDMs kill large pseudoscalar components in Type II. Not in Flipped and Lepton Specific.

Find two particles of the same mass one decaying to tops as CP-even

$$
h_{2}=H ; p p \rightarrow H t \bar{t}
$$

and the other decaying to taus as CP-odd

$$
h_{2}=A \rightarrow \tau^{+} \tau^{-}
$$

Probing one Yukawa coupling is not enough!

$$
\begin{gathered}
Y_{C 2 H D M}=a_{F}+i \gamma_{5} b_{F} \\
b_{U} \approx 0 ; a_{D} \approx 0
\end{gathered}
$$

A Type II model where H_{2} is the SM-like Higgs.

With the new EDM result

Season finale - combination of 3 decays as a sign of CP-violation

$$
h_{1} \rightarrow Z Z(+) h_{2} \rightarrow Z Z(+) h_{2} \rightarrow h_{1} Z
$$

Combinations of three decays

Many other combinations

$h_{1} \rightarrow Z Z \Leftarrow C P\left(h_{1}\right)=1$	$h_{3} \rightarrow h_{2} h_{1}$	$\Rightarrow C P\left(h_{3}\right)=C P\left(h_{2}\right)$
Decay	CP eigenstates	Model
$h_{3} \rightarrow h_{2} \mathrm{Z} \quad C P\left(h_{3}\right)=-C P\left(h_{2}\right)$	None	C2HDM, other CPV extensions
$h_{2(3)} \rightarrow h_{1} Z \quad C P\left(h_{2(3)}\right)=-1$	2 CP-odd; None	C2HDM, NMSSM,3HDM...
$h_{2} \rightarrow Z Z \quad C P\left(h_{2}\right)=1$	3 CP-even; None	C2HDM, ${ }^{\text {c }}$ S , NMSSM,3HDM...

But what if the three scalars are invisible? CPV in the triple gauge bosons couplings

$$
\begin{array}{ll}
h_{2} \rightarrow h_{1} Z & C P\left(h_{2}\right)=-C P\left(h_{1}\right) \\
h_{3} \rightarrow h_{1} Z & C P\left(h_{3}\right)=-C P\left(h_{1}\right) \\
h_{3} \rightarrow h_{2} Z & C P\left(h_{3}\right)=-C P\left(h_{2}\right)
\end{array}
$$

Is there CP-violation here? Now let us take these three processes and build a

$$
h_{3} \rightarrow h_{1} Z \quad C P\left(h_{3}\right)=-C P\left(h_{1}\right) \quad \text { nice Feynman diagram }
$$

With one Z off-shell ZZZ vertex has a CP-odd term

$$
i \Gamma_{\mu \alpha \beta}=-e \frac{p_{1}^{2}-m_{Z}^{2}}{m_{Z}^{2}} f_{4}^{Z}\left(g_{\mu \alpha} p_{2, \beta}+g_{\mu \beta} p_{3, \alpha}\right)+\ldots
$$

in our model it has the simple expression

$$
f_{4}^{Z}\left(p_{1}^{2}\right)=-\frac{2 \alpha}{\pi s_{2 \theta_{W}}^{3}} \frac{m_{Z}^{2}}{p_{1}^{2}-m_{Z}^{2}} f_{123} \sum_{i, j, k} \epsilon_{i j k} C_{001}\left(p_{1}^{2}, m_{Z}^{2}, m_{Z}^{2}, m_{i}^{2}, m_{j}^{2}, m_{k}^{2}\right) \quad f_{123}=R_{13} R_{23} R_{33}
$$

The typical maximal value for f_{4} seems to be below 10-4.

Dark CP-violating model

The form factor f_{4} normalised to f_{123} for $m_{1}=80.5 \mathrm{GeV}, m_{2}=162.9 \mathrm{GeV}$ and $m_{3}=256.9 \mathrm{GeV}$ as a function of the squared off-shell Z-boson 4-momentum, normalised to mz^{2}.

Azevedo, Ferreira, Mühlleitner, Patel, RS, Wittbrodt, JHEP 1811 (2018) 091

Cordero-Cid, HernÁndez-SÁnchez, Keus, King, S. MORETTI, ROJAS, SOKOLOWSKA, JHEP 12 (2016) 014

But the bounds we have from present measurements by ATLAS and CMS, show that we are still two orders of magnitude away from what is needed.

CMS collaboration, epjcti (2018) 165. $\quad-1.2 \times 10^{-3}<f_{4}^{Z}<1.0 \times 10^{-3}$
ATLAS COLLABoration, PRD97 (2018) 032005. $\quad-1.5 \times 10^{-3}<f_{4}^{Z}<1.5 \times 10^{-3}$

Season 2

The Yukawa Couplings

$$
\begin{aligned}
& p p \rightarrow h \bar{t} t \\
& p p \rightarrow h \rightarrow \tau^{+} \tau^{-}
\end{aligned}
$$

Great first episode - first appearance of a measurement of the tau CPV angle!

$$
p p \rightarrow h \rightarrow \tau^{+} \tau^{-}
$$

$$
\mathscr{L}_{\bar{\tau} \tau h}^{C P V}=-\frac{y_{f}}{\sqrt{2}} \bar{\tau}\left(\kappa_{\tau}+i \tilde{\kappa}_{\tau} \gamma_{5}\right) \tau h
$$

Mixing angle between $C P$-even and $C P$-odd τ Yukawa couplings measured $4 \pm 17^{\circ}$, compared to an expected uncertainty of $\pm 23^{\circ}$ at the 68% confidence level, while at the 95% confidence level the observed (expected) uncertainties were $\pm 36^{\circ}(\pm 55)^{\circ}$.
Results compatible with SM predictions.

$$
\begin{aligned}
\kappa_{\tau} & =\kappa \cos \phi_{\tau \tau} \\
\tilde{\kappa}_{\tau} & =\kappa \sin \phi_{\tau \tau}
\end{aligned}
$$

$$
\begin{equation*}
\phi_{\tau \tau}=\alpha \tag{14}
\end{equation*}
$$

And also the first appearance of the top CPV angle!

$$
p p \rightarrow(h \rightarrow \gamma \gamma) \bar{t} t
$$

$$
\mathscr{L}_{\bar{t} t h}^{C P V}=-\frac{y_{f}}{\sqrt{2}} \bar{t}\left(\kappa_{t}+i \tilde{\kappa}_{t} \gamma_{5}\right) t h
$$

All measurements are consistent with the SM expectations, and the possibility of a pure CPodd coupling between the Higgs boson and top quark is severely constrained. A pure CP-odd coupling is excluded at 3.90 , and $|a|>43^{\circ}$ is excluded at $95 \% \mathrm{CL}$.

$$
\begin{aligned}
& \kappa_{t}=\kappa \cos \alpha \\
& \tilde{\kappa}_{t}=\kappa \sin \alpha
\end{aligned}
$$

Can we get something of the same order with $H->b b$?

$$
p p \rightarrow H \bar{t} t
$$

$$
\mathscr{L}_{H \bar{t} t}=-\frac{y_{t}}{\sqrt{2}} \bar{t}\left(a+i b \gamma_{5}\right) t h
$$

Signal: we consider the tt fully leptonic (but could add the or semi-leptonic case) and $\mathrm{H} \rightarrow \mathrm{bb}$

Background: most relevant is the irreducible $\dagger \dagger$ background

The spin averaged cross section of tth productions has terms proportional to $a^{2}+b^{2}$ and to $a^{2}-$ b^{2}. Terms $a^{2}-b^{2}$ are proportional to the top quark mass. There are many operators that can distinguish CP-even and CP-odd parts (maximize the $a^{2}-b^{2}$ term).

GUNION, HE, PRL77 (1996) 5172

$$
b_{4}=\frac{p_{t}^{2} p_{t}^{2}}{p_{t} p_{t}}
$$

We are testing several variables, combining them, to improve the bounds

More shapes?
ELLIS, HWANG, SAKURAI, TAKEUCHI, JHEP O4 (2014) 004
MILEO, KIERS , SZYNKMAN, CRANE, GEGNER, JHEPO7 (2016) 056

$$
\sigma_{\bar{t} t \phi}=\kappa^{2} \sigma_{\bar{t} t h}+\tilde{\kappa}^{2} \sigma_{\bar{t} t A} \quad d \sigma\left(g g \rightarrow t\left(n_{t}\right) \bar{t}\left(n_{\bar{t}}\right) H\right)=\kappa_{t}^{2} f_{1}\left(p_{i} \cdot p_{j}\right)+\tilde{\kappa}_{t}^{2} f_{2}\left(p_{i} \cdot p_{j}\right)+\kappa_{t} \tilde{\kappa}_{t} \sum_{l=1}^{15} g_{l}\left(p_{i} \cdot p_{j}\right) \epsilon_{l}
$$

The Higgs Coupling to gauge bosons

Is it worth it?

THE SM CONTRIBUTION SHOULD BE PROPORTIONAL TO THE JARLSKOG INVARIANT J = IM($\left.\mathbf{V}_{\mathbf{U D}} \mathbf{V}_{\mathbf{C D}}{ }^{*} \mathbf{V}_{\mathbf{C S}} \mathbf{V}_{\mathbf{C D}}{ }^{*}\right)=$ 3.00×10^{-5}. SO, THE CPV HW $\mathbf{W}^{+} \mathbf{W}^{-}$VERTEX CAN ONLY BE GENERATED AT TWO-LOOP SO THAT WE HAVE ENOUGH CKM MATRIX ELEMENT INSERTIONS IN THE CORRESPONDING FEYNMAN DIAGRAMS.

Figure 1. Feynman diagrams leading to the CPV $h W^{+} W^{-}$coupling in the SM.

$$
\frac{a_{3}^{W^{+} W^{-}}}{a_{1}^{W^{+} W^{-}}}=c_{W} \in[-0.81,0.31]
$$

$$
\begin{aligned}
i \mathcal{M}_{(b)} \sim & -\frac{N_{c} J}{v}\left(\frac{g}{\sqrt{2}}\right)^{4} \int_{l_{1}} \int_{l_{2}}\left(\frac{g_{\rho \sigma}-l_{2 \rho} l_{2 \sigma} / m_{W}^{2}}{l_{2}^{2}-m_{W}^{2}}\right) \\
& \times \operatorname{Tr}\left[\gamma^{\mu} l_{1} \gamma^{\nu}\left(l_{1}+k_{2}\right) \gamma^{\sigma}\left(l_{1}+l_{2}+\not k_{2}\right) \gamma^{\rho}\left(2 l_{1}+\not k_{1}+k_{2}\right) P_{R}\right] \\
& \times \frac{\prod_{i>j}\left(m_{u_{i}}^{2}-m_{u_{j}}^{2}\right)\left(m_{d_{i}}^{2}-m_{d_{j}}^{2}\right)\left(l_{1}+k_{1}\right)^{2}\left[\left(l_{1}+l_{2}+k_{2}\right)^{2}-l_{1}^{2}\right]}{\prod_{i}\left[\left(l_{1}+k_{1}\right)^{2}-m_{u_{i}}\right]\left[\left(l_{1}+k_{2}\right)^{2}-m_{u_{i}}^{2}\right]\left(l_{1}^{2}-m_{d_{i}}^{2}\right)\left[\left(l_{1}+l_{2}+k_{2}\right)^{2}-m_{d_{i}}^{2}\right]}(2.6)
\end{aligned}
$$

SM ESTIMATE

$$
\left|c_{\mathrm{CPV}}^{\mathrm{SM}}\right| \sim \frac{N_{c} J}{\left(16 \pi^{2}\right)^{2}}\left(\frac{g}{\sqrt{2}}\right)^{4} \frac{\prod_{i>j}\left(m_{u_{i}}^{2}-m_{u_{j}}^{2}\right)\left(m_{d_{i}}^{2}-m_{d_{j}}^{2}\right)}{m_{W}^{12}} \simeq 9.1 \times 10^{-24} \sim \mathcal{O}\left(10^{-23}\right)
$$

Is it worth it?

$$
C_{\mathrm{CPV}}=2 \frac{a_{3}^{W^{+} W^{-}}}{a_{1}^{W^{+} W^{-}}}
$$

Starting with $f=t$ and $f^{\prime}=b$

$$
\begin{aligned}
i \mathcal{M}_{t b}^{\mathrm{C} 2 \mathrm{HDM}}= & (-1) N_{c} \int_{l} \operatorname{Tr}\left[\left(-\frac{i g}{\sqrt{2}} V_{t b} \gamma_{\mu} P_{L}\right) \frac{i}{l-m_{b}}\left(-\frac{i g}{\sqrt{2}} V_{t b}^{*} \gamma_{\nu} P_{L}\right) \frac{i}{l+\not k_{2}-m_{t}}\right. \\
& \left.\times\left(-i \frac{m_{t}}{v}\right)\left(c_{t}^{e}+i c_{t}^{o} \gamma_{5}\right) \frac{i}{l+\not k_{1}-m_{t}}\right] \\
= & -\frac{N_{c} g^{2} m_{t}\left|V_{t b}\right|^{2}}{2 v} \frac{\operatorname{Tr}\left[\gamma_{\mu} l \gamma_{\nu} P_{L}\left(l+\not k_{2}+m_{t}\right)\left(c_{t}^{e}+i c_{t}^{o} \gamma_{5}\right)\left(l+\not k_{1}+m_{t}\right)\right]}{\left(l^{2}-m_{b}^{2}\right)\left[\left(l+k_{2}\right)^{2}-m_{t}^{2}\right]\left[\left(l+k_{1}\right)^{2}-m_{t}^{2}\right]} .
\end{aligned}
$$

We can now extract the operator for this case

$$
i \mathcal{M}_{t b}^{\mathrm{C} 2 \mathrm{HDM}} \sim \frac{i g^{2} N_{c} c_{t}^{o}}{16 \pi^{2} v} \frac{m_{t}^{2}}{m_{W}^{2}}\left|V_{t b}\right|^{2} \epsilon_{\mu \nu \rho \sigma} k_{1}^{\rho} k_{2}^{\sigma} \mathcal{I}_{1}\left(\frac{m_{t}^{2}}{m_{W}^{2}}, \frac{m_{b}^{2}}{m_{W}^{2}}\right) \quad \mathcal{I}_{1}(x, y) \equiv \int_{0}^{1} d \alpha \frac{\alpha^{2}}{\alpha x+(1-\alpha) y-\alpha(1-\alpha)}
$$

And because $f=b$ and $f^{\prime}=\dagger$ can also contribute, the final result is

$$
c_{\mathrm{CPV}}^{\mathrm{C} 2 \mathrm{HDM}}=\frac{N_{c} g^{2}}{32 \pi^{2}}\left|V_{t b}\right|^{2}\left[\frac{c_{t}^{o} m_{t}^{2}}{m_{W}^{2}} \mathcal{I}_{1}\left(\frac{m_{t}^{2}}{m_{W}^{2}}, \frac{m_{b}^{2}}{m_{W}^{2}}\right)+\frac{c_{b}^{o} m_{b}^{2}}{m_{W}^{2}} \mathcal{I}_{1}\left(\frac{m_{b}^{2}}{m_{W}^{2}}, \frac{m_{t}^{2}}{m_{W}^{2}}\right)\right]
$$

$$
c_{\mathrm{CPV}}^{\mathrm{C} 2 \mathrm{HDM}} \simeq 6.6 \times 10^{-4} \sim \mathcal{O}\left(10^{-3}\right)
$$

Table 10: Summary of the $95 \% \mathrm{CL}$ intervals for $f_{a 3} \cos \left(\phi_{a 3}\right)$, under the assumption $\Gamma_{\mathrm{H}}=\Gamma_{\mathrm{H}}^{\mathrm{SM}}$, and for Γ_{H} under the assumption $f_{a i}=0$ for projections at $3000 \mathrm{fb}^{-1}$. Constraints on

- $\quad f_{a 3} \cos \left(\phi_{a 3}\right)$ are multiplied by 10^{4}. Values are given for scenarios S 1 (with Run 2 systematic uncertainties [47]) and the approximate S 2 scenario, as described in the text.

CMS PAS FTR-18-011

Parameter	Scenario	Projected 95\% CL interval
$f_{a 3} \cos \left(\phi_{a 3}\right) \times 10^{4}$	S1, only on-shell	$[-1.8,1.8]$
$f_{a 3} \cos \left(\phi_{a 3}\right) \times 10^{4}$	S1, on-shell and off-shell	$[-1.6,1.6]$
$\Gamma_{\mathrm{H}}(\mathrm{MeV})$	S1	$[2.0,6.1]$
$\Gamma_{\mathrm{H}}(\mathrm{MeV})$	S2	$[2.0,6.0]$

$$
\gamma / \kappa=c_{z}=\mathcal{O}\left(10^{-2}\right)
$$

Most comprehensive performed for the ILC. The work presents results are for polarised beams $\mathrm{P}\left(\mathrm{e}^{-}\right.$, $\left.\mathrm{e}^{+}\right)=(-80 \%, 30 \%)$ and two COM energies 250 GeV (and an integrated luminosity of $250 \mathrm{fb}^{-1}$) and 500 GeV (and an integrated luminosity $500 \mathrm{fb}^{-1}$).

Limits obtained for an energy of 250 GeV were $\mathrm{c}^{\mathrm{W}}{ }_{\mathrm{CPV}} \in[-0.321,0.323]$ and $\mathrm{c}^{\mathrm{Z}}{ }_{\mathrm{CPV}} \in[-0.016,0.016]$. For 500 GeV we get $\mathrm{c}^{\mathrm{W}}{ }_{\mathrm{CPV}} \in[-0.063,0.062]$ and $\mathrm{c}^{\mathrm{Z}}{ }_{\mathrm{CPV}} \in[-0.0057,0.0057]$.

Conclusions

\odot Higgs and fermions - two ongoing direct measurements of Yukawa couplings - with top-quarks in the production and with tau-leptons in the decays. The other Yukawas are measured indirectly by the total rates. Ideas needed. EDMs play a major role.
\odot Higgs and gauge bosons. CP-violating terms appear at the 2-loop level in the SM but at 1-loop in many other extensions. Coefficients are small but reachable in the (near?) future.
\odot Invisible Higgs. If there is some invisible CPV around, perhaps it can be measured indirectly - like in anomalous triple gauge bosons couplings.
\odot The end of season 2 is coming with stunning revelations!

The End

Limits on Φ_{\dagger} based on the rates only

Competitive for Type I but not for Type II

$$
p p \rightarrow h \rightarrow \tau^{+} \tau^{-}
$$

BERGE, BERNREUTHER, ZIETHE PRL 100 (2008) 171605 BERGE, BERNREUTHER, NIEPELT, SPIESBERGER, PRD84 (2011) 116003

- A measurement of the angle

$$
\tan \Phi_{\tau}=\frac{b_{L}}{a_{L}} \quad \begin{gathered}
\text { can be performed } \\
\text { with the accuracies }
\end{gathered} \quad \begin{aligned}
\Delta \Phi_{\tau} & =15^{o} \Leftarrow 150 \mathrm{fb}^{-1} \\
\Delta \Phi_{\tau} & =9^{o} \Leftarrow 500 \mathrm{fb}^{-1}
\end{aligned}
$$

Numbers from: Berge, Bernireuther, Kirchner PRD92 (2015) 096012

$$
\tan \Phi_{\tau}=-\frac{\sin \beta}{\cos \alpha_{1}} \tan \alpha_{2} \Rightarrow \tan \alpha_{2}=-\frac{\cos \alpha_{1}}{\sin \beta} \tan \Phi_{\tau}
$$

- It is not a direct measurement of the CP-violating angle α_{2}.

Probing the nature of h in tth

The spin averaged cross section of tth productions has terms proportional to $a^{2}+b^{2}$ and to $a^{2}-b^{2}$. Terms $a^{2}-b^{2}$ are proportional to the top quark mass. We can define

$$
\alpha\left[\mathcal{O}_{C P}\right] \equiv \frac{\int \mathcal{O}_{C P}\{d \sigma(p p \rightarrow t t h) / d P S\} d P S}{\int\{d \sigma(p p \rightarrow t t h) / d P S\} d P S} \quad \mathscr{L}_{H \bar{t}}=-\frac{y_{t}}{\sqrt{2}} \bar{t}\left(a+i b r_{5}\right) t h
$$

where the operator is chosen to maximise the sensitivity of α to the $a^{2}-b^{2}$ term. One of the best operators from the ones proposed is

$$
b_{4}=\frac{p_{t}^{z} p_{\bar{t}}^{z}}{p_{t} p_{\bar{t}}}
$$

Another option is to use angular distributions for which the CP-even and the CP-odd terms behave differently.

CP - what have ATLAS and CMS measured so far?

Correlations in the momentum distributions of leptons produced in the decays

$$
\begin{aligned}
& p p \rightarrow h \rightarrow Z Z^{*} \rightarrow \bar{l} l \bar{l} l \\
& p p \rightarrow h \rightarrow W W^{*} \rightarrow\left(l_{1} \nu_{1}\right)\left(l_{2} \nu_{2}\right)
\end{aligned}
$$

More correlations in the momentum distributions

$$
p p \rightarrow h V \rightarrow \tau^{+} \tau^{-} j j
$$

How large can the pseudoscalar component in the Yukawa couplings

$$
\begin{aligned}
& p p \rightarrow h \bar{t} t \\
& p p \rightarrow h \rightarrow \tau^{+} \tau^{-}
\end{aligned}
$$

A) IF H IS A CP-EIGENSTATE IT IS NOT (REALLY NOT!) CP-ODD
B) SOME YUKAWA COUPLINGS ARE FINALLY BEING DIRECTLY PROBED

For $\cos \alpha=0.7$ the limit on α_{2} is 46° for $\tan \beta=1$ while for $\cos \alpha=0.9$ is 26° - close to what we have today from indirect measurements.
The difference is that the bound is now directly imposed on the Yukawa coupling.

$$
\begin{gathered}
\mathscr{L}_{H \bar{t} t}=\kappa y_{t} \bar{t}\left(\cos \alpha+i \sin \alpha \gamma_{5}\right) t h \\
\cos \alpha=1 \quad \text { pure scalar }
\end{gathered}
$$

So, what is bound on the pseudoscalar component of the tth coupling at the end of the high luminosity LHC?

Interpretation in the framework of the C2HDM

Figure 19: Points allowed in the plane c_{1} vs. s_{2} for $0.1 \leq \kappa_{t} \leq 1.2$ and $0.1 \leq \sin \alpha \leq 0.2$ and $1 \leq \tan \beta \leq 10$. In the left plot we see the variation with κ_{t}, in the middle with $\sin \alpha$ and on the right with $\tan \beta$.

Figure 20: Points allowed in the plane c_{1} vs. s_{2} for $0.1 \leq \kappa_{t} \leq 1.2$ and $0.8 \leq \sin \alpha \leq 0.9$ and $1 \leq \tan \beta \leq 10$. In the left plot we see the variation with κ_{t}, in the middle with $\sin \alpha$ and on the right with $\tan \beta$.

Is it worth it?

$$
C_{\mathrm{CPV}}=2 \frac{a_{3}^{W^{+} W^{-}}}{a_{1}^{W^{+} W^{-}}}
$$

THE LEFT-RIGHT SYMMETRIC MODEL

HUANG, MORAIS, RS, JHEP 01 (2021) 168

$$
\mathcal{L}^{\mathrm{LR}} \supset-\frac{g}{\sqrt{2}} W_{\mu}^{+} \sum_{i . i} \bar{u}_{i} \gamma^{\mu}\left(V_{u_{i} d_{j}} P_{L}+U_{u_{i} d_{j}} P_{R}\right) d_{j}+\text { h.c. }
$$

The effective operator coefficient for this case is

$$
c_{\mathrm{CPV}}^{\mathrm{LR}} \approx \frac{N_{c} g^{2}}{8 \pi^{2}} \frac{m_{t} m_{b}}{m_{W}^{2}} \mathcal{I}\left(\frac{m_{t}^{2}}{m_{W}^{2}}, \frac{m_{b}^{2}}{m_{W}^{2}}\right) \operatorname{Im}\left(V_{t b} U_{t b}^{*}\right) \quad \mathcal{I}(x, y) \equiv \int_{0}^{1} d \alpha \frac{\alpha(1-\alpha)}{\alpha x+(1-\alpha) y-\alpha(1-\alpha)}
$$

Using the constraint

$$
\operatorname{Im}\left(V_{t b} U_{t b}^{*}\right) \leq 4 \times 10^{-6}
$$

$$
c_{\mathrm{CPV}}^{\mathrm{LR}} \simeq 9.1 \times 10^{-10} \sim \mathcal{O}\left(10^{-9}\right)
$$

$$
\mathscr{L}_{H \bar{t} t}=\kappa y_{t} \bar{t}\left(\cos \alpha+i \sin \alpha \gamma_{5}\right) t h
$$

rates at 20\% (green), 5\% (red)

For $\cos \alpha=0.7$ the limit on α_{2} is 46° for $\tan \beta=1$ while for $\cos \alpha=0.9$ is 26° - close to what we have today from indirect measurements.

The difference is that the bound is now directly imposed on the Yukawa coupling.

$$
\cos \alpha=1 \quad \text { pure scalar }
$$

So, what is bound on the pseudoscalar component of the tth coupling at the end of the high
luminosity LHC?

How will it look in the future?

Abramowicz eal, 1307.5288.
CLICDP, SICKING, NPPP, 273-275, 801 (2016)

Parameter	Relative precision $[76,77]$		
	350 GeV	+1.4 TeV	+3.0 TeV
	$500 \mathrm{fb}^{-1}$	$+1.5 \mathrm{ab}^{-1}$	$+2.0 \mathrm{ab}^{-1}$
$\kappa_{H Z Z}$	0.43%	0.31%	0.23%
$\kappa_{H W W}$	1.5%	0.15%	0.11%
$\kappa_{H b b}$	1.7%	0.33%	0.21%
$\kappa_{H c c}$	3.1%	1.1%	0.75%
$\kappa_{H t t}$	-	4.0%	4.0%
$\kappa_{H \tau \tau}$	3.4%	1.3%	$<1.3 \%$
$\kappa_{H \mu \mu}$	-	14%	5.5%
$\kappa_{H g g}$	3.6%	0.76%	0.54%
$\kappa_{H \gamma \gamma}$	-	5.6%	$<5.6 \%$

Predicted precision for CLIC

All models become very similar and hard to distinguish.

LHC today

Model	CxSM	C2HDM II	C2HDM I	N2HDM II	N2HDM I	NMSSM
$(\Sigma \text { or } \Psi)_{\text {allowed }}$	11%	10%	20%	55%	25%	41%

CLIC@350GeV (500/fb)

$$
\Psi_{i}\left(\Sigma_{1}\right) \leq 0.85 \% \text { from } \kappa_{Z Z}
$$

If no new physics is discovered and the measured values are in agreement with the SM predictions, the singlet and pseudoscalar components will be below the \% level.

Beware of radiative corrections.

How will it look in the future?

$\Psi_{i}^{C 2 H D M}=R_{i 3}^{2} \quad$ C2HDM - pseudoscalar component.

$$
\text { Unitarity } \Rightarrow \kappa_{Z Z, W W}^{2}+\Psi_{i}\left(\Sigma_{1}\right) \leq 1
$$

Figure 2: Mixing angles α_{2} vs. α_{1} (left) and c_{b}^{o} vs. c_{b}^{e} (right) for the C2HDM Type II. The blue points are for $S c 1$ but without the constraints from $\kappa_{H g g}$ and $\kappa_{H \gamma \gamma}$; the green points are for $S c 1$ including $\kappa_{H g g}$ and the red points are for $S c 3$ including $\kappa_{H g g}$ and $\kappa_{H \gamma \gamma}$.

The deviations can be written in terms of the rotation matrix from gauge to mass eigenstates.

$$
\left(\begin{array}{l}
h_{1} \\
h_{2} \\
h_{3}
\end{array}\right)=R\left(\begin{array}{c}
\rho \\
\eta \\
\rho_{S}
\end{array}\right) \quad R=\left[R_{i j}\right]=\left(\begin{array}{ccc}
c_{1} c_{2} & s_{1} c_{2} & s_{2} \\
-\left(c_{1} s_{2} s_{3}+s_{1} c_{3}\right) & c_{1} c_{3}-s_{1} s_{2} s_{3} & c_{2} s_{3} \\
-c_{1} s_{2} c_{3}+s_{1} s_{3} & -\left(c_{1} s_{3}+s_{1} s_{2} c_{3}\right) & c_{2} c_{3}
\end{array}\right)
$$

But what if the three scalars are invisible?

Two doublets + one singlet and one exact Z_{2} symmetry

$$
\Phi_{1} \rightarrow \Phi_{1}, \quad \Phi_{2} \rightarrow-\Phi_{2}, \quad \Phi_{S} \rightarrow-\Phi_{S}
$$

with the most general renormalizable potential

$$
\begin{aligned}
V= & m_{11}^{2}\left|\Phi_{1}\right|^{2}+m_{22}^{2}\left|\Phi_{2}\right|^{2}+\left(A \Phi_{1}^{\dagger} \Phi_{2} \Phi_{S}+h . c .\right) \\
& +\frac{\lambda_{1}}{2}\left(\Phi_{1}^{\dagger} \Phi_{1}\right)^{2}+\frac{\lambda_{2}}{2}\left(\Phi_{2}^{\dagger} \Phi_{2}\right)^{2}+\lambda_{3}\left(\Phi_{1}^{\dagger} \Phi_{1}\right)\left(\Phi_{2}^{\dagger} \Phi_{2}\right)+\lambda_{4}\left(\Phi_{1}^{\dagger} \Phi_{2}\right)\left(\Phi_{2}^{\dagger} \Phi_{1}\right) \\
& +\frac{\lambda_{5}}{2}\left[\left(\Phi_{1}^{\dagger} \Phi_{2}\right)+h . c .\right]+\frac{m_{S}^{2}}{2} \Phi_{S}^{2}+\frac{\lambda_{6}}{4} \Phi_{S}^{4}+\frac{\lambda_{7}}{2}\left(\Phi_{1}^{\dagger} \Phi_{1}\right) \Phi_{S}^{2}+\frac{\lambda_{8}}{2}\left(\Phi_{2}^{\dagger} \Phi_{2}\right) \Phi_{S}^{2}
\end{aligned}
$$

and the vacuum preserves the symmetry

$$
\Phi_{1}=\binom{G^{+}}{\frac{1}{\sqrt{2}}\left(v+h+i G_{0}\right)} \quad \Phi_{2}=\binom{H^{+}}{\frac{1}{\sqrt{2}}(\rho+i \eta)} \quad \Phi_{S}=\rho_{S}
$$

The potential is invariant under the CP-symmetry

$$
\Phi_{1}^{C P}(t, \vec{r})=\Phi_{1}^{*}(t,-\vec{r}), \quad \Phi_{2}^{C P}(t, \vec{r})=\Phi_{2}^{*}(t,-\vec{r}), \quad \Phi_{S}^{C P}(t, \vec{r})=\Phi_{S}(t,-\vec{r})
$$

except for the term $\left(A \Phi_{1}^{\dagger} \Phi_{2} \Phi_{S}+h . c.\right)$ for complex A

With one Z off-shell the most general ZZZ vertex has a CP-odd term of the form

$$
i \Gamma_{\mu \alpha \beta}=-e \frac{p_{1}^{2}-m_{Z}^{2}}{m_{Z}^{2}} f_{4}^{Z}\left(g_{\mu \alpha} p_{2, \beta}+g_{\mu \beta} p_{3, \alpha}\right)+\ldots
$$

GAEMERS, GOUNARIS, ZPC 1 (1979) 259

Hagiwara, Peccei, Zeppenfeld, HikAsA, NPB282 (1987) 253
that comes from an effective operator (dim-6)
GRZADKOWSKI, OGREID, OSLAND, JHEP O5 (2016) 025

$$
\frac{\tilde{k}_{Z Z}}{m_{Z}^{2}} \partial_{\mu} Z_{\nu} \partial^{u} Z^{\rho} \partial_{\rho} Z^{\nu}
$$

in our model it has the simple expression

$$
\begin{gathered}
f_{4}^{Z}\left(p_{1}^{2}\right)=-\frac{2 \alpha}{\pi s_{2 \theta_{W}}^{3}} \frac{m_{Z}^{2}}{p_{1}^{2}-m_{Z}^{2}} f_{123} \sum_{i, j, k} \epsilon_{i j k} C_{001}\left(p_{1}^{2}, m_{Z}^{2}, m_{Z}^{2}, m_{i}^{2}, m_{j}^{2}, m_{k}^{2}\right) \\
f_{123}=R_{13} R_{23} R_{33}
\end{gathered}
$$

Combining $h_{1} h_{2} Z ; h_{1} h_{3} Z$ and $h_{2} h_{3} Z$
High energy
isolated lepton

$$
\left.i \Gamma_{h W W}^{\mu \nu}=i\left(g_{2} m_{w}\right)\left[g^{\mu \nu}\left(1+a_{W}-\frac{b_{W 1}}{m_{W}^{2}}\left(k_{1} \cdot k_{2}\right)\right)+\frac{b_{W 2}}{m_{W}^{2}} k_{1}^{\nu} k_{2}^{\mu}+\frac{c_{W}}{m_{W}^{2}} \epsilon^{\mu \nu \rho \sigma} k_{1 \rho} \cdot k_{2 \sigma}\right)\right]
$$

- 4 benchmark couplings, $\sqrt{s}=14 \mathrm{TeV}$
- $a_{w}=c_{W}=0, b_{W 1}=0.05 ; a_{W}=c_{W}=0, b_{W 1}=0.1$
- $a_{W}=b_{W 1}=0, c_{W}=0.05 ; a_{W}=b_{W 1}=0, c_{W}=0.1$
- generated SM-like sample $\left(a_{W}=b_{W 1}=c_{W}=0\right)$ for comparison purposes

$$
\cos \theta^{*}=\frac{\mathrm{p}_{\ell}^{(W)} \cdot \mathrm{p}_{W}}{\left|\mathrm{p}_{\ell}^{(W)}\right|\left|\mathrm{p}_{W}\right|} \quad \cos \delta^{+}=\frac{\mathrm{p}_{\ell}^{(W)} \cdot\left(\mathrm{p}_{H} \times \mathrm{p}_{W}\right)}{\left|\mathrm{p}_{\ell}^{(W)}\right|\left|\mathrm{p}_{H} \times \mathrm{p}_{W}\right|}
$$

- $\mathrm{p}_{\ell}^{(W)}: 3$-momentum of electron or muon in the W boson rest frame - all other 3-momenta are defined in the lab frame.

Pre-Preliminary!

Slide from Ricardo
Barrué MSc thesis.

Back to experiment

Missing transverse energy If indeed it is worth it, let us look at other processes to look for CP-violation in VVh

GOdBOLE, MiLLER, MOHAN, White, JHEP 15 (2015) 4.
BARRUÉ, MSC THESIS, 2020
BARRUÉ, CONDE-MUIÑO, DAO, RS, WORK IN PROGRESS

$\cos \delta^{+}$asymmetry

High purity signal region, $p_{T_{w}}>250 \mathrm{GeV}$

$$
\begin{equation*}
A\left(\cos \delta^{+}\right)=\frac{N\left(\cos \delta^{+}>0\right)-N\left(\cos \delta^{+}<0\right)}{N\left(\cos \delta^{+}>0\right)+N\left(\cos \delta^{+}<0\right)} \tag{2}
\end{equation*}
$$

Samples	$A\left(\cos \delta^{+}\right)($stat. unc. $)$
Backgrounds	0.003 ± 0.028
SM	-0.002 ± 0.133
$S M+b_{w 1}=0.05$	0.142 ± 0.087
$S M+b_{w 1}=0.1$	-0.081 ± 0.055
$S M+c_{w}=0.05$	-0.319 ± 0.112
$S M+c_{w}=0.1$	-0.123 ± 0.082

- for CP-even signals, asymmetry is non-zero, different signs
- for CP-odd signals, asymmetry decreases with value of coupling
- generated luminosities are higher than current luminosity
- differences start to be visible, higher luminosities are necessary

Can we use the idea for bbh?

Figure 1: Parton level b_{4} distributions at NLO, normalized to unity, for $m_{\phi}=125 \mathrm{GeV}$ (left) and $m_{\phi}=10 \mathrm{GeV}$ (right). Only events with $p_{T}(b)>20 \mathrm{GeV}$ and $|\eta(b)|<2.5$ were selected, with p_{T} and η being the transverse momentum and the pseudo-rapidity, respectively.

The answer is no - the reason is that the interference term is proportional to the quark mass. We have tried with bb and single b production.

Resurrecting $b \bar{b} h$ with kinematic shapes

GROJEAN, PAUL, QIAN, ARXIV 2011.13945

SLIDE FROM
Zhuoni Qian, HPNP2021
March 25th 2021

