

Mass-degeneracies in extended Higgs sectors

Shoaib Munir

EAIFR, Kigali

BSM-2021, Cyberspace April 01, 2021

- United Nations
- Educational, Scientific and
 - Cultural Organization •

The gluon-fusion process

Consider the production of a yy pair in the gluonfusion process via a single Higgs boson at the LHC

$$\int_{g \text{ form}} \frac{dx_1}{dx_2} \frac{g(x_1)g(\tau/x_1)}{g(\tau/x_2)} \Big| \mathcal{A}_{gg \to H \to yy} \Big|^2$$

$$\hat{s} = x_1 x_2 s \implies \tau \equiv \frac{s}{s} = x_1 x_2$$

The amplitude for the process is defined as

$$\mathcal{A} = \mathcal{M}_P \frac{1}{\hat{s} - M_H^2 + i \Im \mathrm{m} \hat{\Pi}_H(\hat{s})} \mathcal{M}_{D^{yy}}$$

Using the narrow-width approximation,

$$\left|\frac{1}{\hat{s} - M_H^2 + iM_H\Gamma_H}\right|^2 \to \frac{\pi}{M_H\Gamma_H}\delta(\hat{s} - M_H^2)$$

the cross-section expression can be factorised as

$$\sigma(pp \to yy) \Longrightarrow \sigma(pp \to H) \times \mathrm{BR}(H \to yy)$$

Two (or more) Higgs bosons

If, instead, two Higgs bosons contribute to the production, the complete propagator matrix

$$\mathcal{D}(\hat{s}) = \hat{s} \begin{pmatrix} \hat{s} - m_{H_1}^2 + i\Im \hat{m}\hat{\Pi}_{11}(\hat{s}) & i\Im \hat{m}\hat{\Pi}_{12}(\hat{s}) \\ i\Im \hat{m}\hat{\Pi}_{21}(\hat{s}) & \hat{s} - m_{H_2}^2 + i\Im \hat{m}\hat{\Pi}_{22}(\hat{s}) \end{pmatrix}^{-1}$$

with generalised self-energies given, e.g., as

$$\Im m \hat{\Pi}_{ij}^{H_2}(s) = \frac{v^2}{16\pi} \frac{S_{ij}}{2} g_{H_i H_2 H_2} g_{H_j H_2 H_2} \sqrt{1 - 4 \frac{m_{H_2}^2}{\hat{s}}} \Theta \left(s - 4m_{H_2}^2\right)$$

should appear in the amplitude, which becomes

$$\mathcal{A} = \sum_{i,j=1,2} \mathcal{M}_{P_i} \mathcal{D}_{ij}(\hat{s}) \mathcal{M}_{D_j^{yy}}$$

`Interference' can be sizeable if the magnitude of the off-diagonal terms is comparable to the mass-splitting (indicator: $\Gamma_1 + \Gamma_2 \sim \Delta m_{12}$)

EASTR ICTP—East African Institute for Fundamental Research

The Next-to-MSSM

Add a singlet superfield to address the μ -problem' of the Minimal Supersymmetric Standard Model: $W_{\rm NMSSM} = \widehat{U}^C \mathbf{h}_u \widehat{Q} \widehat{H}_u + \widehat{D}^C \mathbf{h}_d \widehat{H}_d \widehat{Q} + \widehat{E}^C \mathbf{h}_e \widehat{H}_d \widehat{L} + \mu \widehat{H}_u \widehat{H}_d + \lambda \widehat{S} \widehat{H}_u \widehat{H}_d + \frac{\kappa}{3} \widehat{S}^3$ Z_3 -invariant EWSB $\longrightarrow \mu_{\rm eff} \equiv \lambda \langle \widehat{S} \rangle = \lambda v_s$ $H_{d}^{0} = \begin{pmatrix} v_{d} + H_{dR} + iH_{dI} \\ H_{d}^{-} \end{pmatrix}, \quad H_{u}^{0} = \begin{pmatrix} H_{u}^{+} \\ v_{u} + H_{uR} + iH_{uI} \end{pmatrix}, \quad S = v_{S} + S_{R} + iS_{I}$ - 5 neutral Higgs bosons: h, h_s , H, a_s , and A $\lambda \sim 0.5$, tan $\beta \sim 2$ lead to large Scenario 2 singlet-doublet mixing $\longrightarrow M_{h,h_s} \simeq 125 \, \mathrm{GeV}$ 125 GeV Scenario 1

Scenario 1 - $m_h \approx m_{h_s} \approx 125 \text{ GeV}$

Define for cross section computations:

$$\begin{array}{l} \textbf{Case 1:} \left| \mathcal{A}_{gg \to \gamma\gamma} \right|^2 = \sum_{i=1-3} \left| \mathcal{M}_{P_i\lambda} \frac{1}{\hat{s} - M_{H_i}^2 + i\Im \hat{m}\hat{\Pi}_{H_i}(\hat{s})} \mathcal{M}_{D_i^{\gamma\gamma}} \right|^2 \\ \textbf{Case 2:} \left| \mathcal{A}_{gg \to \gamma\gamma} \right|^2 = \left| \sum_{i=1-3} \mathcal{M}_{P_i\lambda} \mathcal{D}_{ii}(\hat{s}) \mathcal{M}_{D_i^{\gamma\gamma}} \right|^2 \\ \textbf{Case 3:} \left| \mathcal{A}_{gg \to \gamma\gamma} \right|^2 = \left| \sum_{i,j=1-3} \mathcal{M}_{P_i\lambda} \mathcal{D}_{ij}(\hat{s}) \mathcal{M}_{D_j^{\gamma\gamma}} \right|^2 \end{array}$$

Relevant constraints: [B. Das, P. Poulose, S. Moretti, SM, 1704.02941] Γ_{125} < 41 MeV from fits to the 12 LHC signal rate measurements 11 7p-NMSSM 11 10 [CMS-PAS-Higgs-16-033] 9 Measurements of the (MeV) fiducial cross section 5 for $H_{125} \longrightarrow \gamma \gamma$: 3 $43.2 \pm 14.9 \pm 4.9$ fb [CMS-PAS-Higgs-16-020] 69^{+18}_{-22} fb [ATLAS-CONF-2016-067] 12 $\Gamma_{H_{*}}$ (MeV)

Benchmark points

LO

Scenario 2 - *m_H* ≈ *m_{hs}* >> 125 GeV

Two main contributions at the leading order,

with amplitude-squared of the process given as $\left|\mathcal{A}_{gg \to H_{i}H_{j}}\right|^{2} = \left|C_{\Delta}F_{\Delta} + C_{\Box}F_{\Box}\right|^{2} + \left|C_{\Box}G_{\Box}\right|^{2} \qquad C_{\Box} = \sum_{q} g_{H_{i}\bar{q}q}g_{H_{j}\bar{q}q}$ [T. Plehn, M. Spira, P. M. Zerwas, 9603205] Define and compute:

$$\sigma_{\rm b} \sim C_{\Delta}^{\rm diag} \equiv \sum_{l=1}^{3} \mathcal{D}_{ll}(\hat{s}) \lambda_{H_i H_j H_l} \qquad \sigma_{\rm c} \sim C_{\Delta}^{\rm full} \equiv \sum_{k,l=1}^{3} \mathcal{D}_{kl}(\hat{s}) \lambda_{H_i H_j H_k}$$

Including NLO corrections (NNLO also available)

 $\Delta \sigma = \Delta \sigma_{\rm virt} + \Delta \sigma_{gg} + \Delta \sigma_{gq} + \Delta \sigma_{\bar{q}q}$ [S. Dawson, S. Dittmaier, M. Spira, 9805244]

... in the NMSSM

Squarks O(1) TeV; $\Gamma_1 + \Gamma_2 > \Delta m_{12}$ condition never satisfied contribution to σ from off-diagonal propagator terms never exceeds ~1%

Maximal dependence on the strengths and relative signs of the two top-Yukawas

[B. Das, P. Poulose, S. Moretti, SM, 2012.09587]

... in the Next-to-2HDM

Singlet-extension of the 2 Higgs-doublet-model

$$\begin{split} V_{\text{N2HDM}} &= m_{H_{u}}^{2} |H_{u}|^{2} + m_{H_{d}}^{2} |H_{d}|^{2} - m_{12}^{2} \left(H_{u}^{\dagger} H_{d} + \text{h.c.} \right) + \frac{\lambda_{1}}{2} \left(H_{u}^{\dagger} H_{u} \right)^{2} + \frac{\lambda_{2}}{2} \left(H_{d}^{\dagger} H_{d} \right)^{2} \\ &+ \lambda_{3} \left(H_{u}^{\dagger} H_{u} \right) \left(H_{d}^{\dagger} H_{d} \right) + \lambda_{4} \left(H_{u}^{\dagger} H_{d} \right) \left(H_{d}^{\dagger} H_{u} \right) + \frac{\lambda_{5}}{2} \left\{ \left(H_{u}^{\dagger} H_{d} \right)^{2} + \text{h.c.} \right\} \\ &+ \frac{m_{S}^{2}}{2} S^{2} + \frac{\lambda_{6}}{8} S^{4} + \frac{\lambda_{7}}{2} \left(H_{u}^{\dagger} H_{u} \right) S^{2} + \frac{\lambda_{S}}{2} \left(H_{d}^{\dagger} H_{d} \right) S^{2}, \end{split}$$

Physical masses of the 3 neutral Higgs scalars (h, $_{100}$ h_s, H) are input parameters

- We scanned the Type-II ≈ 10 N2HDM parameter space, fixing m_h to 125 GeV and $m_H \approx m_{h_s}$ to several 1 different test values

N2HDM benchmark points

We extracted six BPs from the $m_{\rm H}$ = $m_{\rm h_S}$ = 410 GeV scan - allows direct comparison with NMSSM

- largest observed total widths, since H and \mathbf{h}_{s} can decay into top-antitop pairs

Parameter/Observable	BP1	BP2	BP3	BP4	BP5	BP6
$m_A({ m GeV})$	712.2	772.67	640.04	601.21	658.33	630.11
$m_{H^{\pm}} ({ m GeV})$	709.04	776.41	654.53	604.04	663.11	654.45
$m_{12}^2({ m GeV^2})$	84725.4	71277.6	82115.1	61133.1	69580.1	65586.7
aneta	1.3	1.0	1.3	2.0	1.8	1.2
$g_{H_1 t \overline{t}}$	1.024	1.038	0.955	0.981	0.989	0.986
g_{H_1VV}	1.000	1.000	0.954	0.990	1.000	0.930
$\operatorname{sign}(\mathcal{R}_{13})$	_	+	—	+		+
\mathcal{R}_{23}	-0.671	-0.569	-0.921	0.887	0.436	0.870
$v_S({ m GeV})$	1511.3	2357.5	1945.8	1667.5	2025.9	2459.4
$\sigma_{\rm b}({ m fb})$	34536.1	13417.6	260.1	96.6	62.9	101.3
$\sigma_{ m c}~({ m fb})$	154.3	146.7	153.1	96.2	63.6	102.6

Negative interference reduces the total cross section by two orders of magnitude!

Summary and outlook

We investigated whether propagator interference effects can help disentangle two mass-degenerate Higgs bosons produced at the 14 TeV LHC

- In the NMSSM, strongly constrained Higgs boson widths prove to be limiting factors
- In the N2HDM, the cross section for the pair production of the H_{125} can get suppressed by orders of magnitude due to these effects

Moving forward, we plan to

- analyse how the Higgs propagator interference manifests itself in dark matter (co-)annihilation
- develop a general formalism for exploring such effects in various sectors of BSM physics

THANK YOU! MURAKOZE!