Search for Heavy Neutral Higgs Boson in Left-Right Model with Inverse-Seesaw at the LHC

Mustafa Asfry
mustafa@sci.cu.edu.eg

Department of Mathematics, Faculty of Science, Cairo University
Center for $\mathcal{F u n d a m e n t a l}$ Physics (CFP), Zewail City of Science and Techinology
Based on (e-Print: 2101.08255 [3]) in collaboration with S. Khafil and K. Ezzat
Beyond Standard Model: From Theory to Experiment (BSM-2021)

Outline

1 The LRIS Model

- Lagrangian
- Mass Spectrum

■ Higgs Sector
2 Search for Heavy Higgs Bosons at the LHC ■ $h^{\prime} \rightarrow h h \rightarrow b \bar{b} \gamma \gamma$
$\square h^{\prime} \rightarrow Z Z \rightarrow 4 \ell$

3 Conclusion

4 References

Outline

1 The LRIS Model

- Lagrangian
- Mass Spectrum

■ Higgs Sector
2 Search for Heavy Higgs Bosons at the LHC ■ $h^{\prime} \rightarrow h h \rightarrow b \bar{b} \gamma \gamma$
$\square h^{\prime} \rightarrow Z Z \rightarrow 4 \ell$

3 Conclusion

4 References

Outline

1 The LRIS Model

- Lagrangian
- Mass Spectrum
- Higgs Sector

2 Search for Heavy Higgs Bosons at the LHC ■ $h^{\prime} \rightarrow h h \rightarrow b \bar{b} \gamma \gamma$

3 Conclusion

4 References

Outline

1 The LRIS Model

- Lagrangian
- Mass Spectrum

■ Higgs Sector
2 Search for Heavy Higgs Bosons at the LHC ■ $h^{\prime} \rightarrow h h \rightarrow b \bar{b} \gamma \gamma$ $\square h^{\prime} \rightarrow Z Z \rightarrow 4 \ell$

3 Conclusion

4 References

Outline

1 The LRIS Model

- Lagrangian

■ Mass Spectrum
■ Higgs Sector
2 Search for Heavy Higgs Bosons at the LHC

3 Conclusion

4 References

Outline

1 The LRIS Model

- Lagrangian
- Mass Spectrum

■ Higgs Sector
2 Search for Heavy Higgs Bosons at the LHC ■ $h^{\prime} \rightarrow h h \rightarrow b \bar{b} \gamma \gamma$

3 Conclusion

4 References

Outline

1 The LRIS Model

- Lagrangian
- Mass Spectrum

■ Higgs Sector
2 Search for Heavy Higgs Bosons at the LHC

- $h^{\prime} \rightarrow h h \rightarrow b \bar{b} \gamma \gamma$

■ $h^{\prime} \rightarrow Z Z \rightarrow 4 \ell$

3 Conclusion

4 References

Outline

1 The LRIS Model

- Lagrangian
- Mass Spectrum

■ Higgs Sector
2 Search for Heavy Higgs Bosons at the LHC

- $h^{\prime} \rightarrow h h \rightarrow b \bar{b} \gamma \gamma$

■ $h^{\prime} \rightarrow Z Z \rightarrow 4 \ell$
3 Conclusion

4 References

Outline

1 The LRIS Model

- Lagrangian
- Mass Spectrum

■ Higgs Sector
2 Search for Heavy Higgs Bosons at the LHC

- $h^{\prime} \rightarrow h h \rightarrow b \bar{b} \gamma \gamma$

■ $h^{\prime} \rightarrow Z Z \rightarrow 4 \ell$
3 Conclusion

4 References

Outline

1 The LRIS Model
 - Lagrangian
 - Mass Spectrum
 ■ Higgs Sector

2 Search for Heavy Higgs Bosons at the LHC - $h^{\prime} \rightarrow h h \rightarrow b \bar{b} \gamma \gamma$

■ $h^{\prime} \rightarrow Z Z \rightarrow 4 \ell$
3 Conclusion
4 References

Heavy Neutral Higgs in LRIS at the LHC

LThe LRIS Model
$\left\llcorner_{\text {Lagrangian }}\right.$

- The left-right symmetric model is based on the symmetry group

$$
\begin{equation*}
S U(3)_{C} \times S U(2)_{L} \times S U(2)_{R} \times U(1)_{B-L} . \tag{1}
\end{equation*}
$$

■ In addition to the usual left-right symmetric group and fermion content $[8,5,11,6,14,4]$, extra discrete symmetry Z_{2} and fermion fields S_{1} and S_{2} are added to adopt inverse-seesaw mechanism for neutrino masses .

- Moreover, we consider a truly minimal Higgs sector consisting of only one bidoublet and a right-handed doublet for symmetry breaking and spectrum.

Fields	$S U(3)_{C} \times S U(2)_{L} \times S U(2)_{R} \times U_{B-L}$
$Q_{L}=\binom{u_{L}}{d_{L}}$	$\left(\mathbf{3}, \mathbf{2}, \mathbf{1}, \frac{1}{3}\right)$
$Q_{R}=\binom{u_{R}}{d_{R}}$	$\left(\mathbf{3}, \mathbf{1}, \mathbf{2}, \frac{1}{3}\right)$
$L_{L}=\binom{\nu_{L}}{e_{L}}$	$(\mathbf{1}, \mathbf{2}, \mathbf{1},-1)$
$L_{R}=\binom{\nu_{R}}{e_{R}}$	$(\mathbf{1}, \mathbf{1}, \mathbf{2},-1)$
S_{1}	$(\mathbf{1}, \mathbf{1}, \mathbf{1},-2)$
S_{2}	$(\mathbf{1}, \mathbf{1}, \mathbf{1}, 2)$
$\phi=\left(\begin{array}{cc}\phi_{1}^{0} & \phi_{1}^{+} \\ \phi_{2}^{-} & \phi_{2}^{0}\end{array}\right)$	$(\mathbf{1}, \mathbf{2}, \mathbf{2}, 0)$
$\chi_{R}=\binom{\chi_{R}^{+}}{\chi_{R}^{0}}$	$(\mathbf{1}, \mathbf{1}, \mathbf{2}, 1)$

Table 1: The LRIS particle Content quantum numbers.

- The Higgs potential is [6]

$$
\begin{align*}
V\left(\phi, \chi_{R}\right) & =\mu_{1} \operatorname{Tr}\left(\phi^{\dagger} \phi\right)+\mu_{2}\left[\operatorname{Tr}\left(\tilde{\phi} \phi^{\dagger}\right)+\operatorname{Tr}\left(\tilde{\phi}^{\dagger} \phi\right)\right]+\lambda_{1}\left(\operatorname{Tr}\left(\phi^{\dagger} \phi\right)\right)^{2} \\
& +\lambda_{2}\left[\left(\operatorname{Tr}\left(\tilde{\phi} \phi^{\dagger}\right)\right)^{2}+\left(\operatorname{Tr}\left(\tilde{\phi}^{\dagger} \phi\right)\right)^{2}\right]+\lambda_{3} \operatorname{Tr}\left(\tilde{\phi} \phi^{\dagger}\right) \operatorname{Tr}\left(\tilde{\phi}^{\dagger} \phi\right) \\
& +\lambda_{4} \operatorname{Tr}\left(\phi \phi^{\dagger}\right)\left(\operatorname{Tr}\left(\tilde{\phi} \phi^{\dagger}\right)+\operatorname{Tr}\left(\tilde{\phi}^{\dagger} \phi\right)\right)+\mu_{3}\left(\chi_{R}^{\dagger} \chi_{R}\right)+\rho_{1}\left(\chi_{R}^{\dagger} \chi_{R}\right)^{2} \\
& +\alpha_{1} \operatorname{Tr}\left(\phi^{\dagger} \phi\right)\left(\chi_{R}^{\dagger} \chi_{R}\right)+\alpha_{2}\left(\chi_{R}^{\dagger} \phi^{\dagger} \phi \chi_{R}\right)+\alpha_{3}\left(\chi_{R}^{\dagger} \tilde{\phi}^{\dagger} \tilde{\phi} \chi_{R}\right) \\
& +\alpha_{4}\left(\chi_{R}^{\dagger} \phi^{\dagger} \tilde{\phi} \chi_{R}+\text { h.c. }\right) \tag{2}
\end{align*}
$$

- The Yukawa Lagrangian

$$
\begin{align*}
\mathcal{L}_{Y} & =\sum_{i, j=1}^{3} y_{i, j}^{L} \bar{L}_{L i} \phi L_{R j}+\tilde{y}_{i, j}^{L} \bar{L}_{L i} \tilde{\phi} L_{R j}+y_{i, j}^{Q} \bar{Q}_{L i} \phi Q_{R j}+\tilde{y}_{i, j}^{Q} \bar{Q}_{L i} \tilde{\phi} Q_{R j} \\
& +y_{i j}^{s} \bar{L}_{R i} \tilde{\chi}_{R} S_{2 j}^{c}+\text { h.c. } \tag{3}
\end{align*}
$$

■ The complete electroweak symmetry breaking pattern of the LRIS is accomplished in the following two stages

$$
\begin{equation*}
S U(2)_{L} \times S U(2)_{R} \times U(1)_{B-L} \xrightarrow{\left\langle\chi_{R}\right\rangle} S U(2)_{L} \times U(1)_{Y} \xrightarrow{\langle\phi\rangle} U(1)_{\mathrm{em}} \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
\left\langle\chi_{R}\right\rangle=v_{R}, \quad\langle\phi\rangle=\operatorname{diag}\left(k_{1}, k_{2}\right) \tag{5}
\end{equation*}
$$

- The hypercharge is defined by the formula

$$
\begin{equation*}
Y=T_{R}^{3}+\frac{B-L}{2} \tag{6}
\end{equation*}
$$

- The electromagnetic charge is defined by the modified Gell-Mann-Nishijima formula

$$
\begin{equation*}
Q=T_{L}^{3}+Y=T_{L}^{3}+T_{R}^{3}+\frac{B-L}{2} \tag{7}
\end{equation*}
$$

Heavy Neutral Higgs in LRIS at the LHC

L The LRIS Model
L Mass Spectrum
■ The neutral gauge matrix $\left(W_{R \mu}^{3}, V_{\mu}, W_{L \mu}^{3}\right)$ and $Z-Z^{\prime}$ mixing are

$$
\begin{align*}
M_{Z Z^{\prime}}^{2} & =\frac{1}{4}\left(\begin{array}{ccc}
g_{R}^{2}\left(v_{R}^{2}+v^{2}\right) & -g_{B L} g_{R} v_{R}^{2} & -g_{L} g_{R} v^{2} \\
\cdot & g_{B L}^{2} v_{R}^{2} & 0 \\
\cdot & \cdot & g_{L}^{2} v^{2}
\end{array}\right) \tag{8}\\
\tan 2 \vartheta & =\frac{2 g_{2}^{3} \sqrt{g_{2}^{2}+2 g_{B L}^{2}}}{\left(g_{2}^{2}+g_{B L}^{2}\right)^{2}\left(\frac{v_{R}}{v}\right)^{2}-2 g_{2}^{2} g_{B L}^{2}} \tag{9}
\end{align*}
$$

- The charged gauge matrix $\left(W_{L \mu}^{ \pm}, W_{R \mu}^{ \pm}\right)$and $W-W^{\prime}$ mixing are

$$
\begin{align*}
M_{W W^{\prime}}^{2} & =\frac{1}{4}\left(\begin{array}{cc}
g_{L}^{2} v^{2} & -g_{L} g_{R} v^{2} s_{2 \beta} \\
\cdot & g_{R}^{2}\left(v^{2}+v_{R}^{2}\right)
\end{array}\right) \tag{10}\\
\tan 2 \xi & =\frac{2 g_{L} g_{R} s_{2 \beta}}{g_{R}^{2}\left(1+\left(\frac{v_{R}}{v}\right)^{2}\right)-g_{L}^{2}} \tag{11}
\end{align*}
$$

■ $M_{W, W^{\prime}}$ are approximately $\left.M_{W}=g_{2} v / 2, M_{W^{\prime}}=\left(g_{2} / 2\right) \sqrt{v^{2}+v_{R}^{2}}\right)$.

- The Dirac mass matrices for the SM fermions

$$
\begin{align*}
& M_{u}=\frac{v}{\sqrt{2}}\left(y^{Q} s_{\beta}+\tilde{y}^{Q} c_{\beta}\right), \tag{12}\\
& M_{d}=\frac{v}{\sqrt{2}}\left(y^{Q} c_{\beta}+\tilde{y}^{Q} s_{\beta}\right), \tag{13}\\
& M_{\ell}=\frac{v}{\sqrt{2}}\left(y^{L} c_{\beta}+\tilde{y}^{L} s_{\beta}\right) . \tag{14}
\end{align*}
$$

- The physical fermions' masses are

$$
\begin{equation*}
M_{u}^{\mathrm{diag}}=V_{L}^{u \dagger} M_{u} V_{R}^{u}, \quad M_{d}^{\mathrm{diag}}=V_{L}^{d \dagger} M_{d} V_{R}^{d}, \quad M_{\ell}^{\mathrm{diag}}=V_{L}^{\ell \dagger} M_{\ell} V_{R}^{\ell} \tag{15}
\end{equation*}
$$

■ The left and right CKM quark mixing matrices are

$$
\begin{equation*}
V_{L, R}=V_{L, R}^{u \dagger} V_{L, R}^{d} \tag{16}
\end{equation*}
$$

- The fermion-Higgs interactions are and lead to quite dangerous tree-level flavor-changing neutral currents (FCNC) [15, 10]

$$
\begin{align*}
\mathcal{L}_{\mathrm{int}}^{\mathrm{FCNC}} & \left.=\frac{-\sqrt{2}}{v c_{2 \beta}}\left[\bar{u}_{L} V^{L} M_{d}^{\mathrm{diag}} V^{R}\left(-c_{\beta} \phi_{1}^{0}+s_{\beta} \phi_{2}^{0 *}\right)\right) u_{R}\right] \\
& \left.-\frac{\sqrt{2}}{v c_{2 \beta}}\left[\bar{d}_{L} V^{L} M_{u}^{\mathrm{diag}} V^{R}\left(-c_{\beta} \phi_{1}^{0}+s_{\beta} \phi_{2}^{0 *}\right)\right) d_{R}\right], \tag{17}
\end{align*}
$$

- In LRIS with $g_{L}=g_{R}$ the flavor violation is under control and it is no longer dangerous as it will be proportional to powers of the Wolfenstein parameter: $\lambda \sim 0.12[18,16]$.

■ After $B-L$ symmetry breaking, a small mass term $\mu_{s} \bar{S}_{2}^{c} S_{2}$ (and plausibly $\mu_{s}^{\prime} \bar{S}_{1}^{c} S_{1}$) is generated from a non-renormalizable term (of dimension seven at least $\propto \chi_{R}^{4} \bar{S}_{2}^{c} S_{2} / M^{3}$), which implies that $\mu_{s}=\lambda_{s} v_{R}^{4} / M^{3} \lesssim \mathcal{O}(1) \mathrm{KeV}$ [2]

- The the standard neutrino IS mechanism [12, 13, 9, 17] neutrino masses Lagrangian is

$$
\begin{equation*}
\mathcal{L}_{m}^{\nu}=M_{D} \bar{\nu}_{L} \nu_{R}+M_{R} \bar{\nu}_{R}^{c} S_{2}+\mu_{s} \bar{S}_{2}^{c} S_{2}+h . c . \tag{18}
\end{equation*}
$$

where $M_{D}=v\left(y^{L} s_{\beta}+\tilde{y}^{L} c_{\beta}\right) / \sqrt{2}$ is the Dirac neutrino mass matrix and $M_{R}=y^{s} v_{R} / \sqrt{2}$.

- The neutrino mass matrix can be written as $\bar{\psi}^{c} \mathcal{M}_{\nu} \psi$ with the flavour basis $\psi=\left(\nu_{L}^{c}, \nu_{R}, S_{2}\right)$ and

$$
\mathcal{M}_{\nu}=\left(\begin{array}{ccc}
0 & M_{D} & 0 \tag{19}\\
M_{D}^{T} & 0 & M_{R} \\
0 & M_{R}^{T} & \mu_{s}
\end{array}\right)
$$

- The physical light and heavy neutrino states $\nu_{\ell_{i}}, \nu_{h_{j}}, i=1 \ldots 3, j=1 \ldots 6$, with the following mass eigenvalues:

$$
\begin{align*}
m_{\nu_{\ell_{i}}} & =M_{D} M_{R}^{-1} \mu_{s}\left(M_{R}^{T}\right)^{-1} M_{D}^{T}, \quad i=1 \ldots 3 \tag{20}\\
m_{\nu_{h_{j}}}^{2} & =M_{R}^{2}+M_{D}^{2}, \quad j=1 \ldots 6 \tag{21}
\end{align*}
$$

■ Choices of $\mu_{s} \sim \mathcal{O}\left(10^{-7}\right) \mathrm{GeV}$, and $v_{R} \sim \mathcal{O}\left(10^{3}\right) \mathrm{GeV}$ So for $\lambda_{s} \sim \mathcal{O}\left(10^{-3}\right)$ we need $M \sim \mathcal{O}(10) \mathrm{TeV}$ gives the experimental light neutrino masses.

- The symmetric mass matrix of the charged Higgs bosons $\left(\phi_{1}^{ \pm}, \phi_{2}^{ \pm}, \chi_{R}^{ \pm}\right)$is

$$
M_{H^{ \pm}}^{2}=\frac{\alpha_{32}}{2}\left(\begin{array}{ccc}
\frac{v_{R}^{2} s_{\beta}^{2}}{c_{2 \beta}} & \frac{v_{R}^{2} s_{2 \beta}}{2 c_{2 \beta}} & -v v_{R} s_{\beta} \tag{22}\\
\cdot & \frac{v_{R}^{2} c_{\beta}^{2}}{c_{2 \beta}} & -v v_{R} c_{\beta} \\
\cdot & \cdot & v^{2} c_{2 \beta}
\end{array}\right)
$$

■ Only one physical charged Higgs boson with mass are

$$
\begin{equation*}
m_{H^{ \pm}}^{2}=\frac{\alpha_{32}}{2}\left(\frac{v_{R}^{2}}{c_{2 \beta}}+v^{2} c_{2 \beta}\right) \tag{23}
\end{equation*}
$$

where $\alpha_{32}=\alpha_{3}-\alpha_{2}$.

- in the basis $\left(\phi_{1}^{0 I}, \phi_{2}^{0 I}, \chi_{R}^{0 I}\right)$ the pseudoscalar Higgs mass matrix is given by

$$
M_{A}^{2}=\frac{1}{2}\left(\frac{v_{R}^{2} \alpha_{32}}{c_{2 \beta}}-4 v^{2}\left(2 \lambda_{2}-\lambda_{3}\right)\right)\left(\begin{array}{ccc}
c_{\beta}^{2} & s_{\beta} c_{\beta} & 0 \tag{24}\\
\cdot & s_{\beta}^{2} & 0 \\
\cdot & \cdot & 0
\end{array}\right)
$$

■ Only one physical pseudoscalar Higgs with mass

$$
\begin{equation*}
m_{A}^{2}=\frac{1}{2}\left(\frac{v_{R}^{2}}{c_{2 \beta}} \alpha_{32}-4 v^{2}\left(2 \lambda_{2}-\lambda_{3}\right)\right) . \tag{25}
\end{equation*}
$$

- There are three massive scalar Higgs bosons one of which, we took it the lightest, can be the SM-like Higgs boson that we fix its mass with $m_{h}=125 \mathrm{GeV}[1,7]$.
- The other two eigenvalues are given byin terms of the SM-like mass by

$$
\begin{equation*}
m_{H_{2,3}}^{2}=\frac{1}{2}\left(T^{h}-m_{h}^{2} \mp \sqrt{\left(T^{h}-m_{h}^{2}\right)^{2}-\frac{4 D^{h}}{m_{h}^{2}}}\right), \tag{26}
\end{equation*}
$$

where the neutral scalar Higgs mass M_{H}^{2} matrix has the trace

$$
\begin{equation*}
T^{h}=\operatorname{Tr}\left(M_{H}^{2}\right)=\frac{\alpha_{32}}{2} \frac{v_{R}^{2}}{c_{2 \beta}}+2 v^{2}\left(\lambda_{1}+\lambda_{23}\right)+8 \frac{1}{2} v^{2} s_{2 \beta} \lambda_{4}+2 \rho_{1} v_{R}^{2} \tag{27}
\end{equation*}
$$

and its determinant $D^{h}=\operatorname{Det}\left(M_{H}^{2}\right)$.

■ The next lightest $C P$-even neutral Higgs boson, h^{\prime}, could have a mass of order a few hundred GeVs, as shown in Fig. 1 (left) in terms of one of the scalar potential parameters

- Other parameters in the scalar potential, with choosing $\lambda_{23} \in[-0.1,3]$ and

$$
\begin{equation*}
\lambda_{1}=0.20, \quad \lambda_{4}=0.90, \quad \alpha_{1}=0.13, \quad \alpha_{4}=0.80, \quad \rho_{1}=0.10 \tag{28}
\end{equation*}
$$

■ Fig. 1 (right) displays the h^{\prime}-mixing $Z_{2 i}^{H}$ versus $m_{h^{\prime}}$ where h^{\prime} is essentially ϕ_{1}-like with smaller contributions from the real components of ϕ_{2} and χ_{R}.

Figure 1: The next lightest Higgs mass (Left) and mixing (right).

- The interaction couplings of h^{\prime} with Z_{μ} gauge boson, and with the SM-like Higgs are

$$
\begin{align*}
g_{h^{\prime} h h} & \approx-2 i v\left(\left(\lambda_{1}-\lambda_{23}\right) c_{\beta}+3 \lambda_{4} s_{\beta}\right) Z_{21}^{H}\left(Z_{12}^{H}\right)^{2}, \tag{29}\\
g_{h^{\prime} Z Z} & \approx \frac{i}{2} g_{2}^{2} v\left(c_{\beta} Z_{21}^{H}+s_{\beta} Z_{22}^{H}\right)\left(Z_{32}^{Z}-Z_{12}^{Z}\right)^{2}, \tag{30}
\end{align*}
$$

■ Numerically, we have $g_{h^{\prime} Z Z} \sim 60 \mathrm{GeV}$ and $60 \mathrm{GeV} \lesssim g_{h^{\prime} h h} \lesssim 150 \mathrm{GeV}$. i.e., the coupling $g_{h^{\prime} Z Z}$ is typically smaller than the coupling $g_{h^{\prime} h h}$.

Par	α_{1}	α_{2}	α_{3}	α_{4}	λ_{1}	λ_{2}	λ_{3}	λ_{4}
BP1	0.130	0.140	0.150	0.600	0.210	0.320	-0.150	0.980
BP2	0.230	0.090	0.100	0.600	0.200	0.230	-0.100	0.980
BP3	0.180	0.160	0.190	0.950	0.220	0.310	-0.110	0.980

Table 2: Benchmark points (BP) and corresponding parameters and Higgs spectrum

Par	ρ_{1}	t_{β}	v_{R} (GeV)	$m_{H^{ \pm}}$ (GeV)	m_{A} (GeV)	$m_{h^{\prime}}$ (GeV)	$m_{H_{3}}$ (GeV)
BP1	0.100	0.134	6400	440	315	250	3000
BP2	0.110	0.159	6400	430	350	400	3100
BP3	0.130	0.060	6400	700	650	600	3400

Table 3: Benchmark points (BP) and corresponding parameters and Higgs spectrum

Outline

1 The LRIS Model
 - Lagrangian
 - Mass Spectrum
 ■ Higgs Sector

2 Search for Heavy Higgs Bosons at the LHC

- $h^{\prime} \rightarrow h h \rightarrow b \bar{b} \gamma \gamma$
- $h^{\prime} \rightarrow Z Z \rightarrow 4 \ell$

3 Conclusion
4 References

- The heavy Higgs boson, h^{\prime}, is mainly produced at the LHC from gluon-gluon fusion (ggF) process and Fig. 2 (left) shows the h^{\prime} ggF-production cross section versus $m_{h^{\prime}}$.
- Fig. 2 (right) shows the h^{\prime} decay branching ratios with $m_{h^{\prime}}$. For $m_{h^{\prime}} \leq 600 \mathrm{GeV}, \mathrm{BR}\left(h^{\prime} \rightarrow h h\right) \geq 10 \%$, which gives a hope for probing this heavy Higgs through this channel.

Figure 2: (Left) The h^{\prime} ggF production cross section with the three BP points circled. (Right) h^{\prime}-decay branching ratios.

■ The on-shell SM Higgs pair production from h^{\prime}, followed by their decays $h^{\prime} \rightarrow h h \rightarrow b \bar{b} \gamma \gamma$, is given by the folowing Feynman diagram.
■ Here we adapt the following different values of h^{\prime}-mass:
$m_{h^{\prime}}=250 \mathrm{GeV}, 400 \mathrm{GeV}$ and 600 GeV

Figure 3: Feynman diagram for the h^{\prime} ggF production and decay process $g g \rightarrow h^{\prime} \rightarrow h h \rightarrow b \bar{b} \gamma \gamma$

LSearch for Heavy Higgs Bosons at the LHC

 $L^{\prime} \rightarrow h h \rightarrow b \bar{b} \gamma \gamma$■ We have $\Gamma_{h^{\prime}} / m_{h^{\prime}} \ll 1$ and in the narrow width approximation the total cross section $\sigma\left(p p \rightarrow h^{\prime} \rightarrow h h \rightarrow b \bar{b} \gamma \gamma\right)$ is decomposed into

$$
\begin{equation*}
\sigma\left(p p \rightarrow h^{\prime} \rightarrow h h \rightarrow b \bar{b} \gamma \gamma\right) \approx \sigma\left(p p \rightarrow h^{\prime}\right) \times \operatorname{BR}\left(h^{\prime} \rightarrow h h\right) \times \mathrm{BR}(h \rightarrow b \bar{b}) \times \mathrm{BR}(h \rightarrow \gamma \gamma), \tag{31}
\end{equation*}
$$

$m_{h^{\prime}}(\mathrm{GeV})$	$\sigma\left(p p \rightarrow h^{\prime}\right)(\mathrm{pb})$	$\mathrm{BR}\left(h^{\prime} \rightarrow h h\right)$	$\sigma\left(p p \rightarrow h^{\prime} \rightarrow h h \rightarrow b b \gamma \gamma\right)(\mathrm{fb})$
250	12.140	0.30	6.30
400	5.050	0.20	1.01
600	0.504	0.18	0.05

Table 4: $p p \rightarrow h^{\prime} \rightarrow h h \rightarrow b \bar{b} \gamma \gamma$ production and decays for $m_{h^{\prime}}=250 \mathrm{GeV}, 400 \mathrm{GeV}$ and 600 GeV .

LSearch for Heavy Higgs Bosons at the LHC

$$
L^{\prime} h^{\prime} \rightarrow h h \rightarrow b \bar{b} \gamma \gamma
$$

- The relevant background from the SM processes are

$$
p p \rightarrow b b h \gamma \gamma / b b j a / b b j j / c c \gamma \gamma / c c j \gamma / j j \gamma \gamma / g g h \gamma \gamma / t t / t t \gamma / t t h \gamma \gamma / b b z \gamma \gamma / z h \gamma \gamma .
$$

- All these backgrounds can be reduced by appropriate kinematics cuts as Tab. 5.

Cuts (Select)	Signal (S): $m_{h^{\prime}}=250 \mathrm{GeV}(400 \mathrm{GeV})$	Background (B)	$\mathrm{S} / \sqrt{\mathrm{B}}$
Initial (no cut)	$1904.00(308.00)$	25058.00	$12.000(1.950)$
$M_{\gamma \gamma}>119.5 \mathrm{GeV}$	$846.70 \pm 21.70(177.95 \pm 8.82)$	3015.10 ± 51.50	$15.419 \pm 0.00527(3.241 \pm 0.0$
$M_{\gamma \gamma}<125.0 \mathrm{GeV}$	$522.00 \pm 19.30(106.60 \pm 8.36)$	387.40 ± 19.20	$26.530 \pm 0.01500(5.419 \pm 0.0$

Table 5: Cut flow charts for the $h^{\prime} \rightarrow h h \rightarrow b \bar{b} \gamma \gamma$ signal versus its relevant background and the corresponding number of events and significance at $300 \mathrm{fb}^{-1}$ and $\sqrt{s}=14 \mathrm{TeV}$ for $m_{h^{\prime}}=250 \mathrm{GeV}(400 \mathrm{GeV})$.

Heavy Neutral Higgs in LRIS at the LHC

LSearch for Heavy Higgs Bosons at the LHC

$$
L^{\prime} h^{\prime} \rightarrow h h \rightarrow b \bar{b} \gamma \gamma
$$

■ After this cut we can see signal above background

Figure 4: Number of signal events for $h^{\prime} \rightarrow b \bar{b} \gamma \gamma$ decays at mass $m_{h^{\prime}}=250 \mathrm{GeV}$ (blue) and 400 GeV (red) induced by ggF versus the invariant mass of the final states $b \bar{b} \gamma \gamma$, at $\sqrt{s}=14 \mathrm{TeV}$ and $L_{\text {int }}=300 \mathrm{fb}^{-1}$ alongside with the relevant background events (black) before (left) and after (right) applying the cut flow of Tab. 5. The corresponding vlaues of cross sections and branching ratios are given in Tab. 4.

LSearch for Heavy Higgs Bosons at the LHC
$L^{\prime} \rightarrow h h \rightarrow b \bar{b} \gamma \gamma$

- With $m_{h^{\prime}}=600 \mathrm{GeV}$, one must consider higher $L_{\text {int }} \sim 3000 \mathrm{fb}^{-1}$, as the associated production and decay cross section are quite small. Here we apply following cut flow.

Cuts (Select)	Signal (S): $m_{h^{\prime}}=600 \mathrm{GeV}$	Background (B)	$\mathrm{S} / \sqrt{\mathrm{B}}$
Initial (no cut)	155.000	250589.00	0.310
$M_{b b}<200.0 \mathrm{GeV}$	52.250 ± 5.18	39823.60 ± 82.40	0.264 ± 0.0008
$M_{\gamma \gamma}>119.5 \mathrm{GeV}$	34.436 ± 5.91	4252.00 ± 64.70	0.530 ± 0.0010
$M_{\gamma \gamma}<140.0 \mathrm{GeV}$	34.432 ± 5.91	1826.60 ± 42.00	0.800 ± 0.0004
$(\Delta R)_{\gamma \gamma}<2.0$	29.830 ± 4.35	305.20 ± 17.08	1.710 ± 0.0500
$(\Delta R)_{b b}<2.0$	28.300 ± 4.46	198.63 ± 7.66	2.010 ± 0.0200
$\left(P_{T}\right)_{\gamma \gamma}>200.0 \mathrm{GeV}$	22.160 ± 4.36	60.75 ± 7.70	2.800 ± 0.0260

Table 6: Cut flow charts for the $h^{\prime} \rightarrow h h \rightarrow b \bar{b} \gamma \gamma$ signal versus its relevant background and the corresponding number of events and significance at $L_{\text {int }}=3000 \mathrm{fb}^{-1}$ and $\sqrt{s}=14 \mathrm{TeV}$ for $m_{h^{\prime}}=600 \mathrm{GeV}$.

Heavy Neutral Higgs in LRIS at the LHC

LSearch for Heavy Higgs Bosons at the LHC

$$
L^{\prime} \rightarrow h h \rightarrow b \bar{b} \gamma \gamma
$$

- after this cut we can see signal above background

Figure 5: Number of signal events for $h^{\prime} \rightarrow b \bar{b} \gamma \gamma$ decays at mass $m_{h^{\prime}}=600 \mathrm{GeV}$ (green) induced by ggF versus the invariant mass of the final states $b \bar{b} \gamma \gamma$, at $\sqrt{s}=14 \mathrm{TeV}$ and $L_{\text {int }}=3000 \mathrm{fb}^{-1}$ alongside the relevant background events background (black) before (left) and after (right) applying the cut flow set of Tab. 6. The corresponding values of cross sections and branching ratios are given in Tab. 4. Left pannel is plotten on log-scale vertical axis for the signal to show up relatively.

Heavy Neutral Higgs in LRIS at the LHC

Search for Heavy Higgs Bosons at the LHC
$L^{\prime} \rightarrow h h \rightarrow b \bar{b} \gamma \gamma$
■ According to the plots in Fig. 6 and Fig. 5, it is clear that even h^{\prime} with $m_{h^{\prime}} \gtrsim 600 \mathrm{GeV}$ can still be discovered, but at the High-Luminosity

Figure 6: Significace of the $h^{\prime} \rightarrow b \bar{b} \gamma \gamma$ signal of Fig. 4 relative to the corresponding background versus $L_{\text {int }}$ at mass $m_{h^{\prime}}=250 \mathrm{GeV}$ (blue), 400 GeV (red) and 600 GeV (green). Data is produced at $\sqrt{s}=14 \mathrm{TeV}$ and points are interpolated between values of $L_{\text {int }}=100,300,500,1000,1500,2000,2500 \mathrm{fb}^{-1}$ and $L_{\text {int }}=3000 \mathrm{fb}^{-1}$. Notice that event rates are computed after the cuts described in Tab. 5 and the relative significance of the signals increases with $L_{\text {int }}$.

- Possibility of probing h^{\prime} through its final decay into four charged leptons, along the process $p p \rightarrow h^{\prime} \rightarrow Z Z \rightarrow 4 \ell(\ell=e, \mu)$ is shown by the following Feynman diagram

Figure 7: Feynman diagram for the h^{\prime} ggF production and decay process $g g \rightarrow h^{\prime} \rightarrow Z Z \rightarrow 4 \ell$.

LSearch for Heavy Higgs Bosons at the LHC

■ In the narrow width approximation, the total cross section can be written as

$$
\begin{equation*}
\sigma\left(p p \rightarrow h^{\prime} \rightarrow Z Z \rightarrow 4 \ell\right) \approx \sigma\left(p p \rightarrow h^{\prime}\right) \times \mathrm{BR}\left(h^{\prime} \rightarrow Z Z\right) \times(\mathrm{BR}(Z \rightarrow 2 \ell))^{2} \tag{32}
\end{equation*}
$$

$m_{h^{\prime}}(\mathrm{GeV})$	$\sigma\left(p p \rightarrow h^{\prime}\right)(\mathrm{pb})$	$\mathrm{BR}\left(h^{\prime} \rightarrow Z Z\right)$	$\sigma\left(p p \rightarrow h^{\prime} \rightarrow Z Z \rightarrow 4 \ell\right)(\mathrm{fb})$
250	12.140	0.050	0.2428
400	5.050	0.025	0.0579

Table 7: $p p \rightarrow h^{\prime}$ production cross section and its $h^{\prime} \rightarrow Z Z$ decay branching ratio and the total cross section for its production and decay process $p p \rightarrow h^{\prime} \rightarrow Z Z \rightarrow 4 \ell$ for three different values of $m_{h^{\prime}}=250 \mathrm{GeV}$ and 400 GeV .

■ With such small cross sections of Tab. 7 the number of associated events is extremely smaller than the relevant background, as shown in Fig. 8 (left). Thus, we consider larger $L_{\text {int }}=3000 \mathrm{fb}^{-1}$ for the both cases of $m_{h^{\prime}}=250 \mathrm{GeV}$ and 400 GeV .

- Again, our signal is boosted away by the high mass value of the h^{\prime} Higgs boson, an appropriate cut on the missing transverse hadronic energy $H_{T}=\left|-\sum_{\text {jet }}\left(\vec{P}_{T}\right)_{\text {jet }}\right|$ is applied as emphasized in Tab. 8 to enhance the relative significance of our signal to the corresponding irreducible background $p p \rightarrow 4 \ell$.

Cuts (Select)	Signal (S): $m_{h^{\prime}}=250 \mathrm{GeV}(400 \mathrm{GeV})$	Background (B)	$\mathrm{S} / \sqrt{\mathrm{B}}$
Initial (no cut)	$728.00(174.00)$	79890.00	$2.58000(0.43000)$
$/_{T}>150.0 \mathrm{GeV}$	$58.65 \pm 7.34(38.20 \pm 2.01)$	247.70 ± 15.70	$2.02457 \pm 0.00790(1.26340 \pm 0$

Table 8: Cut flow charts for the $h^{\prime} \rightarrow Z Z \rightarrow 4 \ell$ signal versus its relevant background and the corresponding number of events and significance at $3000 \mathrm{fb}^{-1}$ and $\sqrt{s}=14 \mathrm{TeV}$ for $m_{h^{\prime}}=250 \mathrm{GeV}, 400 \mathrm{GeV}$.

Heavy Neutral Higgs in LRIS at the LHC

LSearch for Heavy Higgs Bosons at the LHC

$L^{\prime} \rightarrow Z Z \rightarrow 4 \ell$

- After this cut we can see the significance of the signal increases over the relevant background

Figure 8: Number of signal events for $p p \rightarrow h^{\prime} \rightarrow Z Z \rightarrow 4 \ell$ decays at mass $m_{h^{\prime}}=250 \mathrm{GeV}$ (red) and 400 GeV (blue) induced by ggF versus the invariant mass of the final states 4ℓ, at $\sqrt{s}=14 \mathrm{TeV}$ and $L_{\text {int }}=3000 \mathrm{fb}^{-1}$ alongside with the relevant background events background (black) before (left) and after (right) applying the cut flow of Tab. 8. The corresponding values of cross sections and branching ratios are given in Tab. 7.

Heavy Neutral Higgs in LRIS at the LHC

LSearch for Heavy Higgs Bosons at the LHC $^{\text {LH }}$
$L^{\prime}{ }^{\prime} \rightarrow Z Z \rightarrow 4 \ell$

Figure 9: Significace of the $p p \rightarrow h^{\prime} \rightarrow Z Z \rightarrow 4 \ell$ signal of Fig. 8 relative to the corresponding background versus $L_{\text {int }}$ at mass $m_{h^{\prime}}=250 \mathrm{GeV}$ (blue) and 400 GeV (red). Data is produced at $\sqrt{s}=14 \mathrm{TeV}$ and points correspond to $L_{\text {int }}=100,300,500,1000,1500,2000,2500 \mathrm{fb}^{-1}$ and $L_{\text {int }}=3000 \mathrm{fb}^{-1}$. Notice that event rates are computed after the cuts described in Tab. 8 and the relative significance of the signals increases with L_{int}.

Heavy Neutral Higgs in LRIS at the LHC
LConclusion

Outline

1 The LRIS Model
 - Lagrangian
 - Mass Spectrum
 - Higgs Sector

2 Search for Heavy Higgs Bosons at the LHC

- $h^{\prime} \rightarrow h h \rightarrow b \bar{b} \gamma \gamma$

■ $h^{\prime} \rightarrow Z Z \rightarrow 4 \ell$
3 Conclusion

4 References

- Proposal of a viable minimal left-right with neutrino masses inverse-seesaw mechanism.
- Full mass spectrum analysis in consistency with the experimental findings and limits.
■ The next lightest Higgs, h^{\prime}, could of order a few hundred GeV s.
- We studied the LHC potential discovery for h^{\prime} in this class of models.

We performed analysis for searches for h^{\prime} by looking for resonant peaks in the following two processes: $h^{\prime} \rightarrow h h \rightarrow b \bar{b} \gamma \gamma$ and $h^{\prime} \rightarrow Z Z \rightarrow 4 \ell(\ell=e, \mu)$.

- We considered three benchmark points, with $m_{h^{\prime}}=250 \mathrm{GeV}$, 400 GeV and 600 GeV , at $\sqrt{s}=14 \mathrm{TeV}$ and $L_{\text {int }}=300 \mathrm{fb}^{-1}$ and $L_{\text {int }}=3000 \mathrm{fb}^{-1}$.
- We emphasized that h^{\prime} can be probed with good statistical significances in di-Higgs channel, with $2 \gamma+2 b$-jets final states.
- The channel of Z-pair production and decays to 4ℓ is much less significant and it may be observed only at very high $L_{\text {int }}=3000 \mathrm{fb}^{-1}$ and for light h^{\prime} with mass less than 300 GeV .

Outline

1 The LRIS Model
■ Lagrangian

- Mass Spectrum

■ Higgs Sector
2 Search for Heavy Higgs Bosons at the LHC
■ $h^{\prime} \rightarrow h h \rightarrow b \bar{b} \gamma \gamma$
$\square h^{\prime} \rightarrow Z Z \rightarrow 4 \ell$

3 Conclusion

4 References

References I

[1] Georges Aad et al.
Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC.
Phys. Lett. B, 716:1-29, 2012.
[2] W. Abdallah, A. Awad, S. Khalil, and H. Okada.
Muon Anomalous Magnetic Moment and mu -> e gamma in B-L Model with Inverse Seesaw. Eur. Phys. J. C, 72:2108, 2012.
[3] M. Ashry, K. Ezzat, and S. Khalil.
Search for Heavy Neutral Higgs Boson in Left-Right Model with Inverse-Seesaw at the LHC.
12021.
[4] M. Ashry and S. Khalil.
Phenomenological aspects of a TeV -scale alternative left-right model.
Phys. Rev. D, 91(1):015009, 2015.
[Addendum: Phys.Rev.D 96, 059901 (2017)].
[5] Charanjit S. Aulakh, Alejandra Melfo, and Goran Senjanovic.
Minimal supersymmetric left-right model.
Phys.Rev., D57:4174-4178, 1998.
[6] Debasish Borah, Sudhanwa Patra, and Utpal Sarkar.
TeV scale Left Right Symmetry with spontaneous D-parity breaking.
Phys.Rev., D83:035007, 2011.
[7] Serguei Chatrchyan et al.
Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC.
Phys.Lett., B716:30-61, 2012.

References II

[8] N.G. Deshpande, J.F. Gunion, Boris Kayser, and Fredrick I. Olness.
Left-right symmetric electroweak models with triplet Higgs.
Phys.Rev., D44:837-858, 1991.
[9] M.C. Gonzalez-Garcia and J.W.F. Valle.
Fast Decaying Neutrinos and Observable Flavor Violation in a New Class of Majoron Models.
Phys. Lett. B, 216:360-366, 1989.
[10] Alessio Maiezza.
Quark mixing with soft breaking of the parity in the minimal Left-Right model.
122020.
[11] Alessio Maiezza, Miha Nemevsek, Fabrizio Nesti, and Goran Senjanovic.
Left-Right Symmetry at LHC.
Phys. Rev. D, 82:055022, 2010.
[12] R.N. Mohapatra.
Mechanism for Understanding Small Neutrino Mass in Superstring Theories.
Phys. Rev. Lett., 56:561-563, 1986.
[13] R.N. Mohapatra and J.W.F. Valle.
Neutrino Mass and Baryon Number Nonconservation in Superstring Models.
Phys. Rev. D, 34:1642, 1986.
[14] Miha Nemevsek, Goran Senjanovic, and Vladimir Tello.
Left-Right Symmetry: from Majorana to Dirac.
Phys.Rev.Lett., 110:151802, 2013.

References III

[15] Goran Senjanović and Vladimir Tello.
Right Handed Quark Mixing in Left-Right Symmetric Theory.
Phys. Rev. Lett., 114(7):071801, 2015.
[16] M. Tanabashi et al.
Review of Particle Physics.
Phys. Rev. D, 98(3):030001, 2018.
[17] C. Weiland.
Enhanced lepton flavour violation in the supersymmetric inverse seesaw.
J. Phys. Conf. Ser., 447:012037, 2013.
[18] Lincoln Wolfenstein.
Parametrization of the kobayashi-maskawa matrix.
Phys. Rev. Lett., 51:1945-1947, Nov 1983.

Thank you! Questions?

