# $H ightarrow { ilde \chi}^0_1 { ilde \chi}^0_1$ in the NMSSM

#### Maien Binjonaid

Department of Physics and Astronomy King Saud University

April 4, 2021



- 1. The NMSSM
- 2. Methods
- 3. Preliminary results
- 4. Conclusions

## The NMSSM

The NMSSM is specified by the Superpotential:

$$\mathcal{W} = \mathcal{W}_{\mathsf{MSSM}}^{\mu} + \lambda \hat{S} \hat{H}_u \cdot \hat{H}_d + \frac{1}{3} \kappa \hat{S}^3,$$
 (1)

where  $\mathcal{W}_{\text{MSSM}}^{\mu}$  contain the Yukawa couplings as in the MSSM. The second is  $\mu_{eff} = \lambda s$ , which is generated as the singlet superfield  $\hat{S}$  acquires a vacuum expectation value (VEV).  $\lambda$  is the coupling of  $\hat{S}$  to the up and down Higgs fields  $\hat{H}_u$ ,  $\hat{H}_d$ . The third term is the self-coupling of  $\hat{S}$ .

#### Higgs potential

The Higgs and the SM singlet superfields acquire VEVs as,

$$\langle H_1 \rangle = \begin{pmatrix} v_1 \\ 0 \end{pmatrix}, \quad \langle H_2 \rangle = \begin{pmatrix} 0 \\ v_2 \end{pmatrix}, \langle S \rangle = v_3,$$
 (2)

The Higgs potential is,

$$V_{\text{NMSSM}} = m_1^2 v_1^2 + m_2^2 v_2^2 + \lambda^2 v_1^2 v_2^2 + 2\mu_{\text{eff}} B_{\text{eff}} v_1 v_2 + \frac{\bar{g}^2}{8} (v_1^2 - v_2^2)^2 + v_3^2 (m_5^2 + \frac{2}{3} k v_3 A_{\kappa} + \kappa^2 v_3^2).$$
(3)

where,  $m_j^2 = m_{H_j}^2 + \mu_{\text{eff}}^2$ , for j = 1, 2.  $\mu_{\text{eff}} = \lambda v_3$  and  $B_{\text{eff}} = \kappa v_3 + A_\lambda$  are effective terms produced as the SM singlet acquires its VEV.  $A_\lambda$  and  $A_\kappa$  are trilinear soft terms associated with the couplings  $\lambda$  and  $\kappa$ .  $m_S$  is the soft mass of the singlet. And  $\bar{g}^2 = g_1^2 + g_2^2$ , where  $g_1$  and  $g_2$  are the gauge couplings associated with  $U(1)_Y$  and  $SU(2)_L$ , respectively.

#### EWSB conditions

In the NMSSM, there are three conditions for Electroweak Symmetry Breaking, which can be written in terms of the mass of the Z boson,  $M_Z$ , and  $\sin 2\beta$ , where  $\tan \beta = \frac{v_2}{v_1}$ , and the soft mass of the SM singlet,  $m_S$ :

$$\frac{M_Z^2}{2} = \frac{m_1^2 - \tan^2 \beta m_2^2}{\tan^2 \beta - 1},$$
(4)  

$$\sin 2\beta = \frac{2\mu_{\text{eff}} B_{\text{eff}}}{m_1^2 + m_2^2 + \lambda^2 v^2},$$
(5)  

$$m_5^2 + \kappa A_\kappa v_3 + \kappa^2 v_3^2 \simeq 0$$
(6)

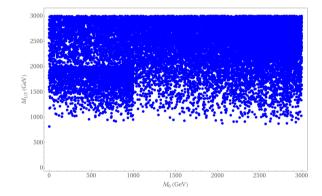
where,  $v^2 = v_1^2 + v_2^2 = (174 \text{ GeV})^2$ .

Equations 4- 5 are similar to those of the MSSM, while Equation 6 is absent in the MSSM. In contrast to the MSSM, the  $\mu_{\text{eff}}$  in the NMSSM depends on soft parameters as it includes  $v_3$ , which, in turn, can be written in terms of  $m_5$  and  $A_{\kappa}$  by using Equation 6. The NMSSM

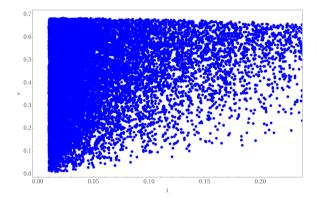
### Soft parameters and the SM-like Higgs

Using NMSSM RGEs, we can expand the soft terms,  $\{m_{H_j}, m_S, A_{\kappa}, \text{ and } A_{\lambda}\}$ , at the low scale, e.g.  $M_{SUSY} \sim \mathcal{O}(1\text{TeV})$ , in terms of the fundamental parameters of the NMSSM at the GUT scale. In the framework of mSUGRA/CNMSSM, all scalar masses share a common mass:  $m_0$ , all gaugions share a common mass:  $m_{1/2}$ , and all trilinear couplings share a common value:  $A_0$ .

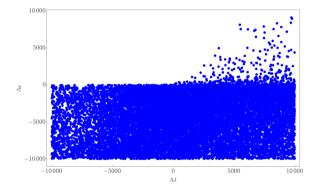
The tree-level physical Higgs mass in the NMSSM receives an additional F-term contribution (which is a welcome feature):


$$m_h^2 \le M_Z^2 \cos^2 2\beta + \lambda^2 v^2 \sin^2 2\beta, \tag{7}$$

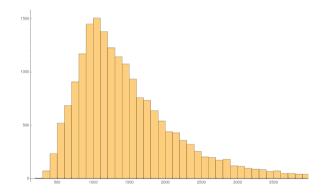
### Frame Title


Using NMSSMTools5.5.3, we apply all constraints except for (g-2) of the muon, and we only require DM relic density to satisfy the upper limit, while maintaining the limits from direct detection. Moreover, I work in the Z3-invariant semi-constrained NMSSM, where the Up- and Down-Higgs mass parameters can differ from  $m_0$  at the GUT scale. The scanned range of parameters is,

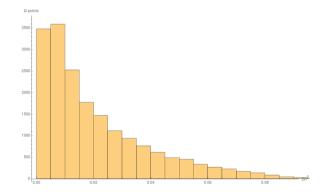
 $0 < m_0 < 3 {
m ~TeV}$  $0 < m_{1/2} < 3 {
m ~TeV}$  $-10 < A < 10 {
m ~TeV}$  $-10 < A_{\lambda} < 10 {
m ~TeV}$  $-10 < A_{\kappa} < 10 {
m ~TeV}$  $100 < \mu_{
m eff} < 1000 {
m ~GeV}$ 1 < an eta < 60 $0.01 < \lambda < 0.7$  $0.01 < \kappa < 0.7$ 


$$m_0 - m_{1/2}$$

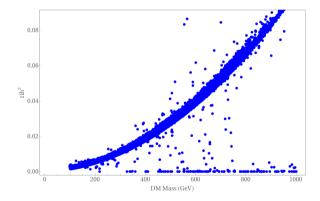




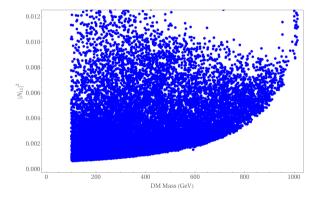




 $A_{\lambda}$ - $A_{\kappa}$ 

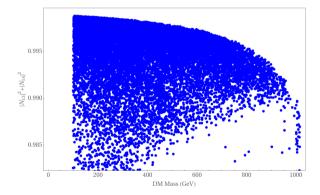



# Fine tuning Data

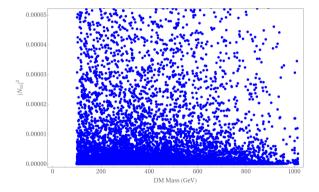



# $\Omega h^2 data$

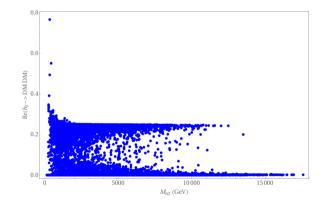



$$m_{ ilde{\chi}_1^0} - \Omega h^2$$

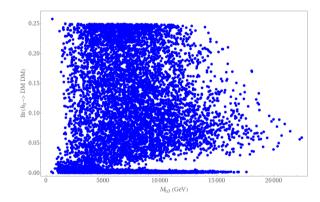



### Bino component of DM particle




# Higgsino component of DM particle




# Singlet component of DM particle



 $h_2 
ightarrow ilde{\chi}_1^0 ilde{\chi}_1^0$ 



 $h_3 
ightarrow ilde{\chi}_1^0 ilde{\chi}_1^0$ 



# Conclusions

- $\Omega h^2$  reaches up to 0.126, but in most of the scanned parameter space it is below the lower limit on DM relic density.
- *h*<sub>1</sub> is the SM-like Higgs, and its singlet component is mostly negligible or very small (maximum 6%)
- Fine tuning can be as low as 280, and mostly around 1000.
- The smallest mass of neutralino DM is about 100 GeV, hence  $h_1 \rightarrow DMDM$  is kinematically forbidden. But other Higgs bosons (CP-even or -odd) can decay into DMs.
- The maximum value of  $Br(h_2 \rightarrow \tilde{\chi}^0_1 \tilde{\chi}^0_1)$  is about 0.76 for  $m_{h_2} = 300$  GeV.
- The maximum value of  $Br(h_3 \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0)$  is about 0.26 for  $m_{h_3} = 523$  GeV.
- Next step is to explore DM mass below 100 GeV.
- Compute  $\sigma \times Br$  for Higgs sector Higgs bosons decaying into Chargino-Neutralino Sector in the NMSSM (work in progress).

# The End