
Hierarchy problem and dimension-6 effective operators

Poulami Mondal, Ambalika Biswas, and Anirban Kundu

Department of Physics, University of Calcutta, India

01.04.2021



Brief

Without any mechanism to protect its mass, the self-energy of the Higgs
boson diverges quadratically, leading to the hierarchy or fine-tuning problem.
One bottom-up solution is to postulate some yet-to-be-discovered symmetry
which forces the sum of the quadratic divergences to be zero, or almost
negligible; this is known as the Veltman Condition.

We study such divergences in an effective theory framework, and construct
the Veltman Condition with dimension-6 operators. We show that there are
two classes of diagrams, the one-loop and the two-loop ones, that contribute
to quadratic divergences, but the contribution of the latter is suppressed by a
loop factor of 1

16π2 .

There are only six dimension-6 operators that contribute to the one-loop
category, and the Wilson coefficients of these operators play an important role
towards softening the fine-tuning problem.

We find the parameter space for the Wilson coefficients that satisfies the
extended Veltman Condition, and also discuss why one need not bother about
the d > 6 operators.

The parameter space is consistent with the theoretical and experimental bounds of the Wilson
coefficients, and should act as a guide to the model builders.



Veltman Condition with dimension-4 operators

We start from the SM Higgs potential with only d ≤ 4 terms

V (Φ) = −µ2Φ†Φ + λ(Φ†Φ)2 (1)

where Φ is the SM doublet, with < Φ >= v√
2

One may write the physical Higgs mass, mh , in terms of a bare mass term mh,0

and higher-order self-energy corrections

m2
h = m2

h,0 + δm2
h (2)

The Higgs self-energy receives a quadratically divergent correction
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Λ2
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(
6λ+

3

4
g2

1 +
9

4
g2

2 − 6g2
t

)
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where Λ is the cutoff scale of the theory, g1 and g2 are the U(1)Y and SU(2)L
gauge couplings, and gt = 2mt

v
is the top quark Yukawa coupling. All other

fermions are treated as massless.



the VC fails badly for the SM.

There are numerous attempts in the literature by introducing more particles, like
extra scalars or fermions. While these attempts provided some important
constraints on the parameter space, the VC could hardly be stabilised over the
entire energy scale from v to Λ if one considers the RG evolution of the couplings.

We will take the bottom-up approach to its extreme limit. For us, whatever New
Physics (NP) exists there at the high energy scale can be effectively integrated
out at the scale Λ to give us the SM, plus some effective operators involving only
the SM fields, which is known as the SM Effective Field Theory (SMEFT).

In SMEFT, the first interesting higher dimensional operators come at d = 6 (the
d = 5 Weinberg operator is not relevant for scalar self-energies). We will use the
Hagiwara, Ishihara, Szalapski, and Zeppenfeld (HISZ) basis. Only a handful
among the 59 dimension-6 operators contribute to the quadratically divergent
part of the scalar self-energy.



Veltman Condition with dimension-6 operators

We will use the SMEFT basis as in keeping in mind that only operators with
two or more Higgs fields are relevant and the divergence should be quartic.

The relevant operators are as follows:

OWW = Φ†Ŵµν ˆWµνΦ , OBB = Φ† ˆBµν ˆBµνΦ , OGG = Φ†Φ ˆGµν ˆGµν ,

OW = (DµΦ)† ˆWµν(DνΦ) , OB = (DµΦ)† ˆBµν(DνΦ) , Oφ,1 = (DµΦ)†Φ Φ†(DµΦ) ,

Oφ,2 =
1

2
∂µ(Φ†Φ) ∂µ(Φ†Φ) , Oφ,3 =

1

3
(Φ†Φ)3 , Oφ,4 = (DµΦ)†(DµΦ) Φ†Φ

(4)
where

ˆBµν =
ig1

2
Bµν , Ŵµν =

ig2

2
σaW a

µν , ˆGµν =
igs

2
λAGA

µν .

g2, g1 being the SU(2)L and U(1)Y gauge couplings respectively, and λA , σa

are the Gell-Mann and the Pauli matrices. Note that the mixed gauge
operator OBW = φ†BWφ cannot generate a self-energy amplitude, either at
one- or at two-loop. There is no contribution from OB either, due to the
abelian nature of the field tensor, but we keep it for completeness. Only the
OVV (V = W ,B,G) and Oφ,i (i = 1, 2, 4) operators are relevant for one-loop
diagrams.



With these set of nine operators, we can write the dimension-6 part of the
Lagrangian as

L6 =
1

Λ2

9∑
i=1

ciOi , (5)

Eqn (3) takes the form:
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where fi and gi terms come respectively from the one-loop and two-loop quartic
divergences with the insertion of the operator Oi , any of the eight (except OB )
dimension-6 operators listed above.



The Feynman diagrams that contribute to the Λ4 divergences

The first row shows the one-loop diagrams with momentum-dependent vertices; the
second row shows the two-loop diagrams where the vertex factor does not contain the
loop momentum. The latter set is suppressed by an extra 1/16π2 compared to the
former set. φ0, φi , W a, B, and GA stand for the Higgs boson, the Goldstone bosons,
the SU(2)L and U(1)Y gauge bosons, and the gluons respectively. The indices i and a
run from 1 to 3, while A runs from 1 to 8.



The contributions from the diagrams are given by

fφ,1 = −3 cφ,1 , fφ,2 = −6 cφ,2 , gφ,1 = −
9

2
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2

)
cφ,1 ,
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2
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2 cW ,
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s cGG . (7)



Couple of important points:

we can safely neglect the two-loop gi terms, as they are suppressed by at least
two orders of magnitude coming from 1

16π2

At what scale should the VC be satisfied? Obviously, it should be at the matching

scale Λ. The cancellation need not be exact, it should be of the order of v2

Λ2 .

Thus, it is meaningless to talk about the fine-tuning problem if Λ = 1 TeV, and
anyway we already know that there is no new physics (at least strongly
interacting) at that scale. Λ = 100 TeV makes the fine-tuning problem come
back in a softened avatar, so this should be the correct ballpark to study the
issue. Even higher values, like Λ = 106 TeV, makes the fine-tuning problem
seriously uncomfortable.



Result

We will study the VC for two values of Λ, namely, 100 TeV and 106 TeV. To start
with, let us assume that only one of the six SMEFT operators (neglecting Oφ,3,
OW , and OB which do not contribute to fi ) is present at the matching scale.

One gets, for exact cancellation of the quadratic divergence,

100 TeV | cφ,1 = cφ,4 = 2cφ,2 = −1.15 , cBB = −21.5 ,

cWW = −4.13 , cGG = −0.78 ,

106 TeV | cφ,1 = cφ,4 = 2cφ,2 = −1.03 , cBB = −17.3 ,

cWW = −4.20 , cGG = −1.11 .

2 TeV | cφ,1 = cφ,4 = 2cφ,2 = −1.34 , cBB = −26.2 ,

cWW = −4.53 , cGG = −0.66 .



However, there is hardly any UVC theory that generates only one of these six
operators at the matching scale. As the sign of the WCs can be either positive or
negative, the six free parameters do not even give a closed hypersurface in the
6-dimensional plot, and therefore marginalisation is of very limited use. Let us
consider two distinct cases where only a pair of WCs are nonzero at Λ:

(1) Only cφ,2, cφ,4 6= 0: The approximate condition to satisfy the VC is

cφ,4 + 2cφ,2 + 1.150 = 0 (Λ = 100 TeV) ,

cφ,4 + 2cφ,2 + 1.030 = 0 (Λ = 106 TeV) . (8)

(2) Only cWW , cBB 6= 0:

cBB + 5.212cWW + 21.544 = 0 (Λ = 100 TeV) ,

cBB + 4.122cWW + 17.306 = 0 (Λ = 106 TeV) . (9)

The exact conditions broaden out to finite-width bands if we allow a finite amount of
fine-tuning, the bands getting narrower for higher values of Λ.



Why we can neglect d = 8 and higher operators

For d = 6 operators, there are two types of diagrams that come with a Λ4

divergence. First are the two-loop diagrams, like the one from
(
Φ†Φ

)3
. The

second class consists of one-loop diagrams but momentum-dependent vertices,
like the one coming from (DµΦ)† (DµΦ) Φ†Φ. The final result is: only those
dimension-6 operators contribute quartic divergences at one-loop for which both
the derivatives act on the field in the loop.

Thus, among the d = 8 operators, one should look only for those operators that
come with four derivatives, D4. There are only three such operators, and all of
them have a generic structure of (DΦ)†(DΦ)(DΦ)†(DΦ). As two of the
derivatives act on the external leg fields and hence give the square of the external
leg momentum, the vertex factor can only have a k2 dependence, and the
divergence remains only Λ4 and not Λ6.

Similarly, operators of the form D2(Φ2W 2), where W is the generic gauge tensor,
do not generate any Λ6 divergence.



Conclusion

Here we have discussed the Veltman condition leading to the cancellation of the
quadratic divergence of the Higgs self-energy in the context of an SMEFT
framework. In other words, we assume the existence of a cut-off scale , below
which we have the SM, while the theory above introduces higher-dimensional
operators in the low-energy domain.

We show that the higher dimensional operators lead to quadratic divergences too,
but there are two distinct sources of them. For example, with d = 6 operators,
such divergences can come from one-loop diagrams with momentum-dependent
vertices, or two-loop diagrams with momentum-independent vertices. The latter,
however, are suppressed by an extra loop factor of 1

16π2 and hence can be
neglected as a first approximation.

We find that there are only six operators that contribute to the Veltman condition
at the one-loop level. It turns out that at least one of the WCs has to be negative,
but they are all consistent with a high-scale perturbative theory. The parameter
space that we find is compatible with other theoretical and experimental
constraints. Thus, this study should set a benchmark for the model builders.
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T. Corbett, O. J. P. Éboli and M. C. Gonzalez-Garcia, Phys. Rev. D 91, no.3,
035014 (2015)

B. Henning, X. Lu, T. Melia and H. Murayama, JHEP 08, 016 (2017)


