Beyond Standard Model: From Theory to Experiment (BSM-2021)

Highlights of results by CMS

Milos Dordevic on behalf of the CMS Collaboration

Vinca Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade

From LHC to HL-LHC: Project Schedule

Higgs boson discovery \rightarrow Precision & differential measurements \rightarrow New discoveries?

(from HL-LHC official project schedule)

- Silicon tracker
 - 4th Pixel layer added in 2017, Microstrips from -15°C (2015 2017) to -20 °C (2018)
 - Barrel layer 1 replacement ongoing, DC-DC converters installed, now Forward Pixel
- Trigger
 - \circ L1 (hardware) ~ 100kHz by 2016, High Level Trigger-HLT (software) ~ 1kHz by 2016

HCAL

- **ECAL**
 - New DAQ links (2018)

Replaced HPDs with SiPMs in endcaps (2018)

- Muon detectors
 - Drift tubes: from VME to μ TCA readout (2018), new RPC stations, new GEM detector (first Phase-2 detector), upgrade CSC FEE, add shielding against neutron background

Layer 1

DCDC converter installation

CMS Performance in LHC Run 2

- 163 fb⁻¹ delivered/150 fb⁻¹ collected/**140 fb⁻¹ good for physics**
- PUPPI algorithm for pileup suppression in jet and MET becoming default in Run 3

• Rich physics program provided by the CMS Run 2 Triggers: standard (vtx, leptons, jets, MET), B-parking (11B events), scouting triggers and special (the Heavy-ions and Low-PU)

M. Dordevic (VINS, UB)

200

150

100

Luminosity (fb⁻

Total Integrated

September 2020

Standard Model Cross Sections

CMS Preliminary

Polarized same-sign WW in VBS

137 fb⁻¹ (13 TeV)

+ Data

WZ

ZZ

tVx

W[±]W[±]

Bkg. unc.

Nonprompt

0.5

 1.89 ± 0.21

Other bkg.

W_TW₁

- BSM models predict modification of VBS with a longitudinally polarized W bosons
- VBS topology: ss-leptons, 2 fwd jets, n gap

- Fiducial x-sec in WW center of mass frame
- Fiducial x-sec: in initial state parton-parton c. mass frame

DT score		BDT score
Process	$\sigma \mathcal{B}$ (fb)	Theoretical prediction (fb)
$W^{\pm}_L W^{\pm}_L$	$0.32\substack{+0.42 \\ -0.40}$	0.44 ± 0.05
$\mathrm{W}_X^\pm\mathrm{W}_\mathrm{T}^\pm$	$3.06\substack{+0.51\\-0.48}$	3.13 ± 0.35
$W_L^{\pm}W_X^{\pm}$	$1.20^{+0.56}_{-0.53}$	1.63 ± 0.18
$W_T^{\pm}W_T^{\pm}$	$2.11_{-0.47}^{+0.49}$	1.94 ± 0.21
Process	$\sigma \mathcal{B}$ (fb)	Theoretical prediction (fb)
$W^\pm_L W^\pm_L$	$0.24^{+0.40}_{-0.37}$	0.28 ± 0.03
$W_X^{\pm}W_T^{\pm}$	$3.25_{-0.48}^{+0.50}$	3.32 ± 0.37
$W_I^{\pm}W_X^{\pm}$	$1.40^{+0.60}_{-0.57}$	1.71 ± 0.19

 $2.03^{+0.57}_{-0.57}$

 $\mathrm{W}_{\mathrm{T}}^{\pm}\mathrm{W}_{\mathrm{T}}^{\pm}$

Two separate EWK WW polarization states

 \circ W₁W₁ and W_TW_x - dedicated BDT

- \circ W_TW_T and W_IW_X dedicated BDT (X is either of two polarization states)
- The W₁ has smaller p_T compared to the W_T
- 95% CL limit for _ _ • \triangleleft N $W_L W_L$ production 1.17fb(0.88fb exp)
 - **EWK** production

2.3 σ (3.1 σ exp)

Wγ production and EFT constraints

- $W\gamma$ is produced through ISR, FSR or aTGC
- Probe of the WW γ Triple Gauge Coupling
- Low-dim EFT operator alter the WWγ TGC CMS-SMP-19-002
 CMS-SMP-19-002

- Measured x-sec is: σ = 15.58 ± 0.75 pb
- MadGraph5_aMC@NLO and POWHEG: $\sigma = 15.4 \pm 0.75$ (scale) ± 0.1 (PDF) pb (M) $\sigma = 22.4 \pm 3.2$ (scale) ± 0.1 (PDF) pb (P)

	Ap. 10.001	лар. upper	Obs. lower	Obs. upper
c_{WWW}/Λ^2	-0.85	0.87	-0.90	0.91
c_B/Λ^2	-46	45	-40	41
$c_{\overline{W}WW}/\Lambda^2$	-0.43	0.43	-0.45	0.45
$c_{\overline{W}}/\Lambda^2$	-23	22	-20	20

- Binned likelihood fit to the $m_{l\gamma}$ distribution
- Photon p_T is used to extract limits on the four operators
- Observed limits on c_{www}/A² are factor
 1.75 lower w.r.p to the previous result

• The exp. (obs.) limits in LEP parametrization:

 $-0.0033 < \lambda_{\gamma} < 0.0033, -0.074 < \tilde{\kappa}_{\gamma} < 0.072, \text{ and } -0.0016 < \tilde{\lambda}_{\gamma} < 0.0016$ $-0.0035 < \lambda_{\gamma} < 0.0035, -0.066 < \tilde{\kappa}_{\gamma} < 0.065, \text{ and } -0.0017 < \tilde{\lambda}_{\gamma} < 0.0017$

Top pair + charm jets production

10

CMS

CMS-SMP-20-006

- First measurement of tt+cc production
- Important also for future ttH analysis
- The new charm-jet identification (DNN)

NN trained for the jet-parton assignment

+ Data

41.5 fb⁻¹ (13 TeV)

INC stat. unc.

- Measured tt + cc production cross section:
 - Fiducial: 0.165 ± 0.023(stat) ± 0.025(syst)pb 0

CMS-SMP-20-006

41.5 fb⁻¹ (13 TeV)

CMS

- Full-space: $8.0 \pm 1.1(stat) \pm 1.3(syst)pb$ Ο
- First time measured $R_c = \sigma(tt + cc)/\sigma(tt + jj)$:
 - Fiducial: 2.42 ± 0.32(stat) ± 0.29(syst)pb
 - Full-space: 2.69 ± 0.36(stat) ± 0.32 (syst)pb 0

(agree to POWHEG and MadGraph5 aMC@NLO)

- 2D likelihood scans agree within 1-2 σ with • the corresponding theoretical predictions:
 - $\sigma_{
 m ttbb}$ and R_b slightly above prediction Ο

Higgs boson studies: $H \rightarrow \gamma \gamma$

- Full Run 2 dataset, ggH, VBF, VH and (t)tH channels
- BDT discriminator for analysis categories, diphoton BDT, dijet BDT for VBF, VH_{had} BDT, DNN for tH vs ttH
- Total Higgs boson signal strenght found: 1.03^{+0.11}-0.09
- First STXS measurement of cross section at Stage 1.2

- κ_{ν}, κ_{f} with ggH and H $\rightarrow \gamma \gamma$ resolved in to SM components
- $\kappa_g, \kappa\gamma$ with ggH and H $\rightarrow \gamma\gamma$ resolved in eff. scaling factors
- Obs(exp) 95% CL UL on tH: 12(9) x the SM prediction

M. Dordevic (VINS, UB)

Higgs boson studies: $H \rightarrow \mu\mu$

CMS-HIG-19-006

CMS

25

20

110

115

120

S/(S+B) Weighted

Post-fit

VBF category

m_u = 125.38 GeV

- First evidence: $3.0(2.5)\sigma$ obs(exp), ∧ 30 Events assuming SM H (M_{H} =125.38 GeV)
- Signal from 4 production modes:
 - VBF: DNN (dimuon & dijet) Ο
 - ggH, VH, ttH: m_{uu}, BDT bins 0
- Data-Bkg. New point on the graph showing coupling strength vs fermion mass

کاn(L)

Ņ

Results agree with the SM:

 $\mu = 1.19 + 0.40_{-0.39}$ (stat.) $+ 0.15_{-0.14}$ (syst.)

- Likelihood scan to fermion or vector boson couplings
- Combination with 7 and 8 TeV data: 1% improvement

Higgs boson studies: ttH multilepton

- Observation of ttH production: PRL 120, 231801 (2018) from combination of analyses using several final states
- Now 4.7(5.2)σ obs.(exp.) significance just in multilepton
 - tH and ttH analysis using full Run 2 dataset (137fb⁻¹)
 - \circ 10 different signatures based on lepton multiplicity
 - New multivariate techniques (DNN, multiclass ANN, using TensorFlow with Keras interface, scikit-learn)

t-H coupling constrained:

 $-0.9 < y_t < -0.7$ or

```
0.7 < y_t < 1.1
```

times the SM expectation

Fully-hadronic top squark production (1/2)

- Natural SUSY: R-parity conserved and stop produced in pairs of cascade gluino decays
- Multiple jets, no leptons and a large MET
- Direct (T2tt, T2bW, T2tb, T2ttC, T2bWC, T2cc) & gluino-mediated (T1tttt, T1ttbb & T5ttcc)

- 2 regions: high Δm (>m_w) & low Δm (<m_w)($\Delta m = m_{\tilde{t}} m_{\tilde{\chi}_{\tau}^0}$)
 - these are further divided into a total of 183 search bins 0
 - no statistically significant excess of events w.r.p. the SM Ο
 - ♦ 6/183 bins with > 2σ & no bins > 3σ disagreement

- Merged and resolved t and W taggers (DNN):
 - DeepAK8 multiclass for boosted t & W
 - DeepResolved algorithm for low p_{T} top Ο
- Derrived from MC, then corrected from data CMS-SUS-19-010

Fully-hadronic top squark production (2/2)

- 95% CL upper limits on direct stop production:
 - 1150 to 1310 GeV in region of $\Delta m > m_W$
 - and 630 to 740 GeV in region: $\Delta m < m_w$
- These are the most stringent constraints to date

- 95% CL upper limits on gluino-mediated stop:
 - gluino masses below 2150 to 2260 GeV

- Exclusion based on T5ttcc model without contributions from direct stop
- Significantly extended previous fully-hadronic stop searches from CMS by 100 to 300 GeV, due to 4 times larger dataset and improved analysis

Observation of a new barion: $\Xi_b(6100)^-$

- Search for excited beauty strange state $\Xi_b(6100)^-$ in the $\Xi_b^- \pi^+ \pi^-$ invariant mass spectrum
- Two fully reconstructed states:

CMS activities during LS2

- Only a small delay accumulated during the previous 12 months and the LHC will restart in 2022
- Maintenance,
 improvement
 and completing
 Phase1 upgrade
- Many activities

 already related to
 Phase2 (HL-LHC)
 upgrades and
 related services
 and infrastructure

• All planned CMS LS2 activities to be performed in time for the first short test beam in Sep 2022

CMS Plans for Run 3

- Increase of stats for searches and precision measurements
 - Use machine learning (DeepNN) to improve the S/B
 - Exploiting new detectors, some designed for Phase 2
- Phase-1 pixel detector with updated Layer 1 electronics \rightarrow
- Depth segmentation \downarrow from new electronics in the HCAL

- First layer of GEM muon detectors in the forward
- ← region (GE1/1) installed

Heterogeneous architecture in ■
 HLT, with mixed CPU/GPU, 25%
 reduction of CPU time achieved
 already → new possibilities for
 trigger algorithms usage on GPU

- Various new results from CMS released, exploiting the full Run 2 dataset:
 - SM measurements:
 - long. polarized WW VBS, W γ with EFT, top pair + charm tagger
 - Higgs boson studies:
 - $H \rightarrow \gamma \gamma$ full Run2 STSX, evidence for $H \rightarrow \mu \mu$, ttH multilepton
 - Direct BSM searches:
 - The most stringent limits on direct fully-hadronic stop production
- Many analyses are profiting from the novel machine learning algorithms:
 - widespread usage of DNN in analysis, also in reconstruction & Trigger
- Much more to come-> LHC Run 3: expected 300 fb⁻¹ and HL-LHC: 3000 fb⁻¹

BACKUP SLIDES

The CMS experiment at CERN

$H \rightarrow \gamma \gamma$: STXS stage-1.2 bins

CMS-HIG-19-015

$H \rightarrow \gamma \gamma$: More results

Higgs boson studies: $H \rightarrow \mu\mu$

Higgs boson studies: ttH multilepton

Polarized same-sign WW in VBS

02 April 2021

CMS-SMP-20-006

CMS-SMP-20-006

	Result	POWHEG	MadGraph5_amc@nlo			
Fiducial phase space						
$\sigma_{t\bar{t}c\bar{c}}$ [pb]	$0.165 \pm 0.023 \pm 0.025$	0.187 ± 0.038	0.189 ± 0.032			
$\sigma_{t\bar{t}b\bar{b}}$ [pb]	$0.119 \pm 0.010 \pm 0.015$	0.097 ± 0.021	0.101 ± 0.023			
$\sigma_{t\bar{t}LL}$ [pb]	$5.40 \pm 0.11 \pm 0.45$	5.95 ± 1.02	6.32 ± 0.94			
$R_{\rm c}$ [%]	$2.42 \pm 0.32 \pm 0.29$	2.53 ± 0.18	2.43 ± 0.17			
<i>R</i> _b [%]	$1.75 \pm 0.14 \pm 0.18$	1.31 ± 0.12	1.30 ± 0.16			
Full phase space						
$\sigma_{t\bar{t}c\bar{c}}$ [pb]	$8.0 \pm 1.1 \pm 1.3$	9.1 ± 1.8	8.9 ± 1.5			
$\sigma_{t\bar{t}b\bar{b}}$ [pb]	$4.09 \pm 0.34 \pm 0.55$	3.34 ± 0.72	3.39 ± 0.66			
$\sigma_{t\bar{t}LL}$ [pb]	$231\pm5\pm21$	255 ± 43	261 ± 37			
$R_{\rm c}$ [%]	$2.69 \pm 0.36 \pm 0.32$	2.81 ± 0.20	2.72 ± 0.19			
$R_{\rm h}$ [%]	$1.37 \pm 0.11 \pm 0.14$	1.03 ± 0.08	1.03 ± 0.09			

Observation of a new barion: Ξ_b(6100)⁻

CMS-SMP-20-006

Fully-hadronic top squark production (2/2)

