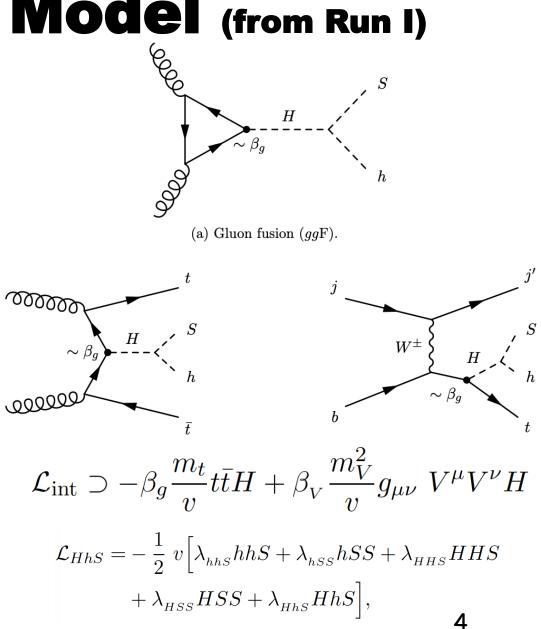
Status of Multi-lepton anomalies at the LHC and its implications

Bruce Mellado

The Wits Institute for Collider Particle Physics and iThemba LABS

BSM2021, Cairo, Egypt, 02/04/21

Outline


- **The simplified model**
- **The multilepton anomalies**

 - **The anatomy of the anomalies**
- **The World of Anomalies**
- Connection with excesses in astrophysics The MeerKat/SKA

The Simplified Model and 2HDM+S

Eur. Phys. J. C (2016) 76:580 The simplified Model (from Run I)

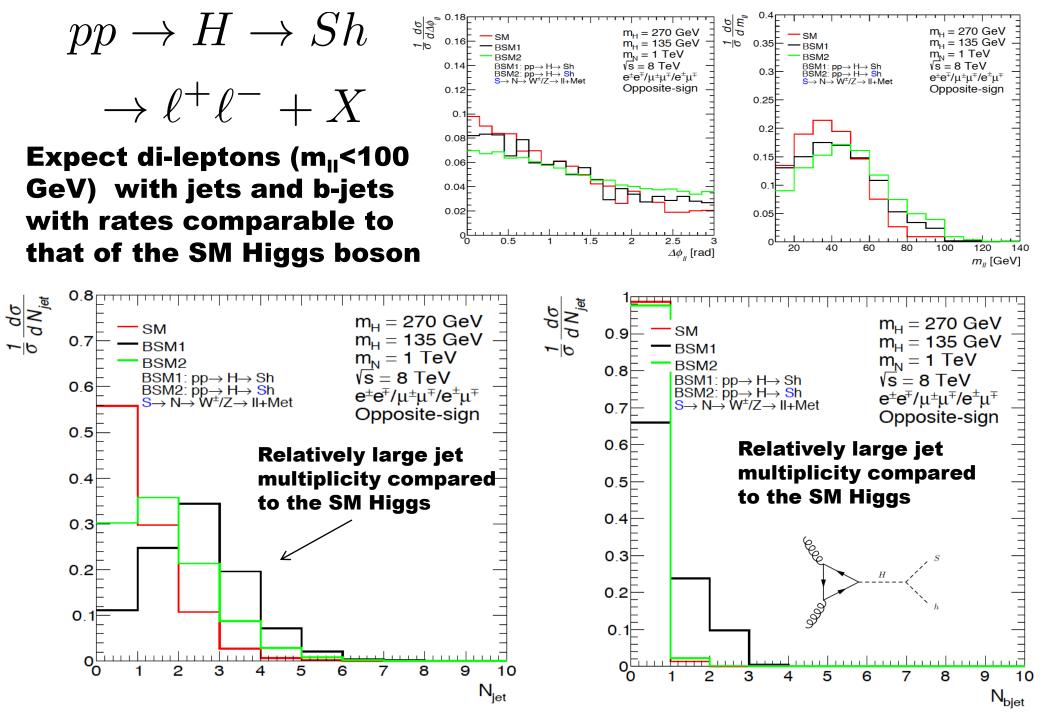
- 1. The starting point of the hypothesis is the existence of a boson, H, that contains Higgs-like interactions, with a mass in the range 250-280 GeV
- 2. In order to avoid large quartic couplings, incorporate a mediator scalar, S, that interacts with the SM and Dark Matter.
- 3. Dominance of H→Sh,SS decay over other decays

$$\begin{array}{l} \textbf{The Lagrangian} \\ \textbf{Can be embedded into} \\ \textbf{2HDM+S (N2HDM)} \\ \textbf{See also M.Muhlleitner et al.} \\ \textbf{arXiv:1612.01309} \\ \textbf{arXiv:1708.01578} \\ \textbf{arXiv:1612.01309} \\ \textbf$$

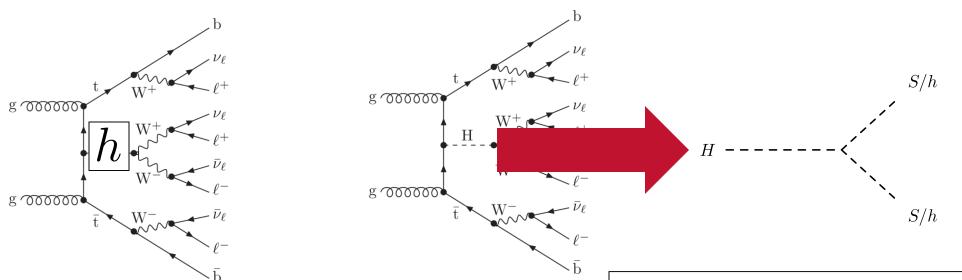
- 1.

. .

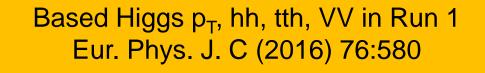
Note that some of the effective quartic couplings shown earlier appear here as trilinear. What was formerly a three body decay is now a two body decay.


The Decays of H

In the general case, H can have couplings as those displayed by a Higgs boson in addition to decays involving the intermediate scalar and Dark Matter


$H \to WW, ZZ, q\overline{q}, gg, Z\gamma, \gamma\gamma, \chi\chi$ + $H \rightarrow SS, Sh, hh$ > Diboson decay **Dominant decays** $H \to h(+X), S(+X)$

It is paramount to remark that the excesses are seen in final states that were predicted 2015/2016 on the basis of a simplified model and not the result of scan of the available phase-space. Additionally, the parameters of the model where fixed then leaving only one degree of freedom: normalization Thus, no look-elsewhere effects in parameter or phase-space


Top associated Higgs production (Multi-lepton final states)

Reduced cross-section of ttH+tH is compensated by di-boson, (SS, Sh) decay and large $Br(S \rightarrow WW)$. Production of same sign leptons, three leptons is enhanced. Enhanced tH cross-section **Produces SS 2I, 3I with b-jets, including 3 b-jets**

Explains anomalously large ttW+tth crosssections seen by ATLAS and CMS

Methodology (to avoid biases and look-else-where effects)

Model defined and predictions made for multilepton excesses

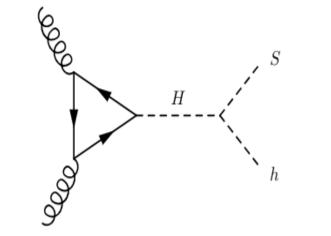
Multi-lepton excesses in Run 1 and few Run 2 results available in 2017

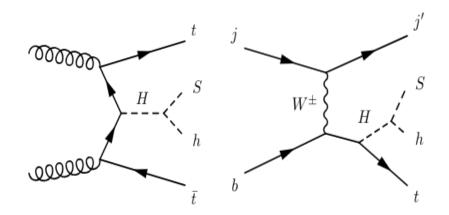
J.Phys.G 45 (2018) 11, 115003

Model <u>parameters fixed in 2017</u> with m_H=270 GeV, m_S=150 GeV, S treated as SM Higgs-like, dominance of H→Sh,SS Fixed final states and phase-space defined by fixed model parameters. <u>NO tuning, NO scanning</u>

Update same final states with more data in Run 2

Study new final states where excesses predicted and data available in Run 1 and Run 2 (e.g., SS0b, 3l0b, ZW0b)


J.Phys. G46 (2019) no.11, 115001 JHEP 1910 (2019) 157 Chin.Phys.C 44 (2020) 6, 063103 Physics Letters B 811 (2020) 135964 arXiv:1912.00699


BSM inputs to the fit

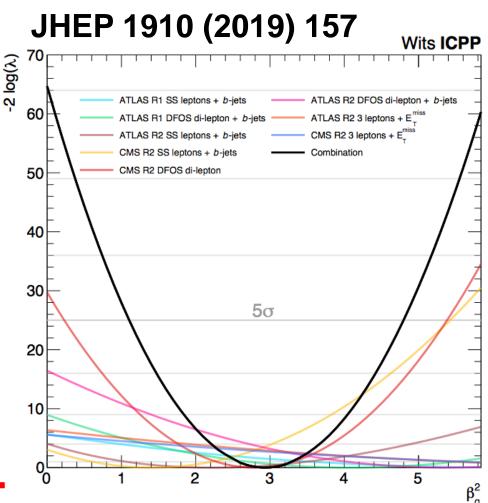
& The following <u>assumptions</u> are made:

- a. The masses of H and S are fixed to m_H = 270 GeV and m_S = 150 GeV
- b. The only significant production mechanisms of *H* come from the *t*-*t*-*H* Yukawa coupling:
 - **Gluon fusion**
 - Top associated production
- c. The Yukawa coupling is scaled away from the SM Higgs-like value by the free parameter β_q
- **d. The BR of** *H* **→** *Sh* **is fixed to 100%**

e. The BRs of *S* are Higgs-like Therefore, the only free parameter in the fits is β_g^2

Combination of fit results

- & Simultaneous fit for all measurements:
- To the right: (-2 log) profile likelihood ratio for each individual result and the combination of them all
 The significance for each


fit is calculated as

 $\sqrt{-2\log\lambda(0)}$

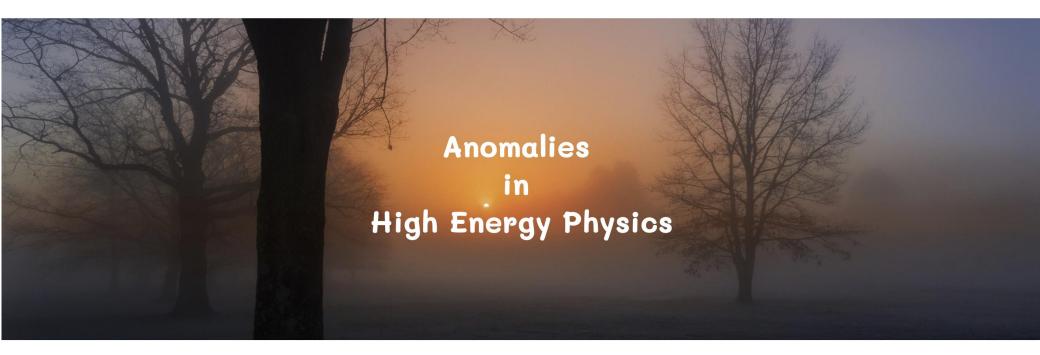
$\& \text{ Best-fit: } \beta_g{}^2 = 2.92 \pm 0.35 \\ \& \text{ Corresponds to } 8.04\sigma$

Excesses have been growing since. See backup slides

Interpretation: Measure of the inability of current MC tools to describe multiple-lepton data and how a simplified model with $H \rightarrow Sh$ is able to capture the effect with one parameter

12

Anatomy of the multi-lepton anomalies


Final state	Characteristic	Dominant SM process	Significance	
l⁺l [.] + jets, b-jets	m _{II} <100 GeV, dominated by 0b- jet and 1b-jet	tt+Wt	>5σ	
l ⁺ l ⁻ + full-jet veto	m _{II} <100 GeV	ww	~3σ	
l±l± & l±l±l + b- jets	Moderate H_T	ttW, 4t	>3σ	
l±l± & l±l±l et al., no b-jets	In association with h	Wh	3.9σ	
Z(→I⁺I ⁻)+I	р _{тz} <100 GeV	ZW	3.5σ	

Anomalies cannot be explained by mismodelling of a particular process, e.g. ttbar production alone.

The World of Anomalies

https://hepcomm.github.io/hepmist/

Home False Alarms News About This Site

Bhupal Dev

(Partial) List of Existing Anomalies

Anomaly	Significance	Reference	Anomaly	Significance	Reference	
Multileptons@LHC	2-5 σ	1901.05300	DAMA/LIBRA	12.9 <i>σ</i>	1907.06405	
LFUV in B-decays	2-5 σ	1909.12524	Fermi-LAT GC excess	2-3 σ	1704.03910	
Muon g-2	3.7 <i>σ</i>	2006.04822	AMS $e^+/ar{p}$ excess	3-5 σ	Phys.Rep.894, 1	
Cabibbo angle	~3 <i>o</i>	PDG	XENON1T <i>e</i> recoil	2-3 σ	2006.09721	
LFUV in tau decay	~2 <i>σ</i>	PDG	3.5 keV X-ray line	4σ	2008.02283	
LSND/MiniBooNE	6.1 <i>o</i>	2006.16883	511 keV gamma-ray line	58 σ	1512.00325	
NOvA vs T2K	~2 σ	Neutrino 2020	EDGES 21cm spectrum	3.8 <i>σ</i>	1810.05912	
IceCube HESE vs TG	~2 σ	2011.03545	Primordial ⁷ Li problem	4-5 <i>σ</i>	1203.3551	
ANITA upgoing events	~2 σ	2010.02869	Hubble tension	4.4 <i>σ</i>	2008.11284	
Neutron lifetime	4.4 <i>σ</i>	PDG	NANOGRAV	>> 5 <i>o</i>	2009.04496	
⁸ Be transition	7.2 σ	1910.10459	Fast Radio Bursts	>> 5 <i>o</i>	1906.05878	

Should create and maintain an online repository for up-to-date information on anomalies.

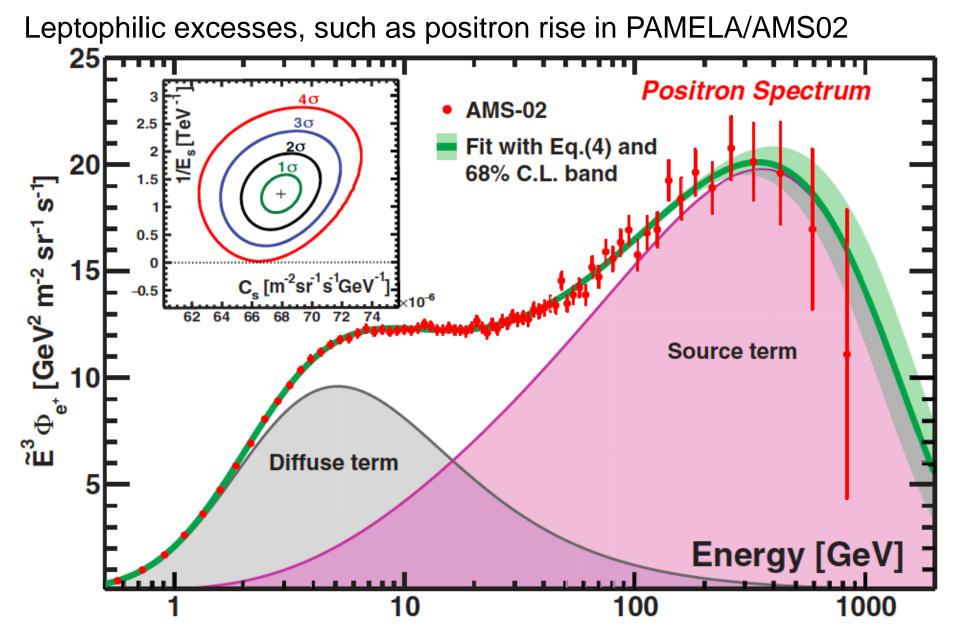
Multi-institute collaboration has created a portal with a repository of active anomalies in both collider and non-collider experiments: https://hepcomm.github.io/hepmist/

Anomaly		Significance	Reference	Current/Future Experiment	Possible Solution		Neutron lifetime	4.4 σ	PDG	[]	
	Muon g-2	3.7 σ	0602035.2006.04822	Fermilab.J-PARC	[]		⁸ Be transition	7.2 σ	<u>1910.10459</u>	[]	
	LFUV in B-decays	2-5 σ	<u>1909.12524</u>		اسا	DM direct	DAMA/LIBRA	12.9 σ	<u>1907.06405</u>	[]	
Flavor phys	Cabibbo angle	~3 σ	PDG		[]	exp	XENON1T e ⁻ -recoil	2-3 σ	2006.09721	[]	
				LHCb, Belle II					<u>0810.4995</u> ,		
	LFUV in tau decay	~2 σ	PDG		[]	Cosmic ray excess	PAMELA, Fermi-LAT, ATIC, AMS	.Τ, 3-5 σ	<u>0905:0025</u>	[]	
	Kπ puzzle	>8 o	<u>2012.12789</u>		[]				Nature, Phys.Rep.		
	Multileptons@LHC	2-5 σ	<u>1901:05300</u>	LHC, <u>HL-LHC</u>	[]	Galactic	Fermi-LAT GC ₇ -ray excess	2-3 σ	<u>1704.03910</u>	[]	
	Top forward-backward asymmetry(Tevatron)	2-3 σ	<u>1207.0364</u> , <u>1211.1003</u>	HLILHC	[]	center, halo, interstellar medium	3.5 keV X-ray line	4 σ	2008.02283	[]	
	LSND		<u>0104049</u>			meaium	511 keV γ-ray line	58 σ	<u>1512.00325</u>	[]	
	MiniBooNE	6.1σ	2006/16883	<u>senjisns</u> 2	[]	Early Universe	EDGES 21cm spectrum	3.8 σ	<u>1810.05912</u>	[]	
Neutrino	NOvA vs T2K	~2 σ	Neutrino 2020		[]			Primordial ⁷ Li problem	4-5 σ	1203.3551	[]
	IceCube HESE vs TG	~2 σ	<u>2011.03545</u>		[]		Hubble tension	4.4 σ	2008/11284	[]	
	ANITA upgoing events	~2 σ	<u>2010.02869</u>		[]		NANOGRAV	>>5 σ	2009.04496	[]	
	SHALON		<u>0903.4654</u>		[]		Fast Radio Bursts	>>5 σ	<u>1906.05878</u>	[]	

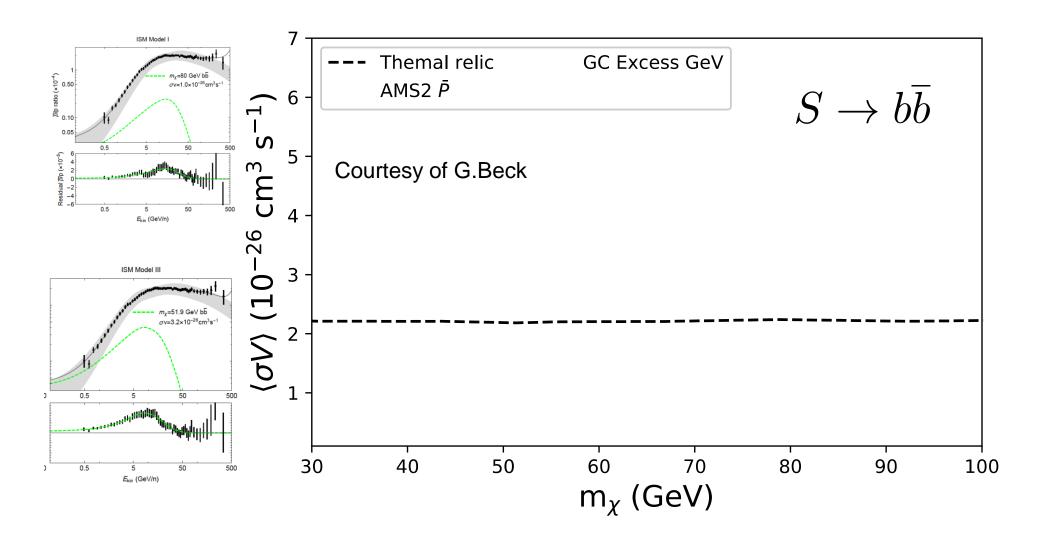
16

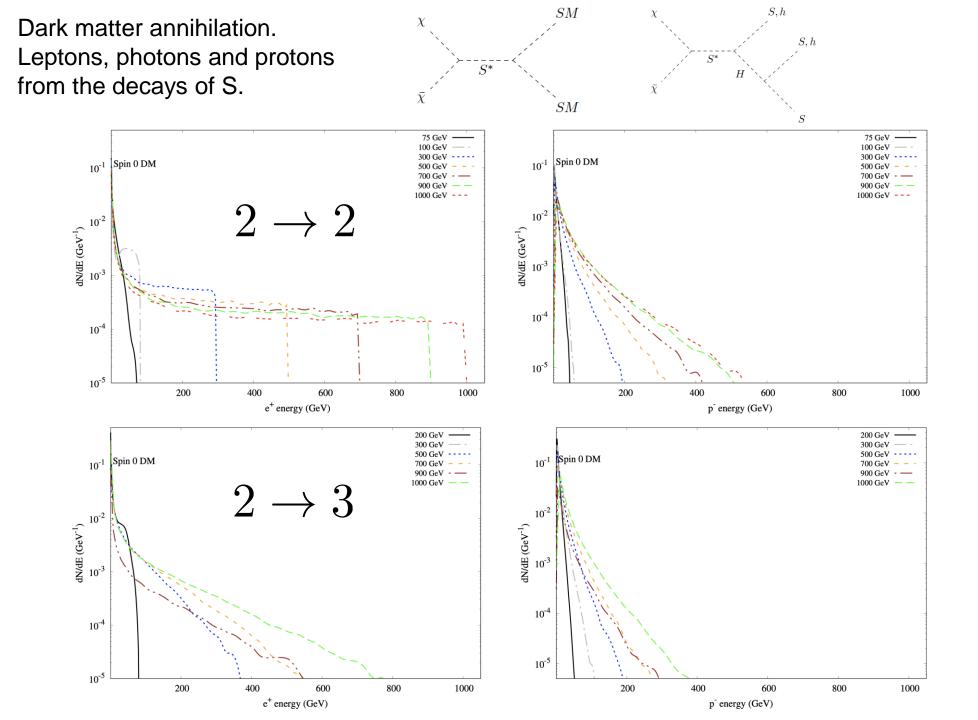
G.Beck, E.Malwa, M.Kumar, R.Temo and B.M., 2102.10596

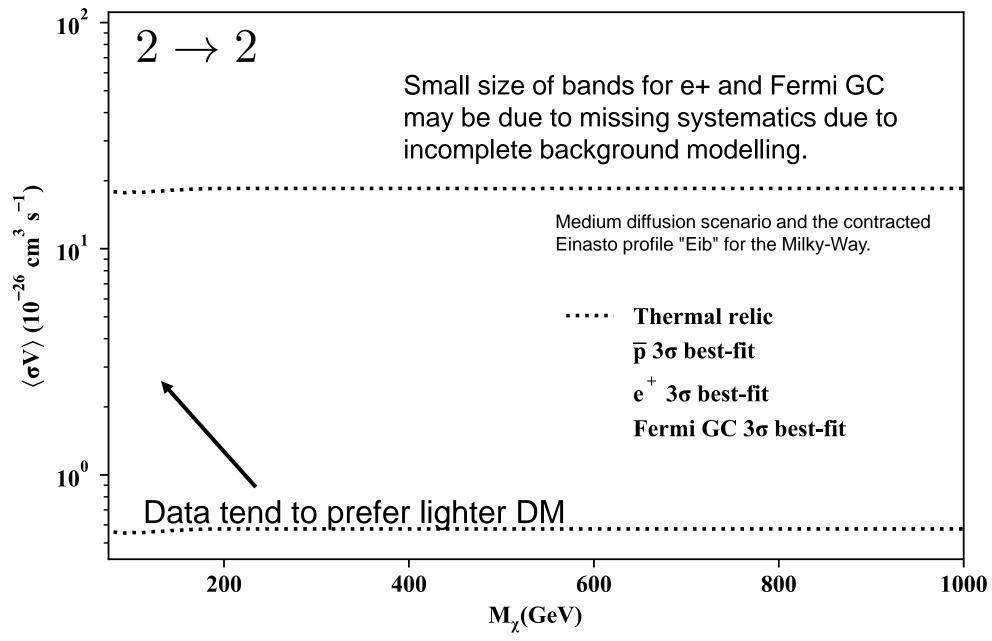
The multi-lepton anomalies and excesses in astrophysics

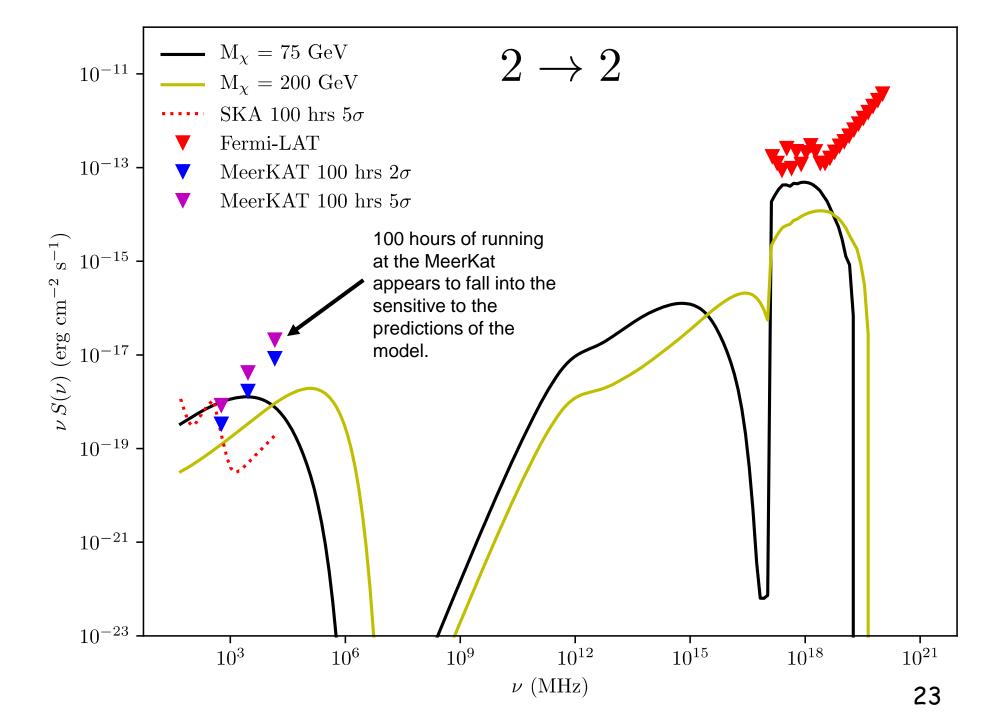


LHC-SKA connection


Effective theory for Weakly Interacting Massive Particles (WIMPs)


LHC Name Operator Coefficient **SKA** m_q/M_*^3 D1 $\bar{\chi}\chi\bar{q}q$ Efficient (Indirect detection) Efficient production now im_q/M_*^3 D2 $\bar{\chi}\gamma^5\chi\bar{q}q$ $\bar{\chi}\chi\bar{q}\gamma^5q$ im_q/M_*^3 D3colliders) $\bar{\chi}\gamma^5\chi\bar{q}\gamma^5q$ D4 m_q/M_*^3 annihilation now $1/M_{*}^{2}$ D5 $\bar{\chi}\gamma^{\mu}\chi\bar{q}\gamma_{\mu}q$ $\bar{\chi}\gamma^{\mu}\gamma^{5}\chi\bar{q}\gamma_{\mu}q$ $1/M_{*}^{2}$ D6 $\bar{\chi}\gamma^{\mu}\chi\bar{q}\gamma_{\mu}\gamma^{5}q$ $1/M_{*}^{2}$ D7(Particle $\bar{\chi}\gamma^{\mu}\gamma^{5}\chi\bar{q}\gamma_{\mu}\gamma^{5}q$ $1/M_{*}^{2}$ D8SM $1/M_{*}^{2}$ SM D9 $\bar{\chi}\sigma^{\mu\nu}\chi\bar{q}\sigma_{\mu\nu}q$ i/M_{*}^{2} $\bar{\chi}\sigma_{\mu\nu}\gamma^5\chi\bar{q}\sigma_{\alpha\beta}q$ D10 $\bar{\chi}\chi G_{\mu\nu}G^{\mu\nu}$ $\alpha_s/4M_*^3$ D11 Efficient scattering now D12 $\bar{\chi}\gamma^5\chi G_{\mu\nu}G^{\mu\nu}$ $i\alpha_s/4M_*^3$ $\bar{\chi}\chi G_{\mu\nu}\tilde{G}^{\mu\nu}$ (Direct detection) $i\alpha_s/4M_*^3$ D13 $\bar{\chi}\gamma^5\chi G_{\mu\nu}\tilde{G}^{\mu\nu}$ $\alpha_s/4M_*^3$ D14

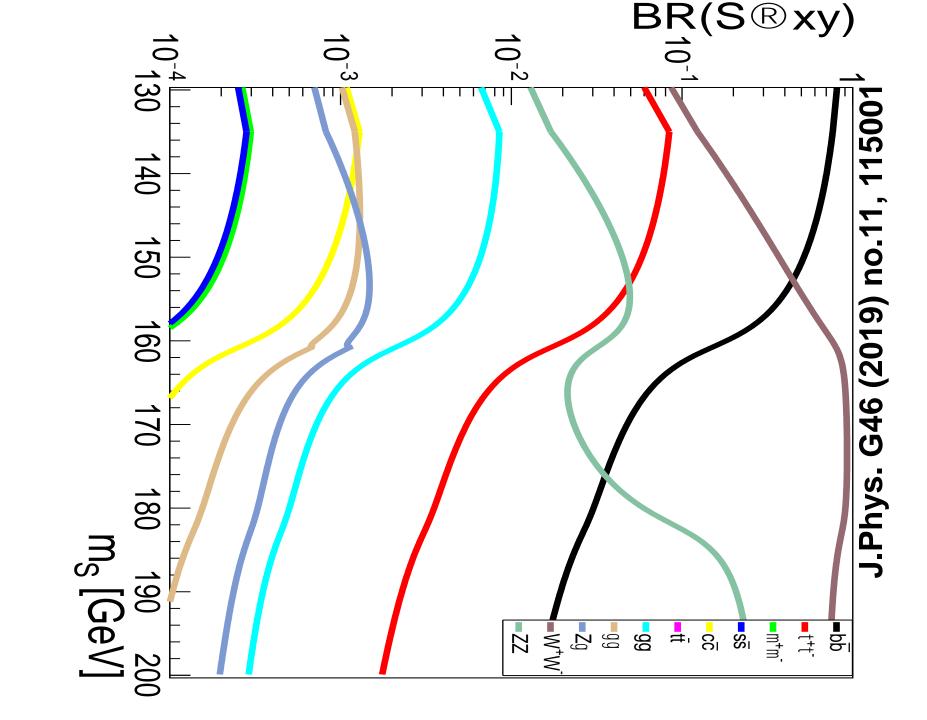

AMS02, PRL 122, 041102 (2019)



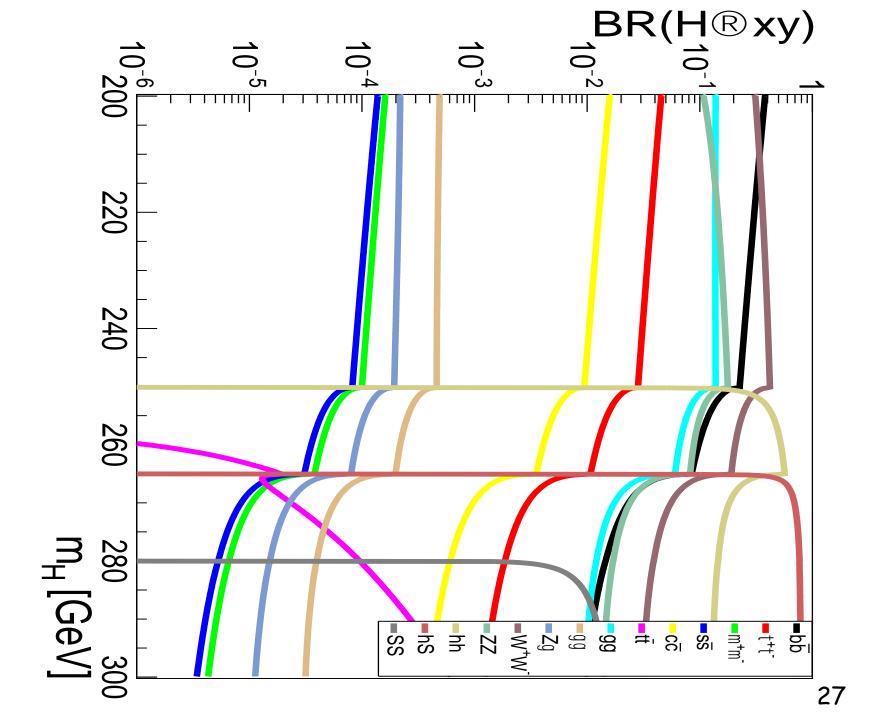
Excesses in Astro-Physics consistent with DM annihilation into not so heavy mediators. We predict Single, Double and Triple boson signatures in XX annihilation

Outlook and Conclusions

□ Discrepancies in multi-lepton final states at LHC w.r.t. current MCs are not statistical fluctuations


- □They appear in corners of the phase-space dominated by different processes: Wt/tt, VV, ttV
 - Hard to explain with MC mismodelling

□ Discrepancies interpreted with simplified model where H→Sh, S is treated as SM Higgslike and one parameter is floated


- □Features of the Higgs data from LHC agree with predictions the simplified model used here
- □Further strengthens the need for precise measurement of Higgs couplings in e⁺e⁻ and pp/ep
- □Connection made with excesses in astro-physics, where MeerKat has sensitivity to probe 2

Additional Slides

For simplicity we will assume that the S boson decays like the SM Higgs

J.Phys. G46 (2019) no.11, 115001

The 2HDM+S

Eur. Phys. J. C (2016) 76:580 Introduce singlet real scalar, S.

2HDM potential, $\mathscr{V}(\Phi_1, \Phi_2)$ **2HDM+S** potential $= m_1^2 \Phi_1^{\dagger} \Phi_1 + m_2^2 \Phi_2^{\dagger} \Phi_2 - m_{12}^2 \left(\Phi_1^{\dagger} \Phi_2 + \text{h.c.} \right)$ $\mathscr{V}(\Phi_1, \Phi_2) + \frac{1}{2}m_{S_0}^2S^2 + \frac{\lambda_{S_1}}{2}\Phi_1^{\dagger}\Phi_1S^2$ $+rac{1}{2} \lambda_1 \left(arPsi_1^\dagger arPsi_1
ight)^2 + rac{1}{2} \lambda_2 \left(arPsi_2^\dagger arPsi_2
ight)^2$ $+\frac{\lambda_{S_2}}{2}\Phi_2^{\dagger}\Phi_2 S^2+\frac{\lambda_{S_3}}{4}(\Phi_1^{\dagger}\Phi_2+\mathrm{h.c})S^2$ $+\lambda_3\left({oldsymbol{\Phi}}_1^\dagger {oldsymbol{\Phi}}_1
ight)\left({oldsymbol{\Phi}}_2^\dagger {oldsymbol{\Phi}}_2
ight) +\lambda_4 \left| {oldsymbol{\Phi}}_1^\dagger {oldsymbol{\Phi}}_2
ight|^2$ $+\frac{\lambda_{S_4}}{\Lambda!}S^4+\mu_1\Phi_1^{\dagger}\Phi_1S+\mu_2\Phi_2^{\dagger}\Phi_2S$ $+\frac{1}{2}\lambda_5\left|\left(\Phi_1^{\dagger}\Phi_2\right)^2+\text{h.c.}\right|$ $+\mu_3\left[\Phi_1^{\dagger}\Phi_2+\mathrm{h.c}\right]S+\mu_SS^3.$ $+\left\{\left[\lambda_{6}\left(\boldsymbol{\Phi}_{1}^{\dagger}\boldsymbol{\Phi}_{1}\right)+\lambda_{7}\left(\boldsymbol{\Phi}_{2}^{\dagger}\boldsymbol{\Phi}_{2}\right)\right]\boldsymbol{\Phi}_{1}^{\dagger}\boldsymbol{\Phi}_{2}+\text{h.c.}\right\}$

Out of considerations of simplicity, assume S to be Higgs-like, which is not too far fetched. 28

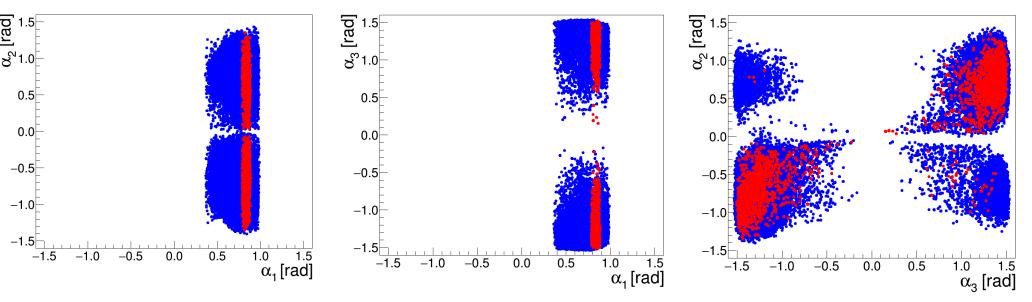
The model leads to rich phenomenology. <u>Of particular interest</u> <u>are multilepton</u> <u>signatures</u>		S. No.	Scalars	Decay modes			
		D.1	h	$b\bar{b}, \tau^+\tau^-, \mu^+\mu^-, s\bar{s}, c\bar{c}, gg, \gamma\gamma, Z\gamma, W^+W^-, ZZ$			
		D.2	H	D.1, hh, SS, Sh			
		D.3	A	D.1, $t\bar{t}$, Zh, ZH, ZS, $W^{\pm}H^{\mp}$			
			D.4	H^{\pm}	$W^{\pm}h, W^{\pm}H, W^{\pm}S$		
			D.5	S	$D.1, \chi \chi$		
	Scalar	Production mode		Search chann	rels		
		$gg \rightarrow H, Hjj (ggF \text{ and VBF})$		Direct SM decays as in Table 1			
4					$W \rightarrow 4\ell + E_{\rm T}^{\rm miss}$		
67				$\rightarrow hh \rightarrow \gamma\gamma b\bar{b}, b\bar{b}\tau\tau, 4b, \gamma\gamma WW$ etc.			
9	H	$-2/W^+$ $U/U = cc/cl$		$\rightarrow Sh \text{ where } S \rightarrow \chi \chi \implies \gamma \gamma, \ b\bar{b}, \ 4\ell + E_{\rm T}^{\rm miss}$			
-01	п	$pp \rightarrow Z(W^{\pm})H \ (H \rightarrow SS/Sh)$		$ \rightarrow 6(5)l + E_{\rm T}^{\rm miss} \rightarrow 4(3)l + 2j + E_{\rm T}^{\rm miss} $			
6				$\rightarrow 2(1)l + 4j + E_T^{\text{miss}}$			
606		$pp \rightarrow t\bar{t}H, (t+\bar{t})H$ (H	$\rightarrow SS/Sh$)	$\rightarrow 2W + 2Z + E_{\rm T}^{\rm miss}$ and <i>b</i> -jets			
9				$\rightarrow 6W \rightarrow 3$ same sign leptons + jets and $E_{\rm T}^{\rm miss}$			
rXiv:1		$pp \rightarrow tH^{\pm} (H^{\pm} \rightarrow W^{\pm}H)$		$\rightarrow 6W \rightarrow 3$ same sign leptons + jets and $E_{\rm T}^{\rm miss}$			
	H^{\pm}	$pp \rightarrow H^{\pm}H^{+} (H^{\pm} \rightarrow HW^{\pm})$		Same as above with extra <i>b</i> -jet			
X	<u> </u>			$\rightarrow 6W \rightarrow 3$ same sign leptons + jets and $E_{\rm T}^{\rm miss}$			
a		$pp \rightarrow H^{\pm}W^{\pm} (H^{\pm} \rightarrow HW^{\pm})$		$\rightarrow 6W \rightarrow 3$ same sign leptons + jets and $E_{\rm T}^{\rm miss}$			
		$gg \rightarrow A (ggF)$		$\rightarrow t\bar{t}$			
	A			$\rightarrow \gamma\gamma$			
		$gg \to A \to ZH \ (H \to SS/Sh)$ $gg \to A \to W^{\pm}H^{\mp}(H^{\mp} \to W^{\mp}H)$		Same as $pp \rightarrow ZH$ above, but with resonance structure over final state objects 6W signature with resonance structure over final state objects			
		$gg \rightarrow A \rightarrow W - H \cdot (H)$	$\rightarrow W \cdot H$)	ow signature	with resonance subclure over final state objects		

Masses in the 2HDM+S

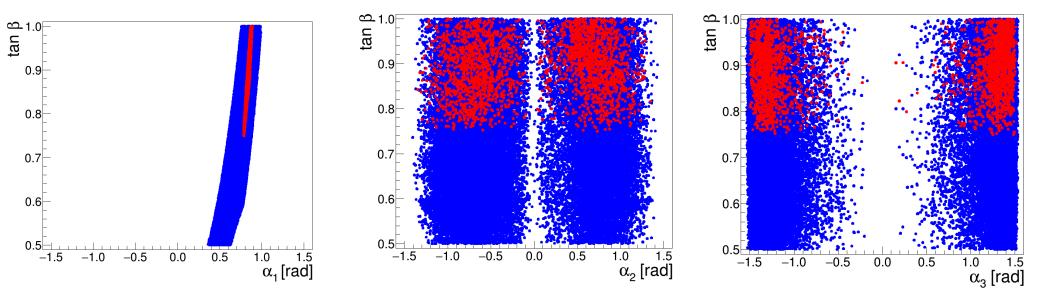
$$\begin{pmatrix} H_1 \\ H_2 \\ H_3 \end{pmatrix} = \mathbb{R} \begin{pmatrix} \rho_1 \\ \rho_2 \\ \rho_S \end{pmatrix}$$

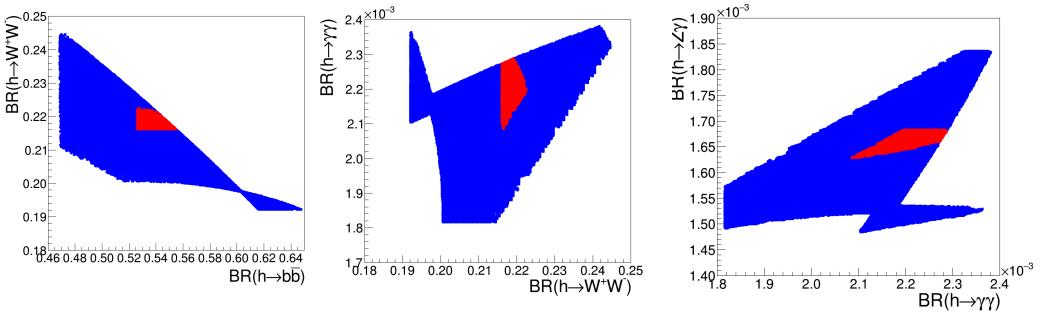
Mass-matrix for the CP-even scalar sector will modified with respect to 2HDM and that needs a 3 x3 matrix (three mixing angles). Couplings are modified.

 $\mathbb{R} = \begin{pmatrix} c_{\alpha_{1}}c_{\alpha_{2}} & s_{\alpha_{1}}c_{\alpha_{2}} & s_{\alpha_{2}} \\ -(c_{\alpha_{1}}s_{\alpha_{2}}s_{\alpha_{3}} + s_{\alpha_{1}}c_{\alpha_{3}}) & c_{\alpha_{1}}c_{\alpha_{3}} - s_{\alpha_{1}}s_{\alpha_{2}}s_{\alpha_{3}} & c_{\alpha_{2}}s_{\alpha_{3}} \\ -c_{\alpha_{1}}s_{\alpha_{2}}s_{\alpha_{3}} + s_{\alpha_{1}}s_{\alpha_{3}} & -(c_{\alpha_{1}}s_{\alpha_{3}} + s_{\alpha_{1}}s_{\alpha_{2}}c_{\alpha_{3}}) & c_{\alpha_{2}}c_{\alpha_{3}} \end{pmatrix}$

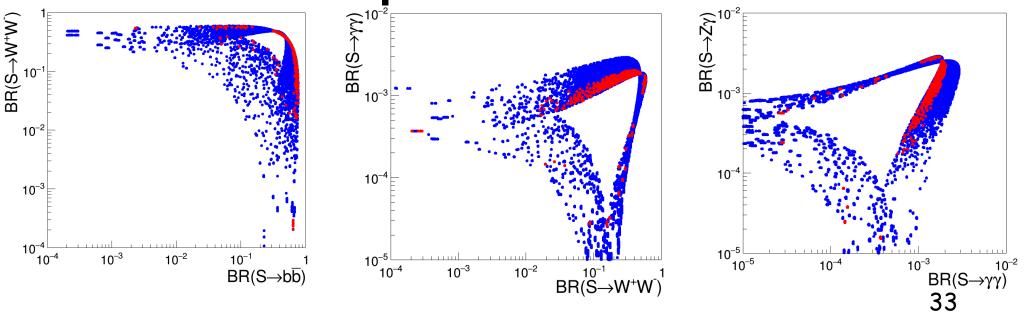

$$M_{\rm CP-even}^2 = \begin{pmatrix} 2\lambda_1 v_1^2 - m_{12} \frac{v_2}{v_1} & m_{12} + \lambda_{345} v_1 v_2 & 2\kappa_1 v_1 v_S \\ m_{12} + \lambda_{345} v_1 v_2 & -m_{12} \frac{v_2}{v_1} + 2\lambda_2 v_2^2 & 2\kappa_2 v_2 v_S \\ 2\kappa_1 v_1 v_S & 2\kappa_2 v_2 v_S & \frac{1}{3}\lambda_S v_S^2 \end{pmatrix}$$

$$m_{H_1}^2 = v_S \sin \alpha_2 \left[\lambda_7 v \cos \alpha_1 \cos \alpha_2 \cos \beta + \lambda_8 v \sin \alpha_1 \cos \alpha_2 \sin \beta + \lambda_6 v_S \sin \alpha_2 \right],$$

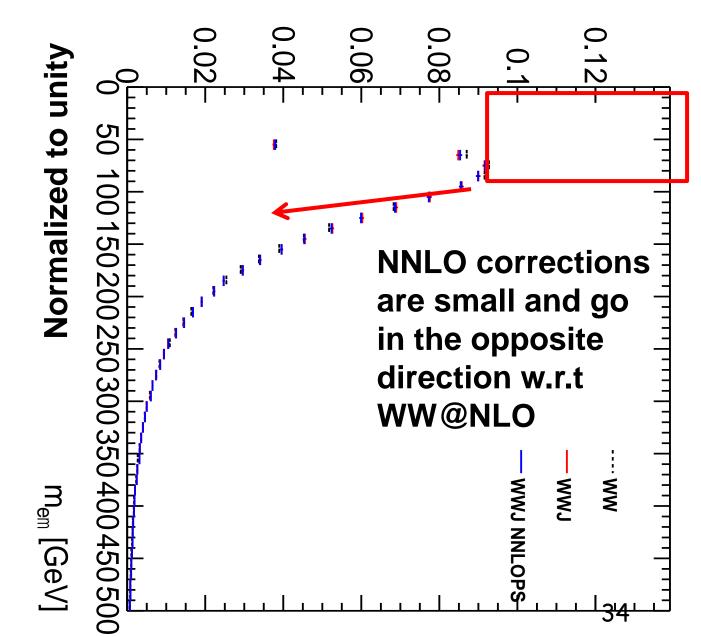

$$m_{H_2}^2 = \left(\cos \alpha_1 \cos \alpha_3 - \sin \alpha_1 \sin \alpha_2 \sin \alpha_3 \right) \left[\cos \alpha_1 \cos \alpha_2 \left(\lambda_{345} v^2 \sin \beta \cos \beta - m_{12}^2 \right) + \sin \alpha_1 \cos \alpha_2 \left(m_{12}^2 \cot \beta + \lambda_2 v^2 \sin^2 \beta \right) + \lambda_8 v v_S \sin \alpha_2 \sin \beta \right],$$

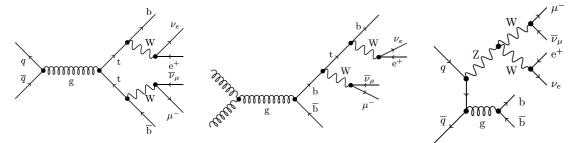

$$m_{H_3}^2 = \left(\sin \alpha_1 \sin \alpha_3 - \sin \alpha_2 \cos \alpha_1 \cos \alpha_3 \right) \left[\cos \alpha_1 \cos \alpha_2 \left(m_{12}^2 \tan \beta + \lambda_1 v^2 \cos^2 \beta \right) + \sin \alpha_1 \cos \alpha_2 \left(\lambda_{345} v^2 \sin \beta \cos \beta - m_{12}^2 \right) + \lambda_7 v v_S \sin \alpha_2 \cos \beta \right].$$
(2.17)

Perform scans after fixing masses of physical bosons(m_{h1}=125 GeV, m_{h2}=140, m_{h3}=270 GeV, m_A=600 GeV, m_H±=600 GeV) in addition to the constraints described in arXiv:1711.07874, including the signal Yukawa coupling strength of β_g^2 =1.38±0.22 (translated into tan² β)



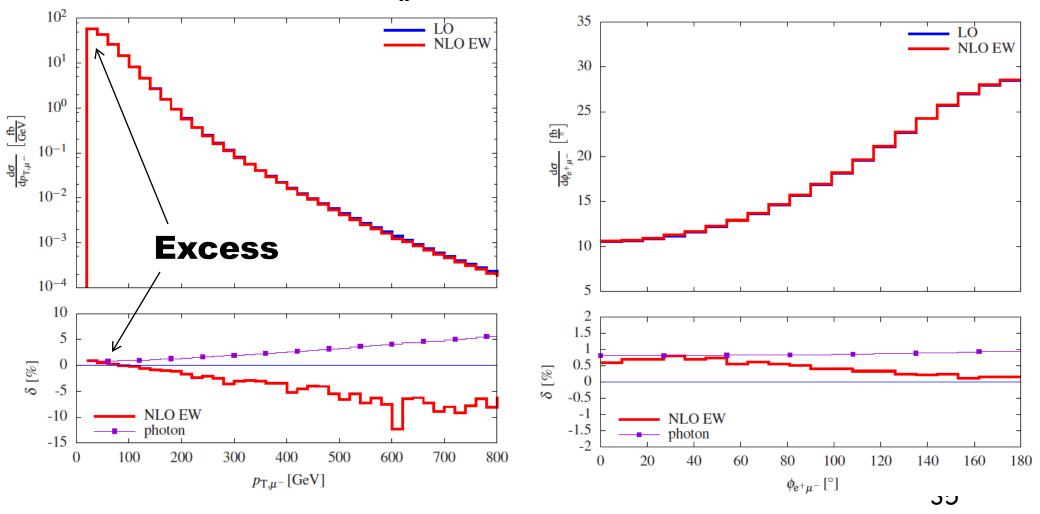
Correlation plots for the three mixing angles and tan β . Blue (red) points correspond to Br(h \rightarrow SM) within 10% (20%) of the SM h values (J.Phys. G46 (2019) no.11, 115001)


Results using N2HDECAY (arXiv:1612.01309) for one benchmark point



Impact of NNLO QCD in WW

The NNLO QCD corrections shift the m_{II} spectrum towards larger values.


The discrepancy becomes larger in the region of interest with m_{II}<100 GeV

A.Denner, M.Pellen, arXiv:1607.05571

EW corrections are important at high p_T due to Sudakov logarithms. Effect is less than 1% for m_{II} <100 GeV, where discrepancies are seen.

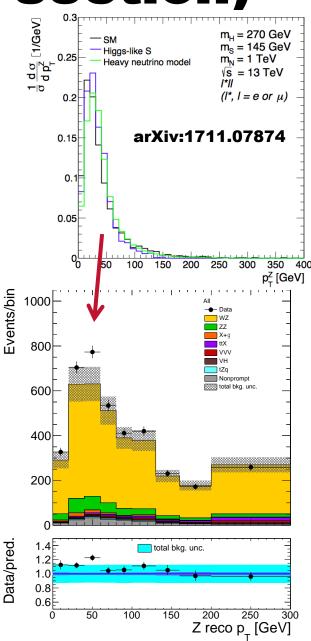
The HistFactory method

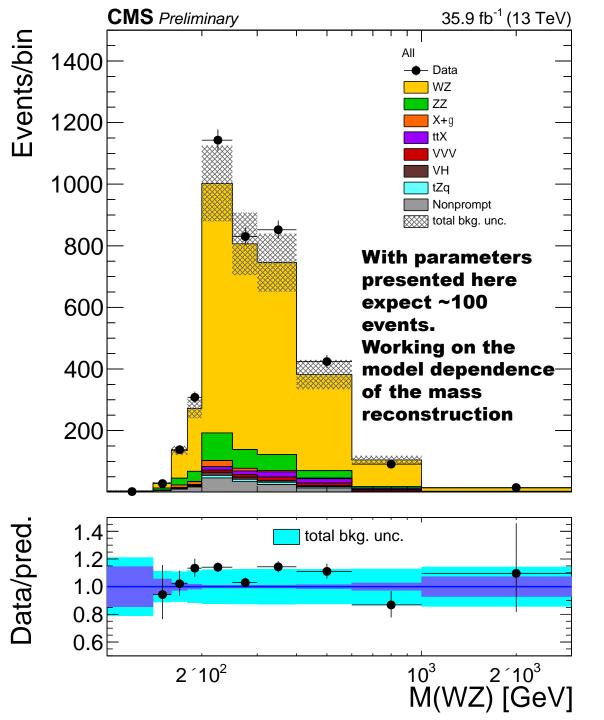
K. Cranmer, G. Lewis, L. Moneta, A. Shibata, and W. Verkerke, HistFactory: A tool for creating statistical models for use with RooFit and RooStats, CERN-OPEN-2012-016.

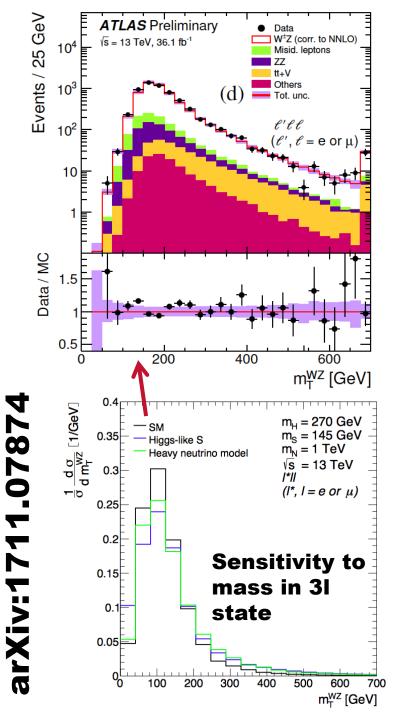
& Constructs a likelihood function from template histograms

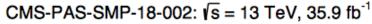
& Allows for a simple implementation of systematic uncertainties that affect normalisation and/or shape

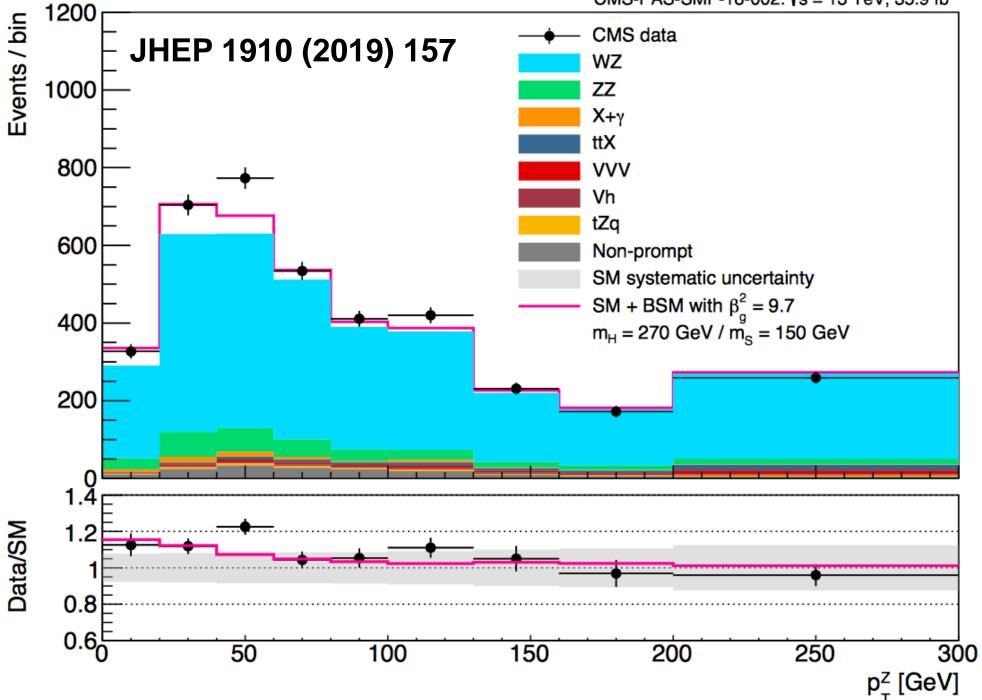
$$\mathcal{P}(n_{cb}, a_p \mid \phi_p, \alpha_p, \gamma_b) = \prod_{\substack{c \in \text{channels}}} \prod_{b \in \text{bins}} \operatorname{Pois}(n_{cb} \mid \nu_{cb}) \cdot G(L_0 \mid \lambda, \Delta_L) \cdot \prod_{p \in \mathbb{S} + \Gamma} f_p(a_p \mid \alpha_p)$$

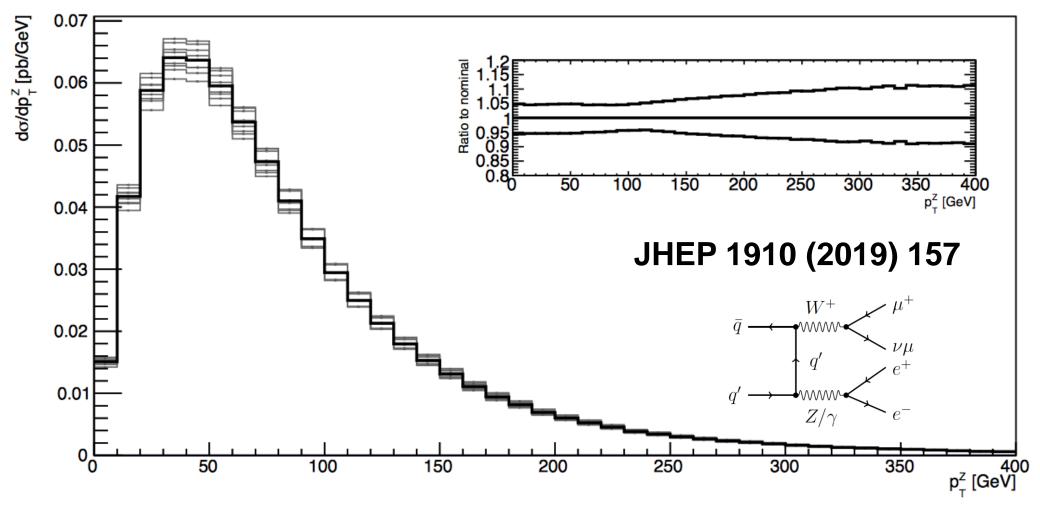

In our case, each "channel" is a different measurement.	The Poisson probability for the "expected" and "observed" number of events per bin.	Functional form of luminosity and its variations (not	Functional form of systematic variation with nuisance parameter αp.
		necessary for us).	36


31 with $Z \rightarrow II$ (ZW cross-section)


CMS PAS SMP-18-002


Errors in the plot are dominated by the 15% uncertainty on normalization to account **NLO/NNLO differences. The uncertainty of** the shape is much smaller of order of few


0/	•					
%	Source	Combined	eee	eeµ	μµe	μμμ
	Electron efficiency	1.9	5.9	3.9	1.9	0
	Electron scale	0.3	0.9	0.2	0.6	0
	Muon efficiency	1.9	0	0.8	1.8	2.6
	Muon scale	0.5	0	0.7	0.3	0.9
	Trigger efficiency	1.9	2.0	1.9	1.9	1.8
	Jet energy scale	0.9	1.6	1.0	1.7	0.8
	B-tagging (id.)	2.6	2.7	2.6	2.6	2.4
	B-tagging (mis-id.)	0.9	1.0	0.9	1.0	0.7
	Pileup	0.8	0.9	0.3	1.3	1.4
	ZZ	0.6	0.7	0.4	0.8	0.5
Systematics	Nonprompt norm.	1.2	2.0	1.2	1.5	1.0
that will	Nonprompt (EWK subs.)	1.0	1.5	1.0	1.3	0.8
	VVV norm.	0.5	0.6	0.6	0.6	0.5
directly	VH norm.	0.2	0.2	0.3	0.2	0.2
affect the	tī V norm.	0.5	0.5	0.5	0.5	0.5
shape	tZq norm.	0.1	0.1	0.1	0.1	0.1
	$X+\gamma$ norm.	0.3	0.8	0	0.7	0
	Total systematic	4.7	7.8	5.8	5.7	4.6
	Luminosity	2.8	2.9	2.8	2.9	2.8
	Statistical	2.1	6.0	4.8	4.1	3.1
	Total experimental	6.0	10.8	8.0	7.5	6.3
	Theoretical	0.9	0.9	0.9	0.9	0.9



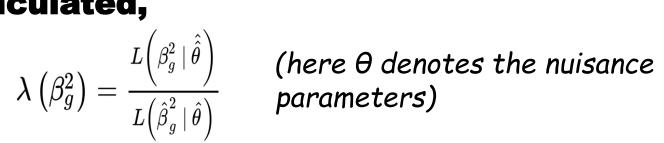


Figure 10: The effects of scale variations in the differential cross section of the SM WZ process as a function of the $Z p_{\rm T}$. Here, **aMC@NLO** and **Pythia 8** were used to generate the events. The thick black line represents the spectrum at the nominal scale, and each grey line is a variation of the scale. The insert shows the maximum and minimum relative deviations for all scale variations.

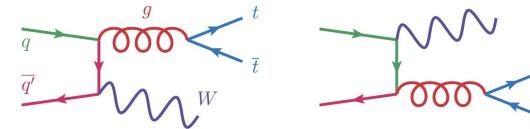
The fitting procedure

& The RooStats workspace is made by HistFactory & From the workspace, a profile likelihood ratio is calculated,

& The best-fit value of β_{g}^{2} is then calculated as the minimum of $-2\log(\lambda)$, with an error corresponding to a unit of deviation in this quantity from the best-fit point

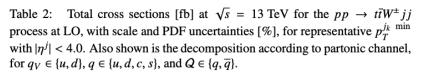
& The significance is calculated as $\sqrt{(-2 \log \lambda(0))}$, since $\beta_{\alpha}^2 = 0$ corresponds to the SM-only hypothesis

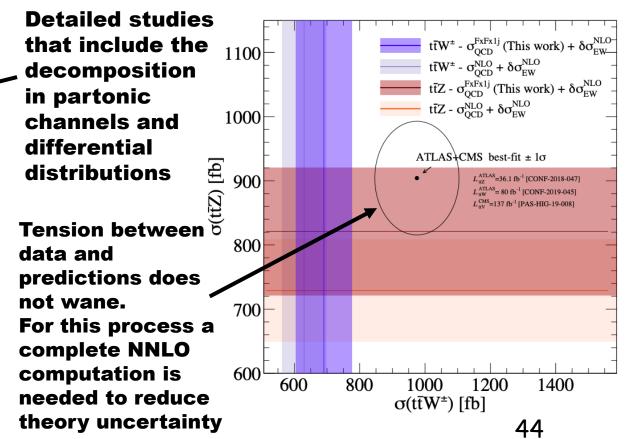
JHEP 1910 (2019) 157


Selection	Best-fit β_g^2	Significance
ATLAS Run 1 SS $\ell\ell$ and $\ell\ell\ell + b$ -jets	6.51 ± 2.99	2.37σ
${ m ATLAS} { m Run} \ 1 \ { m OS} \ e\mu + b ext{-jets}$	4.09 ± 1.37	2.99σ
$ ext{CMS Run 2 SS } e\mu,\mu\mu ext{ and }\ell\ell\ell+b ext{-jets}$	1.41 ± 0.80	1.75σ
${\rm CMS}\;{\rm Run}\;2\;{\rm OS}\;e\mu$	2.79 ± 0.52	5.45σ
CMS Run 2 $\ell\ell\ell + E_{\rm T}^{\rm miss}$ (WZ)	9.70 ± 3.88	2.36σ
ATLAS Run 2 SS $\ell\ell$ and $\ell\ell\ell + b$ -jets	2.22 ± 1.19	2.01σ
${ m ATLAS} { m Run} \; 2 \; { m OS} \; e\mu + b ext{-jets}$	5.42 ± 1.28	4.06σ
ATLAS Run 2 $\ell\ell\ell + E_{\mathrm{T}}^{\mathrm{miss}}$ (WZ)	9.05 ± 3.35	2.52σ
Combination	2.92 ± 0.35	8.04σ

The simplidied model seems to describe the discrepancies in different corners of the phase-space with large differences in cross-sections, eg, OS and SS di-leptons

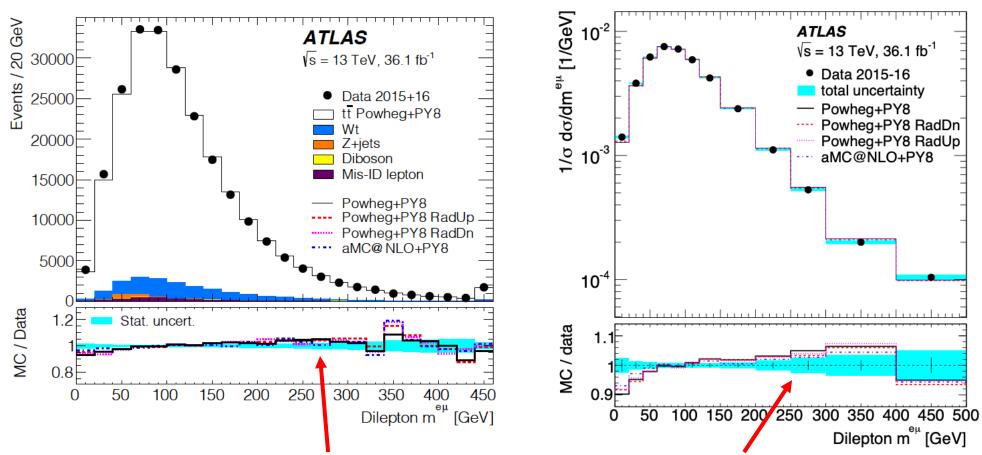
Excesses in di-leptons with full-jet veto not included above


The anatomy of inclusive ttW at the LHC



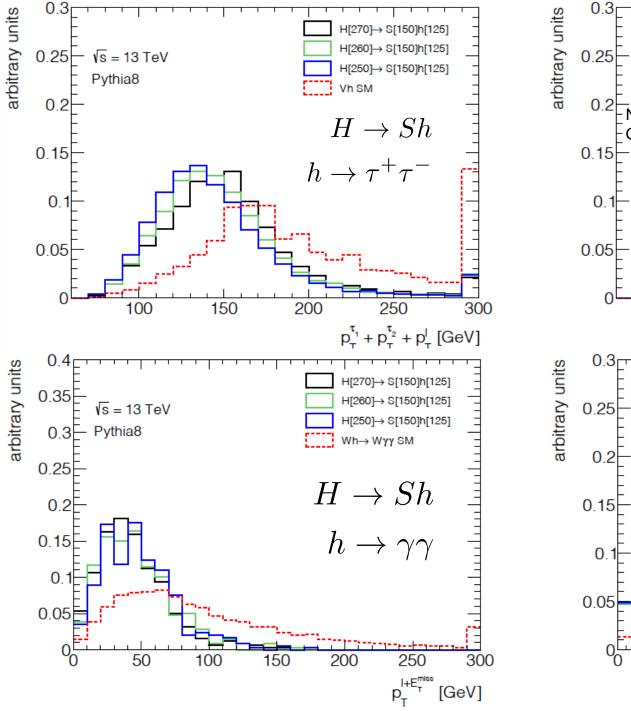
S.Buddenbrock, R.Ruiz and B.M. Physics Letters B 811 (2020) 135964

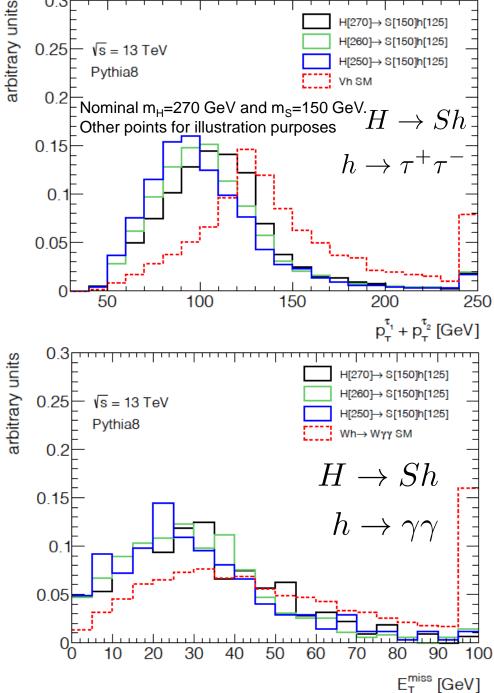
Using fixed order computations at $O(\alpha_s^4 \alpha)$ and NLO multi-jet matching yielding similar (10%-14%) corrections to the inclusive rate


$i j \rightarrow t \bar{t} W^{\pm} k l$								
(i, j)	(k, l)	$p_T^{j_1 \min}$	$p_T^{j_2 \min}$	σ [fb]	$\pm \delta_{\mu_f,\mu_r}$	$\pm \delta_{ m PDF}$		
All	All	75 GeV	75 GeV	34.7 (100%)	+57% -34%	$^{+1.1\%}_{-1.1\%}$		
(g, Q)	(g, Q)			23.7 (68%)				
(Q,Q)	(Q,Q)			6.99 (20%)				
(Q,Q)	(g,g)			3.63 (10%)				
(g,g)	(q,\overline{q})			0.437 (1.3%)				
All	All	100 GeV	75 GeV	33.1 (100%)	+57% -34%	$^{+1.0\%}_{-1.0\%}$		
(g, Q)	(g, Q)			22.6 (68 %)	5170	11070		
(Q, Q)	(Q,Q)			6.78 (20%)				
(Q, Q)	(g,g)			3.28 (9.9%)				
(g,g)	(q,\overline{q})			0.409 (1.2%)				
All	All	100 GeV	100 GeV	21.2 (100%)	+57% -34%	$^{+1.1\%}_{-1.1\%}$		
(g, Q)	(g, Q)			14.3 (67%)				
(Q, Q)	(Q,Q)			4.91 (23%)				
(Q,Q)	(g,g)			1.75 (8%)				
(g,g)	(q,\overline{q})			2.58 (1%)				
(g, q_V)	(g, q_V)	75 GeV	75 GeV	20.1 (58%)	+58% -35%	$^{+2.3\%}_{-2.3\%}$		
(g, q_V)	(g, q_V)	100 GeV	75 GeV	19.3 (58%)	-35% +58% -35%	-2.3% +2.3% -2.3%		
(g, q_V)	(g, q_V)	100 GeV	100 GeV	12.2 (58%)	-35% +59% -35%	-2.3% +2.4% -2.4%		

Results not included in the combination

arXiv:1910.08819


Residual discrepancies at high m_{\parallel} will be fixed with missing NNLO QCD and NLO EW corrections


Excess at low mll remains prevalent, indicating that effects seen in Run 1 were not statistical fluctuations. Preliminary NNLO QCD corrections do not fix the issue (see Mitov et al.) 45 Impact on Higgs Physics

The presence of a BSM signal of the type H→Sh would lead to:
□ The presence of <u>extra leptons</u> in association with h. Affects the Wh measurement (arXiv:1912.00699)

Distortion of Higgs p_T and rapidity (under study)

No tuning of model parameters performed. Look at fixed corners of the phase-space fixed with parameters of 2017.

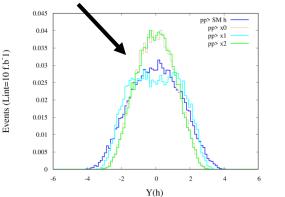
Survey of LHC results on Vh (V=W,Z) production (arXiv:1912.00699)

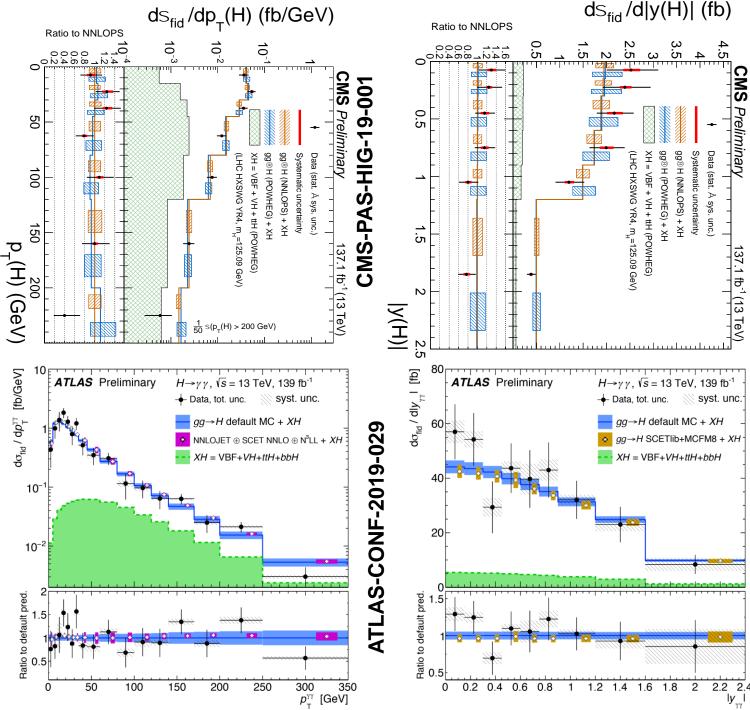
The BSM (H \rightarrow Sh) signal appears at low p_{Th} and the SM signal is prevalent at larger p_{Th} (no tuning of parameters)

Include those results from ATLAS and CMS where no requirements on p_{Th} (or correlated observables) is not done or used in an MVA.

Those results where the final state is treated more "inclusively" display elevated signal strengths for Wh production:

$$\mu(Wh) = 2.50 \pm 0.36$$


This represents a 4.2 σ deviation from the SM value of 1. BSM signal normalization less than expected from multilepton excesses assuming Br(H \rightarrow Sh)=100%. Indicates that Br(H \rightarrow SS) > Br(H \rightarrow Sh)


Higgs	Ref.	Experiment	\sqrt{s} , \mathcal{L}	Final	Category	μ	Used in	Comments
decay			TeV, fb^{-1}	state	D.D.O.G. 44	a a ± 2 0	combination	
				2ℓ	DFOS 2j	$2.2^{+2.0}_{-1.9}$	× .	of
			~	24	SS 1j	$8.4^{+4.3}_{-3.8}$	×	2ℓ combination: $\mu = 3.7^{+1.9}_{-1.5}$
	66]	ATLAS	7, 4.5		SS 2j	$7.6^{+6.0}_{-5.4}$	~	and the found
			8, 20.3		1SFOS	$-2.9^{+2.7}_{-2.1}$	x	$m_{\ell_0 \ell_2}$ used as input
				3ℓ		· ~+1.9		BDT discriminating variable
WW					0SFOS	$1.7^{+1.9}_{-1.4}$	✓	10700 1
	67]	ATLAS	13, 36.1	3ℓ	1SFOS 0SFOS	$2.3^{+1.2}_{-1.0}$	✓	1SFOS channel uses $m_{\ell_0 \ell_2}$ in the BDT but excess driven by 0SFOS
			7, 4.9	2ℓ	DFOS 2j	$0.39^{+1.97}_{-1.87}$		Discrepancy at low $m_{\ell\ell}$
	68]	CMS	8, 19.4	3ℓ	0+1SFOS	$0.56^{+1.27}_{-0.95}$	· ·	Discrepancy at low mile
			0, 13.4	2ℓ	DFOS 2j	$3.92^{+1.32}_{-1.17}$		Discrepancy at low $m_{\ell\ell}$
	69]	CMS	13, 35.9	3ℓ	0+1SFOS	$2.23^{+1.76}_{-1.53}$	· ·	Discrepancy at low mile
	70]	ATLAS	8, 20.3	1ℓ	ℓ+π₁π₁ + + ·	1.8 ± 3.1	× .	
			~ 10	2ℓ	$e^{\pm}\mu^{\pm} + \tau_h$	1.3 ± 2.8	~	DDD I I D D
$\tau \tau$	71]	CMS	7, 4.9	1ℓ	$\ell + \tau_h \tau_h$	-0.33 ± 1.02	x	BDT based on $p_T^{\tau_1} + p_T^{\tau_2}$
	_		8, 19.7	2ℓ	$e^{\pm}\mu^{\pm} + \tau_h$		x	Split $p_{\rm T}^{\ell_1} + p_{\rm T}^{\ell_2} + p_{\rm T}^{\tau}$ at 130 GeV
	72]	CMS	13, 35.9	1ℓ	$\ell + \tau_h \tau_h$	$3.39^{+1.68}_{-1.54}$	✓	
				2ℓ	$e^{\pm}\mu^{\pm} + \tau_h$			
	73	ATLAS	7, 5.4 8, 20.3	ℓv	One-lepton	1.0 ± 1.6	x	
				fν, νν	E_{T}^{miss}			$E_{\mathrm{T}}^{\mathrm{miss}} > 70 - 100 \mathrm{GeV}$
				jj	Hadronic			$p_{Tt}^{\gamma\gamma} > 70 \text{ GeV}$
	74	CMS	7, 5.1 8, 19.7	ℓv	One-lepton			Split $E_{\rm T}^{\rm miss}$ at 45 GeV
				fν, νν	E_{T}^{miss}	$-0.16^{+1.16}_{-0.79}$	x	$E_{\rm T}^{\rm miss} > 70~{ m GeV}$
				jj	Hadronic			$p_T^{\gamma\gamma} > 13m_{\gamma\gamma}/12$
	75	ATLAS		$\ell \nu$	One-lepton	$2.41\substack{+0.71\\-0.70}$	1	$p_T^{\ell+E_T^{min}} < 150 \text{ GeV}$
$\gamma\gamma$						$2.64^{+1.16}_{-0.99}$	x	$p_{\mathrm{T}}^{\ell + E_{\mathrm{T}}^{\mathrm{mins}}} > 150 \ \mathrm{GeV}$
			13, 139	£ν, νν	E_{T}^{miss}	-	x	$E_{\mathrm{T}}^{\mathrm{miss}} > 75 \ \mathrm{GeV}$
				jj	Hadronic	$0.76^{+0.95}_{-0.83}$	x	$60 < m_{jj} < 120 \text{ GeV}$
						$3.16^{+1.84}_{-1.72}$	✓	$m_{jj} \in [0, 60] [120, 350] \text{ GeV}$
	76	CMS CMS		ℓv	One-lepton	$3.0^{+1.5}_{-1.3}$	x	Superseeded by full Run 2 result
			13, 35.6	fν, νν	E_T^{miss}	-	x	$E_{T}^{miss} > 85 \text{ GeV}$
				jj	Hadronic	$5.1^{+2.5}_{-2.3}$	√	$p_T^{\gamma\gamma}/m_{\gamma\gamma}$ not used
				ℓv	One-lepton	$1.31^{+1.42}_{-1.12}$	✓	$p_{T}^{V} < 75 \text{ GeV}$
			- e	jj	Hadronic	$0.89^{+0.89}_{-0.91}$	x	$p_{\rm T}^{\gamma\gamma}/m_{\gamma\gamma}$ used in BDT
ZZ .	78	ATLAS	13, 139	$\ell\ell\ell\ell\ell+\ell\nu$	Lep-enriched	$1.44\substack{+1.17\\-0.93}$	x	Number of jets used in MVA
				$\ell\ell\ell\ell\ell+q\bar{q}$	2j			m_{jj} used in MVA
		CMS	13, 137.1	$\ell\ell\ell\ell + \ell\nu$	Lep-low $p_{\rm T}^h$	$3.21_{-1.85}^{+2.49}$	✓	$p_{\rm T}^h < 150 { m ~GeV}$
	[79]				Lep-high $p_{\rm T}^h$	$0.00^{+1.57}_{-0.00}$	x	$p_{\mathrm{T}}^{h} > 150 \text{ GeV}$
				$\ell\ell\ell\ell + q\bar{q}$	2j	$0.57^{+1.20}_{-0.57}$	x	$60 < m_{jj} < 120~{\rm GeV}$

Simplified model predicts low p_{Th}. Due to proximity of the turnover, uncertainties are hard to assess.

Working with collaborators to evaluate robustness of rapidity, where data tends to be more central than prediction

Simplified model predicts more central h production

V. Ravindran et al.

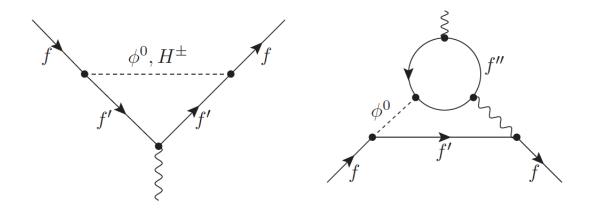
• F.O. and resummed results for few benchmark values of y

	-						
у	LO	LO + LL	NLO	NLO + NLL	NNLO	NNLO + NNLL	NNLO + NNNLL
0.0	4.435 ± 1.145	6.231 ± 1.950	8.255 ± 1.684	9.632 ± 2.286	10.329 ± 1.088	10.938 ± 1.050	10.517 ± 0.820
0.8	4.134 ± 1.067	5.833 ± 1.831	7.517 ± 1.530	8.820 ± 2.124	9.407 ± 0.988	9.992 ± 1.025	9.641 ± 0.718
1.6	3.189 ± 0.819	4.630 ± 1.468	5.522 ± 1.117	6.611 ± 1.676	6.877 ± 0.744	7.380 ± 0.849	7.045 ± 0.563
2.4	1.904 ± 0.492	2.887 ± 0.942	2.985 ± 0.597	$3.715\pm.998$	3.683 ± 0.410	4.040 ± 0.501	3.821 ± 0.305

Banerjee, Das, Dhani, Ravindran ('17)

- Corrections from LL varies between **40%** to **50%** from LO.
- At NLL it is **17%** to **24%**;
- At NNLL 6% to 10%.
- NNLO+NNNLL 3% to 5%.

Rapidity distribution is becoming a tool for precision


Scale uncertainty goes down 12% to 6% at NNLO+N3LL

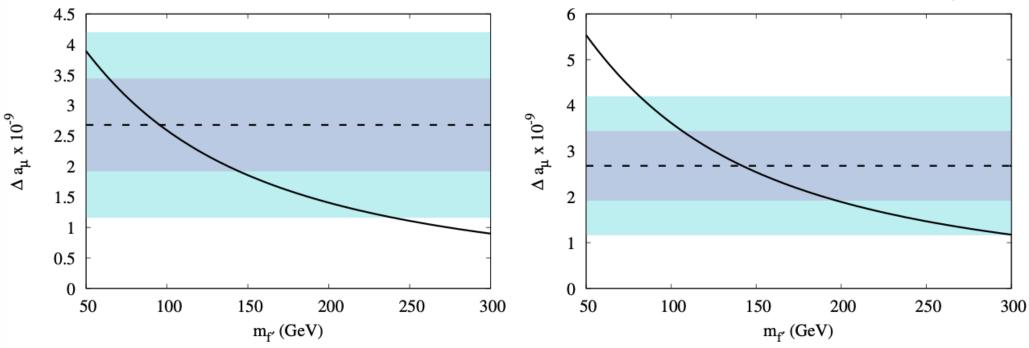
The result can be further improved with known NNNLO corrections.
 Ajjath, Chen, Cieri, Das, Gehrmann, Mukherjee, Ravindran (in preparation)

Chin.Phys.C 44 (2020) 6, 063103

$$\Delta a_{\mu} = a_{\mu}^{\rm Exp} - a_{\mu}^{\rm SM} = 2.87(80) \times 10^{-9}$$

The Muon g-2 and the 2HDM+S

2HDM+S potential with fixed parameters from multi-lepton anomalies at the LHC


$$\begin{split} &V(\Phi_{1}, \Phi_{2}, \Phi_{S}) \\ &= m_{11}^{2} |\Phi_{1}|^{2} + m_{22}^{2} |\Phi_{2}|^{2} - m_{12}^{2} \left(\Phi_{1}^{\dagger}\Phi_{2} + \text{h.c.}\right) \\ &+ \frac{\lambda_{1}}{2} \left(\Phi_{1}^{\dagger}\Phi_{1}\right)^{2} + \frac{\lambda_{2}}{2} \left(\Phi_{2}^{\dagger}\Phi_{2}\right)^{2} + \lambda_{3} \left(\Phi_{1}^{\dagger}\Phi_{1}\right) \left(\Phi_{2}^{\dagger}\Phi_{2}\right) \\ &+ \lambda_{4} \left(\Phi_{1}^{\dagger}\Phi_{2}\right) \left(\Phi_{2}^{\dagger}\Phi_{1}\right) + \frac{\lambda_{5}}{2} \left[\left(\Phi_{1}^{\dagger}\Phi_{2}\right)^{2} + \text{h.c.} \right] \\ &+ \frac{1}{2}m_{S}^{2}\Phi_{S}^{2} + \frac{\lambda_{6}}{8}\Phi_{S}^{4} + \frac{\lambda_{7}}{2} \left(\Phi_{1}^{\dagger}\Phi_{1}\right)\Phi_{S}^{2} + \frac{\lambda_{8}}{2} \left(\Phi_{2}^{\dagger}\Phi_{2}\right)\Phi_{S}^{2} \end{split}$$

Consider extra degrees of freedom in the form of SM singlet vector-like fermions

0

$$\mathcal{L} \supset -y_{f'}^S \overline{l_R} \Phi_S f'_L - \sum_{i=1}^2 y_{f'}^i \overline{L_l} \Phi_i f'_R + \text{h.c.},$$

Allowed fermion masses with different choices of Yukawa couplings

