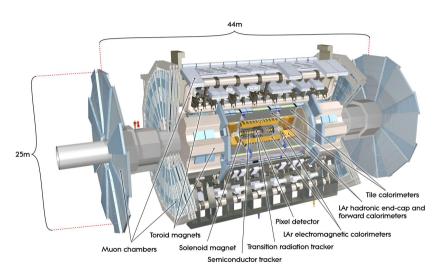


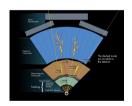
Search for heavy diboson resonances in semileptonic final states in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

Yassine Fl Ghazali

Ibn Tofail University in Kenitra
Beyond Standard Model: From Theory to Experiment (BSM-2021 Conference), Egypt

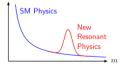
April 2, 2021




Outline

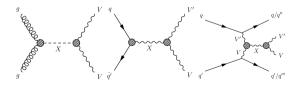
- ATLAS experiment
- 2 Motivation
- Benchmark Models
- Object definition
- 6 Analysis strategy
- 6 Results
- Summary

ATLAS detector



Motivation

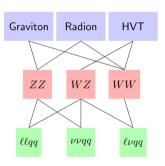
Various BSM models predict new particles decaying to pairs of V = W/Z


- Extended Gauge, Higgs sectors, RS models
- Can appear as resonant detector signature in invariant mass of the bosons

Searches for new resonances in semileptonic VV final stats

- One V decays leptonically and the other hadronically
- Compromise between competing effects

 - Hadronic decays → high BR
 Leptonic decays → Low Bkgs



Benchmark Models

Three benchmark models correspond to different spin have been used

- Spin 0: Radion in Randall-Sundrum models
- Spin 1: W'/Z' for Heavy vector Triplets
- Spin 2: Graviton in Randall-Sundrum

Production through ggF/DY and VBF for all models

Object definition

The building objects for this search are: leptons(Electrons or Muons), E_T^{miss} and jets

- Priority is given to Merged regime, if failed then resolved $V \rightarrow jj$
- E_T^{miss} = negative sum

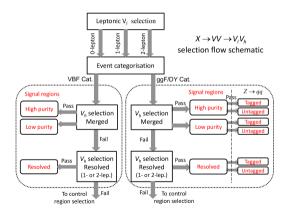
•
$$\mathcal{R}_{p_T/m} = \frac{\min(p_{T,\ell\nu},p_{T,J})}{m_{WV}}$$

P I	0-lepton	1-lepton	2-lepton						
Event selection	$(ZV \rightarrow \nu \nu V_h)$	$(WV \rightarrow \ell \nu V_h)$	$(ZV \rightarrow \ell\ell V_h)$						
	No Loose lepton	1 Tight electron	2 Loose leptons						
	$E_{\rm T}^{\rm miss} > 250 {\rm GeV}$	or 1 Medium muon	with $p_T^{\ell} > 30 \text{ GeV}$						
V_{ℓ} selection	$p_{\rm T}^{\rm miss} > 50 {\rm GeV}$	with $p_T^{\ell} > 30 \text{ GeV}$	from the						
		$E_{\mathrm{T}}^{\mathrm{miss}} > 60 \text{ GeV}$ $p_{\mathrm{T}}^{V\ell} > 75 \text{ GeV}$	$Z \rightarrow \ell \ell$ candidate						
		$p_{\mathrm{T}}^{V_{\ell}} > 75 \mathrm{GeV}$							
	No additional Loose leptons								
Event veto									
Event categorisation	≥ 1 large- R jets or ≥ 2 small- R jets								
Event categorisation	VBF and ggF/DY classification according to RNN score								
		$E_{\mathrm{T}}^{\mathrm{miss}} > 100 \mathrm{GeV}$ $p_{\mathrm{T}}^{V\ell} > 200 \mathrm{GeV}$							
		$p_{\mathrm{T}}^{V\ell} > 200 \mathrm{GeV}$							
V_h selection (Merged)	≥ 1 large-R jets								
'm beteetion (mergea)	The leading jet passing p_{T} -dependent m_J requirement								
		$\mathcal{R}_{p_{\mathrm{T}}/m} > 0.35 (\text{ggF/DY})$	$R_{p_{\rm T}/m} > 0.35 ({\rm ggF/DY})$						
		$R_{P_{\rm T}/m} > 0.25 \text{ (VBF)}$	$R_{P_{\rm T}/m} > 0.25 \text{ (VBF)}$						
		Failed merged selection							
		$ \eta < 2.5$							
V_h selection (Resolved)	Not	$62 < m_{jj} < 97 \text{ GeV for}$	or $W \to jj$						
. n (16501164)	Performed	$70 < m_{jj} < 105 \text{ GeV}$							
		$\Re_{P_{\rm T}/m} > 0.35 ({\rm ggF/DY})$	$\mathcal{R}_{p_{\mathrm{T}}/m} > 0.35 \text{ (ggF/DY)}$						
		$R_{p_T/m} > 0.25 \text{ (VBF)}$	$R_{p_{\rm T}/m} > 0.35 \text{ (VBF)}$						

Analysis strategy

Identification of leptonic V decay and hadronic V decay

Leptonic V decay


- $Z \rightarrow \nu \nu$
- $W \rightarrow \ell \nu$
- $Z \rightarrow \ell\ell$

Hadronic V decay

- Merged: One Large-R jet
- Resolved: Two Small-R jets

Further Categorizations

- High purity and Low Purity Pass or fail W/Z tagger
- $Z \rightarrow bb$ tagged/untagged regions

Signal and Control region definition

• Signal regions: mass window cut (V o qq)

▶ Merged: p_T—dependent cut

▶ Resolved: Fixed cut

▶ No extra *b-jet*

• Control regions: W+jets, Z+jets and $t\bar{t}$

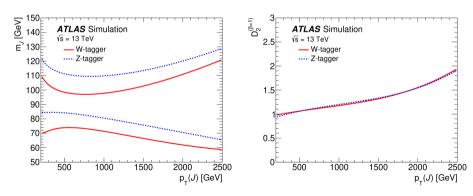
► WCR/ZCR (W/Z+jets): W/Z mass side-band

▶ TCR $(t\bar{t})$: Extra *b-jets* required

Table: Merged regime

Selection		5	R	W C	R (WR)	tř CR (TR1)		
***************************************			LP	HP	LP	HP	LP	
	Num of large-R jets				≥.	1		
$W/Z \rightarrow J$	D ₂ cut	pass	fail	pass	fail	pass	fail	
VV / Z → J	W/Z mass window cut	pass	pass	fail	fail	pass	pass	
	Numb. of associated VR track jets b-tagged	For 2	$\rightarrow J$:	≤ 1 (=	2) for u	ntagge	d (tagged) category	

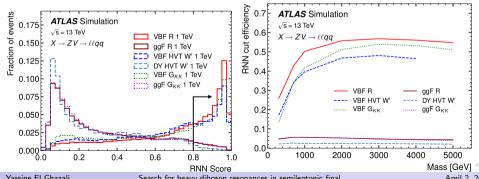
Table: Resolved regime


cuts		SR	W CR (WR)	tř CR (TR1)								
	Number of small-R jets	≥ 2										
	Leading jet ρ_T	> 60 GeV										
	Subleading jet py	> 45 GeV										
$W/Z \rightarrow jj$	$Z \rightarrow q\bar{q}$	$78 < m_{jj} < 105 GeV$	50 < m _{ij} < 68, GeV or	$50 < m_{ij} < 150 GeV$								
	$W \rightarrow q\bar{q}$		$150 < m_{jj} < 150, GeV$									
	Num. of b-tagged jets	For $Z \rightarrow jj : \leq$	1 (= 2) for untagged (ta	gged) category								
	$\Delta \phi(j, \ell)$		> 1.0									
	$\Delta \phi(j, E_{miss}^T)$	> 1.0										
Topology cuts	$\Delta \phi(j,j)$	< 1.5										
	$\Delta \phi(I, E_{miss}^T)$	< 1.5										
	$min(p_T(lv), p_T(jj))/m_{WV}$	> 0.35(0.25) for DY/ggF (VBF)	category								
Top veto	Number of additional b-tagged jets		0	≥ 1								

W/Z boson tagger with TCCs

TrackCaloClusters (TCCs) used instead of LCTopo for Large-R jet reconstruction

- Support of ID tracks gives better $D_2^{\beta=1}$ resolution
- 2D re-optimized W/Z tagger working point for optimal signal sensitivity in this channel


• 30% improvements for m(VV) > 3 TeV

RNN for VBF/ggF classification

Machine Learning technique to categorize ggF/VBF

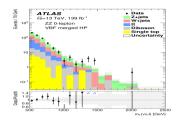
- Using RNN with jet 4-momenta (p_T, E, η, ϕ) as inputs
- ggF(DY) vs. VBF signal training
- Exclude iets from hadronic boson candidate decay
- Up to 2 jets used for training
- WP optimized for same background rejection as previous cut-based strategy

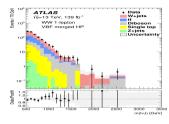
Background modeling

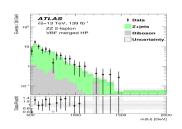
Electroweak backgrounds:

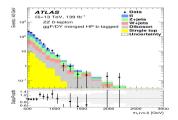
- W/Z+jets: W/Z production associated with jets
- Top quark: both top-quark pair $(t\bar{t})$ & single-top quark
- SM Diboson: Non resonant diboson production (WW/WZ/ZZ)

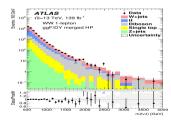
W/Z+jets and $t\bar{t}$ use data from CRs to constraint normalization

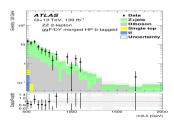

Multijet: Non resonant QCD multijet production:

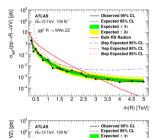

- Considered only in 1-lepton channel
- Shape derived from MJ-enriched region with inverted lepton ID
- Normalization derived from fit on MET distribution in WCR

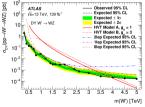

	Criterion	signal lepton	inverted lepton							
Electron	ID	TightLH	MediumLH							
Liectron	l ID	rigitteri	!TightLH							
	Calo Isolation	FixedCutHighPtCaloOnlyIso	FixedCutHighPtCaloOnlyIso							
Muon	ID	WHSignalMuon	WHSignalMuon							
	Track Isolation	FixedCutTightTrackOnlyIso	!FixedCutTightTrackOnlyIso							
	Track isolation	Fixed Cut Fight TrackOnlyiso	$ptvarcone30/p_T < 0.07^*$							
	*Only applied to events with $p_{\tau}(W) < 150 \text{GeV}$									

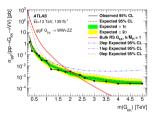

• For events with $p_T(W \to \mu \nu) > 150$ GeV, E_T^{miss} trigger is used

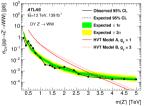

Postfit SR distribution









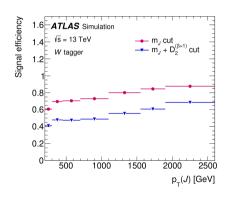

Results

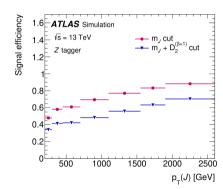
Observed limits

Production	RS radion		DCit				
process	K5 radion		W'	Z'	RS graviton		
ggF/DY	3.2 (2.9)	Model A	3.9 (3.8)	3.5 (3.4)	20.00		
		Model B	4.3 (4.0)	3.9 (3.7)	2.0 (2.2)		
VBF	-	Model C	-	-	0.76 (0.77)		

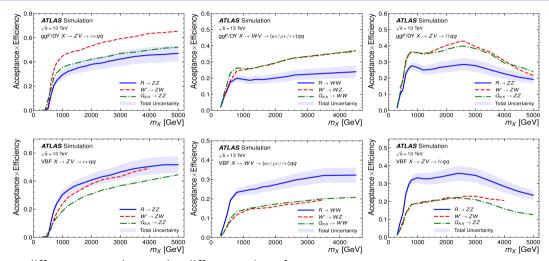
$m(G_{KK}) = 600 \text{ GeV}$	$m(G_{KK}) = 2 \text{ TeV}$						
Uncertainty source	$\Delta \mu / \mu$ [%]	Uncertainty source	$\Delta \mu / \mu$ [%]				
Total	50	Total	59				
Statistical	29	Statistical	48				
Systematic	41	Systematic	34				
Large-R jet	18	Large-R jet	24				
MC statistics	16	MC statistics	17				
Background normalisations	15	W/Z+jets modelling	15				
Diboson modelling	12	Flavour tagging	5.5				
W/Z+jets modelling	11	tī modelling	4.2				
Small-R jet	9.7	Diboson modelling	3.9				
tī modelling	8.1	Single-t modelling	3.3				

Large-R jet relevant systematics have the largest impact


Summary


- Full Run-2 analysis in VV semi-leptonic
- Several new ideas for signal sensitivity improvements
 - ► TCC V boson tagger
 - ML-based ggF/VBF categorization
- No significant excess observed
- Limits set on several benchmark models (Radion, G_{kk} , W' and Z')
- Results published in Eur. Phys. J. C (2020) 80:1165

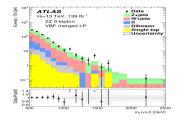
Thank you for your attention

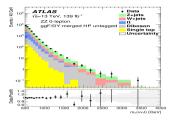

Backup

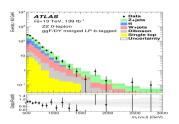
Boson tagger with TCCs

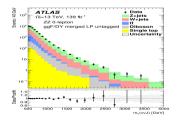
Acceptance × Efficiency

Large differences are due to the different spins of resonances

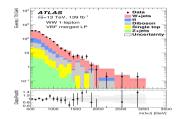

- Radion is produced with isotropic angular distributions
- HVT and RSG are produced more centrally (more forward) for ggF/DY (VBF) Yassine Fl Ghazali

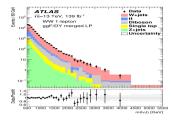


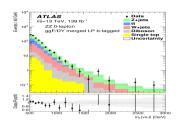

Expected background events

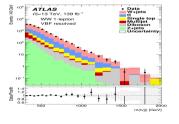

	$V \rightarrow qq$	Signal									Backgrou	nd estima	ites								
Channel	recon.	regions	W	W+jets				Z+jets					Diboson		S	Single-t			et .	Total	1
									VB	F cat	egory										
	Merged	HP	169	±	12	228	±	16	102	±	10	51		10	24	±	4	-		574 ±	
0-lepton (ZZ)		LP	370	±	23	411	±	20	75	±	8	30	±	4	21	±	4			906 ±	33
0-septon (ZZ)		ggF/DY category																			
		HP Tag	133	±	14	270	±	40	437	±	31	100	±	10	45	±	7			982 ±	
	Merged	Unta		±		14 300	±	600	6030	±	270	2300	±	180	840	±				31 100 ±	
	mergeo	LP Tag	259	±	28	560	±	50	342	±	24	67	±	7	43	±	7	-		1270 ±	
		Unta	g 16300	±	900	28 600	±	1100	5040	±	220	1760	±	150	600	±	80			52 400 ±	1500
									VB	F cat	egory										
	Merged	HP	530	±	28	8.	3 ±	0.5	321	±	22	141	±	27	113	±	21			1110 ±	50
		LP	1380	\pm	40	24.		1.1	228	±	17	150	±	33	83	*	16			1870 ±	
	Resolved		11 360	±	190	530	±	10	4060	±	130	590	±	80	1070	±	210	960 ±	110	18 570 ±	340
1-lepton (WW)									ggF/	DY c	ategory										
	Merged	HP	24 820	+	170	463	+	5	13.890	+	220	4910	+	250	2800	+	400			46 900 ±	500
		LP	60 270	±	240	1095	±	8	11 050	±	160	3950	±	210	1970	±	250			78 300 ±	400
	Resolved		443 500	±	1800	12 480	±	40	126 000	±	1500	16800	±	1200	21 200	±	2800	27 200 ± 1	1400	$647000 \pm$	4000
									VB	F cat	egory										
	HP			0		87	±	6	0.0	81 ±	0.009	9,0	5±	1.2		0				97 ±	- 6
	Merged	LP	0.133	±	0.011	170	±	8	0.8	5 ±	0.07	9.9	9 ±	1.2	0.	43 ±	0.07			181 ±	8
	Resolved		0.272	±	0.012	1566	±	29	17.0	±	0.7	72	±	10	0.	48 ±	0.32			1656 ±	31
									ggF/l)Y c	itegory										
2-lepton (ZZ)		Tag	0.013	5 ±	0.0043	85	±	6	0.2	33 ±	0.035	21.1	1 ±	2.3	0.	34 ±	0.05			107 ±	7
	Merged	HP Unta	2 0.772	±	0.010	3300	±	40	4.2	t ±	0.08	361	±	32	0.	58 ±	0.11			3670 ±	50
	Merged	LP Tag	0.013	5 ±	0.0043	138	±	8	0.3	13 ±	0.034	12.8	8 ±	1.4		30 ±	0.04			152 ±	
		Unta	2.341	±	0.017	5920	±	50	10.1	ź ±	0.16	278	±	26		03 ±	0.29			6220 ±	
	Resolved	Tag				1323	±	26	110	±	10	159	±	12		7 ±	0.8			1600 ±	
		Untag	4.681	±	0.026	42 750	±	160	110.6	±	1.5	1800	±	100	13.	4 ±	2.0	960 ± 110 1 1 2 27 200 ± 1400 64 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	44 650 ±	190	

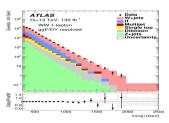
0 lepton channel

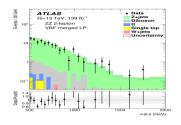


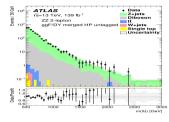


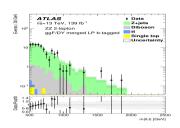


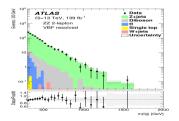


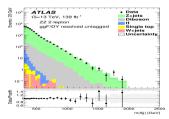

1 lepton channel

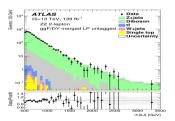


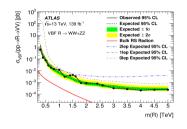


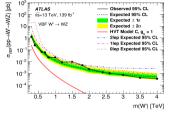




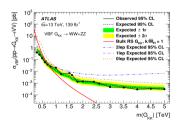

2 lepton channel











More limit plots

