Measuring the polarization of boosted hadronic *W* bosons with jet substructure observables

presented by Songshaptak De

Based on arXiv:2008.04318v1 Vikram Rentala¹, William Shephered², and SD¹

¹Department of Physics, Indian Institute of Technology Bombay, India

> ²Physics Department, Sam Houston State University, USA

"BSM 2021"

Table of contents

- Objective of the Project
- 2 Motivation behind the project
- Measuring W Polarization
 - 4 Construction of the proxy variable
- 5 Calibration of the proxy variable
- 6 Applications to polarization measurement

Conclusion

 To measure the longitudinal and transverse polarization fractions of hadronic decays of boosted W bosons

Motivation

- In order to test unitarity in vector boson scattering (VBS), it will be ideal to measure the polarization fraction of both the outgoing weak bosons in a scattering process
- The branching fraction of W boson decaying to hadrons is approximately 68%. It would greatly increase our statistical grasp of the polarization fractions, if we were able to measure the polarization of hadronic W bosons

Parton level angular distributions

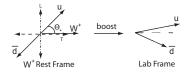
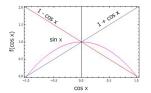



Figure: LEFT: The polar angle θ of the decay products of the W^+ as defined in W^+ rest-frame. RIGHT: Upon boosting to the lab-frame, the up and anti-down quarks can display an asymmetry in energy.

For transverse polarization of W-boson,

$$\mathcal{M}_{\pm} \propto \frac{1 \mp \cos \theta_*}{\sqrt{2}}$$
 (1)

For longitudinal polarization of W-boson,

$$\mathcal{M}_0 \propto \frac{-\sin\theta_*}{\sqrt{2}}$$
 (2)

Figure: Distribution of amplitude in terms of $\cos\theta_*$

Songshaptak De (IIT Bombay, India) Polarization probe of boosted hadronic W

Energy Difference

Potential observable in the lab frame at parton-level that can distinguish between longitudinal and transverse W^+ bosons,

$$\cos\theta_* = \frac{\Delta E}{p_w} \tag{3}$$

The distribution of the W^+ decay rate as a function of its decay polar angle,

$$\frac{1}{\sigma} \frac{\mathrm{d}\sigma}{\mathrm{d}|\mathrm{cos}\theta_*|} = \mathrm{f}_{\mathrm{T}} \frac{3}{4} (1 + |\mathrm{cos}\theta_*|^2) + \mathrm{f}_{\mathrm{L}} \frac{3}{2} (1 - |\mathrm{cos}\theta_*|^2) \tag{4}$$

where, the transverse polarization fraction f_T and the longitudinal polarization fraction f_L are related by, $f_T+f_L=1$

Construction of the proxy variable

Construction of proxy variable

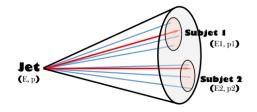


Figure: 2 subjets inside a jet (Courtesy: Nick Amin's presentation on Jet Substructure)

$$p_{\theta} = \frac{|\Delta E^{\text{reco}}|}{p_{W}^{\text{reco}}} \tag{5}$$

$\cos \theta_* \mid \text{distribution}$

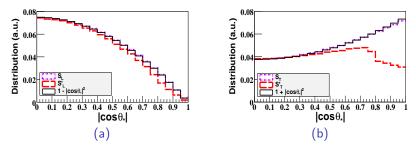


Figure: (a) Parton level truth information for the distributions of $|\cos \theta_*|$ for longitudinal W bosons in the untagged longitudinal W^+ sample, S_L and the tagged sample S'_L . Also shown is the theoretically expected $(1 - |\cos \theta_*|^2)$ distribution which agrees very well with the S_L distribution. (b) Same as the left panel, but with transverse W bosons. Here, the theoretically expected distribution is $(1 + |\cos \theta_*|^2)$.

Calibration of the proxy variable

Distribution of the proxy variable

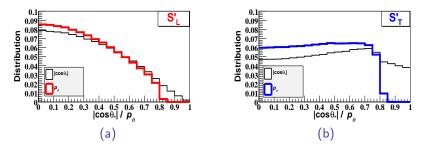


Figure: (a) Comparison of the distribution of p_{θ} with that of $|\cos \theta_*|$ for the S'_L event sample. (b) Same comparison for the S'_T sample.

The semi-leptonic VBS channel, $pp \rightarrow W^-W^+jj \rightarrow \ell^-\nu_\ell jjjj$, where the W^+ boson decays hadronically and the W decays leptonically

Basic selection cuts

- p_T of the lepton: $p_T^{\ell} > 25$ GeV
- 2) η of the lepton: $|\eta^{\ell}| < 2.5$
- p_T of the jets: $p_T^j > 30$ GeV

Associated jet cuts

- **9** Pseudo-rapidity gap between the associated forward jets: $|\Delta \eta_{ii}| > 4.0$
- 2 Invariant mass of the associated jets: $M_{jj} > 200 \text{ GeV}$
- **③** η of the forward jets: $2 < |\eta_j| < 4.7$
- **O Hadronic** W^+ tagging and selection cuts
 - Fat jet mass cut: 60 GeV $< M_i < 100$ GeV
 - 2 Mass-drop cut: $\mu^{\rm cut} < 0.25$, $y^{\rm cut} < 0.09$
 - **3** *N*-Subjettines Ratio: $\tau_2/\tau_1 < 0.3$
 - p_T of the tagged jet: $p'_T > 400 \text{ GeV}$

If the longitudinal polarization fraction in a sample is denoted as f_L before the tagging cuts are applied, then the polarization fraction *after* tagging cuts are applied (which we denote as f'_L) will be given by,

$$f_L' = \frac{\epsilon_L f_L}{\epsilon_L f_L + \epsilon_T (1 - f_L)}.$$
(6)

Here, ϵ_L and ϵ_T are the tagging efficiencies for longitudinal and transverse W bosons respectively.

Using this procedure, we find the expected longitudinal polarization fraction after tagging cuts are applied as $f'_L = 0.15$

Monte-Carlo Truth Information

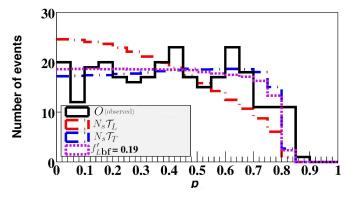


Figure: p_{θ} distribution for a benchmark sample of $N_s = 288$ VBS events, corresponding to $\sim 3 \text{ ab}^{-1}$ of luminosity, and after all selection and tagging cuts are applied (black curve). The best-fit linear combination of templates with longitudinal W fraction $f'_{Lbf} = 0.19$ is shown with the magenta dotted curve. Also shown are the longitudinal and transverse templates (T_L and T_T) rescaled to N_s events.

The χ^2 test-statistic with one parameter f'_L is given by,

$$\chi^{2}(f_{L}') = \sum_{i=1}^{B} \frac{\left(O_{i} - N_{s}(f_{L}'\mathcal{T}_{Li} + (1 - f_{L}')\mathcal{T}_{Ti})\right)^{2}}{\sigma_{i}^{2}}$$
(7)

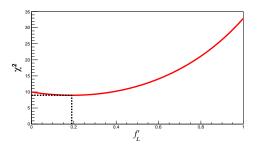


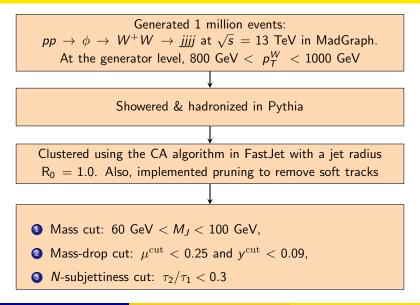
Figure: χ^2 distribution as a function of the longitudinal polarization fraction f'_L for fits to the pseudo-experiment data. We obtain a best-fit value of $f'_{Lbf} = 0.19$ with a 1- σ range between [0.00, 0.38]. The fit is quite good at the minimum with a χ^2 per degree of freedom of 0.6. Values of $f'_l > 0.88$ can be ruled out at the 95% confidence level.

Conclusion

- At the parton level, the distribution of the decay polar angle $|\cos \theta_*|$ allows us to extract the longitudinal vs transverse polarization fraction
- **2** We found our hadron level proxy variable p_{θ} to track the $|\cos \theta_*|$ extremely well
- **③** For semi-leptonic *WW* scattering, we showed that with 3 ab⁻¹ of integrated luminosity at the HL-LHC, we potentially reconstruct the observed longitudinal polarization fraction to within a ± 0.15 uncertainty at the 1- σ level

Backup slides

N-Subjettiness Definition


The N -subjettiness technique can be used to identify the number of hard centres of energy within a fat-jet. For each N candidate subjets, we construct the following variable,

$$\tau_N = \min_{\hat{n}_1, \hat{n}_2, \dots, \hat{n}_N} \tilde{\tau}_N, \text{ where,}$$

$$\tilde{\tau}_{N} = \frac{1}{d_{0}} \sum_{k} p_{T,k} \min\{(\Delta R_{1,k}), (\Delta R_{2,k}), ..., (\Delta R_{N,k})\}$$
(8)

- *τ_N* ≈ 0 ⇒ there are N or fewer subjets & *τ_N* ≫ 0 ⇒ there are at least N+1 subjets
- **②** The ratio τ_2/τ_1 is preffered as a dicriminating variable to discrimnate between W boson and the QCD background

Construction of templates

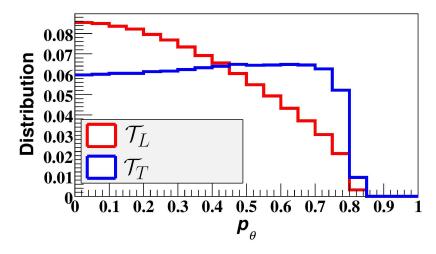


Figure: We now define universal templates T_L and T_T for the proxy variable distributions, as shown in the figure. These templates can be used to extract W boson polarization in a mixed sample.