Phase transitions in the early universe
The Highs potential of the SM is given by $\quad U(H)=-\mu^{2}|N|^{2}+\lambda|H|^{4}$
At tree level the minimum $\langle H\rangle=\binom{0}{\frac{0}{12}}$ is given by

$$
v^{2}=\frac{\mu^{2}}{\lambda} \quad\left(i f \mu^{2}>0\right) .
$$

In QFT the potential receives radiative corrections. To incorporate them one introduces the effective potential $V_{\text {eff }}\left(\varphi_{a l}\right)$, where φ_{d} is the classical background field. The minimum is then found by imposing

$$
\frac{\partial U_{e f f}}{\partial \phi_{d}}=0 .
$$

Methods for computing the one beep corrected eff. potential can be found e.g. in Pesluin.

Tor the SM, the renormalized 1 -loop result is

Literature: \cdot M. Quires: Finite T field theory and PT's (hep-ph/9901312)
-Caine, Uuorinen: 1701.01554

- Books by Kapusta, Le Bella
- Alevin: 2008.09136 Hindmarsh et al

This is the vacuum case. The early universe is a messy place however, a hot plasma with all SM particles in thermal equilibrium. This inoluces additional, finite temperature contributions to Uss.

Intuitive picture: A particle moving through the plasma is constantly hit and scattered. This makes it more difficult to accelerate it \leftrightarrow the partide gets an additional thermal mass.

Che contributions to $V_{\text {eff }}$ separate into a $T=0$ and a finite temperature part. One finds:

$$
\begin{array}{r}
\Delta U^{(1, \operatorname{leap})}\left(\varphi_{d}, T\right)=\frac{T^{4}}{2 \pi^{2}}\left[\sum_{i=\omega_{1} z^{2}} n_{i} J_{B}\left(\frac{m_{1}^{2}\left(\varphi_{d}\right)}{T^{2}}\right)+n_{t} J_{F}\left(\frac{m_{t}^{2}\left(\varphi_{a}\right)}{T^{2}}\right)\right] \\
\\
\rightarrow-\frac{\pi^{4}}{4 S}+\frac{\pi^{2}}{12} \frac{m^{2}}{T^{2}}+\ldots
\end{array} \begin{aligned}
& \frac{7 \pi^{4}}{360}-\frac{\pi^{2}}{24} \frac{m^{2}}{T^{2}}+\cdots
\end{aligned}
$$

Finally the total eff-potential at finite T can be written as

$$
\begin{aligned}
& V\left(\varphi_{c l}, T\right)=D\left(T^{2}-T_{0}^{2}\right) \varphi_{c l}^{2}-E T \varphi_{c}^{3}+\frac{\lambda(T)}{4} \varphi_{c l}^{4} \\
& D=\frac{1}{8 v^{2}}\left(2 m_{w}^{2}+m_{t}^{2}+2 m_{t}^{2}\right) \\
& E=\frac{1}{4 \pi v^{3}}\left(2 m_{\omega}^{3}+m_{t}^{3}\right) \quad\left[n_{0}\right. \text { fermion contribution] } \\
& T_{0}^{2}=\frac{m_{h}^{2}-8 B v^{2}}{4 D} \quad B=\frac{3}{64 \pi^{2} u^{4}}\left(2 m_{\omega}^{4}+m_{t}^{4}-4 m_{t}^{4}\right)
\end{aligned}
$$

The important point here is that at $T>T_{0}$, the global minimum of $U_{\text {eff }}(T)$ is at $\varphi_{c l}=0$, ie. the electroweak symmetry is restored.

In cosmology, the universe after the bis bang (and inflation) reheats to high temperaentures $\left(T \gg T_{0}\right)$ so that EW symmetry is unbroken initially. The universe undergoes a transition from $\varphi_{d}=0$ to $\varphi_{d l} \sim U$ around $T_{0} \sim 10^{2} G C D$
[also QCDPT near GeV sale]
Consider $U(\phi, T)=D\left(T^{2}-T_{0}^{2}\right) \phi^{2}+\frac{\lambda(T)}{4} \phi^{4}$.
stationary points : $\frac{d U}{d \phi}=0$

$$
\begin{aligned}
& \phi_{1}(T)=0 \\
& \phi_{2}(T)=\sqrt{\frac{2 D\left(T_{0}^{2}-T^{2}\right)}{\lambda(T)}} \quad\left(T<T_{0}\right)
\end{aligned}
$$

At $T>\Phi_{0}, \phi=0$ is the only solution
At $T=T_{0}$, both solutions are at $\phi=0$. For $T<T_{0}, \phi_{2}$ is the global minimum and ϕ_{1} becomes a local maximum. There is no barrier between the minima, the field can adiabatically follow the vacumen state.
crossover.
For move complex potentials, a barriemight exist. Egg.

$$
U(\phi, T)=D\left(T^{2}-T_{0}^{2}\right) \phi^{2}-\epsilon T \phi^{3}+\frac{\lambda(T)}{4} \phi^{4}
$$

$T>T_{1}: \phi=0$ is min.
At T_{1} : Second min. appears
At T_{c} : Both minima have equal value
$T<T_{c}: \phi=0$ becomes meta- Stable
$T<T_{0}$ barrie- goes away, $\phi=0$ is max.

The PT can start at $T=T_{c}$. If the tunneling probability is small, $T \subset T_{C}$. Alsomedels with tree level barriers exist $\Rightarrow T_{0}=0$.

Thermal tunneling-
Bubble formation
Tunneling rate: $\quad \frac{T}{V} \sim A(T) e^{-S_{3} / T}$

$$
S_{3}=\int d^{3} x\left(\frac{1}{2}(\nabla \phi)^{2}+U(\phi, T)\right)
$$

with ϕ - being the bounce solution

path from $\phi=0$ to ϕ^{*} that miumises action.
Explain bubble expansion
\rightarrow energy gain us. surface tension
Compete with expansion of universe $\rightarrow \frac{S_{3}}{T} \sim 140$
Motivations:

1. First order $P T=$ deviation from th. eq \Rightarrow Baryogenesis
2. GWs in range of planned expts.
