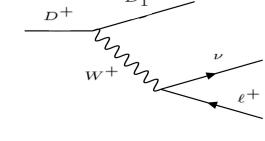
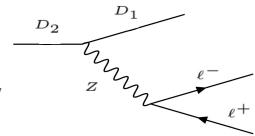
Exploring Multilepton Signatures From Dark Matter Southampton at the LHC

Arran Freegard

Supervisors: A. Belyaev, U. Blumenschein & S. Moretti

XI NExT PhD Workshop 30/06/21

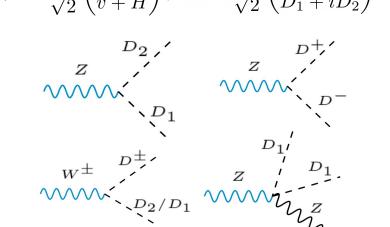


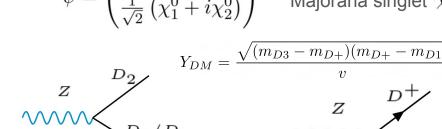


Outline

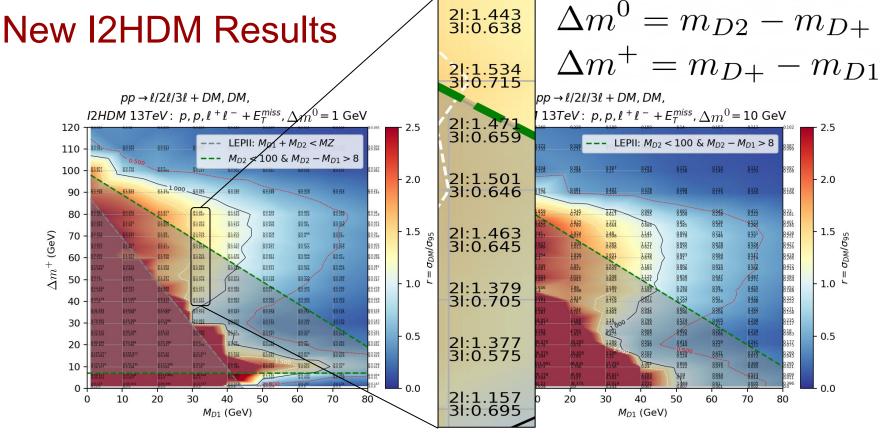
- Beyond mono-X searches →multilepton+missing ET
- Cover the full (3D) parameter space relevant to LHC for two representative minimal consistent DM models: MFDM (spin 1/2) and i2HDM (spin 0)
- New parameterization to visualise the viable parameter space and related no-loose theorem
- New important and complementary LHC sensitivity from 3-lepton signature
- LHC limits and efficiencies for 2- and 3-lepton signatures for reinterpretation by the community

Inert 2 Higgs Doublet Model (I2HDM)

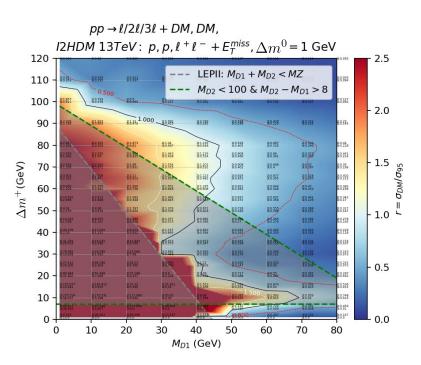

Minimal Fermion Dark Matter (MFDM)


$$\mathcal{L}_{\phi} = |D_{\mu}\phi_1|^2 + |D_{\mu}\phi_2|^2 - V(\phi_1, \phi_2)$$

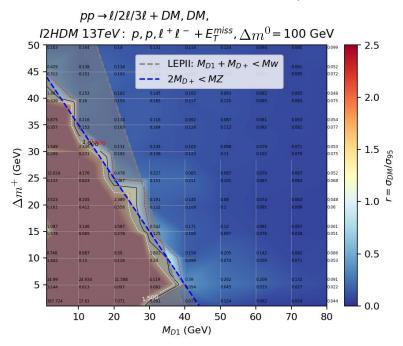
 $\mathcal{L}_{FDM} = \mathcal{L}_{SM} + \bar{\psi}(i\not D - m_{\psi})\psi + \frac{1}{2}\bar{\chi}_{s}^{0}(i\not \partial - m_{s})\chi_{s}^{0} - (Y_{b}(\bar{\psi}\Phi\chi_{s}^{0}) + h.c.)$


$$\phi_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v + H \end{pmatrix}, \ \phi_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} \sqrt{2}D^+ \\ D_1 + iD_2 \end{pmatrix}$$

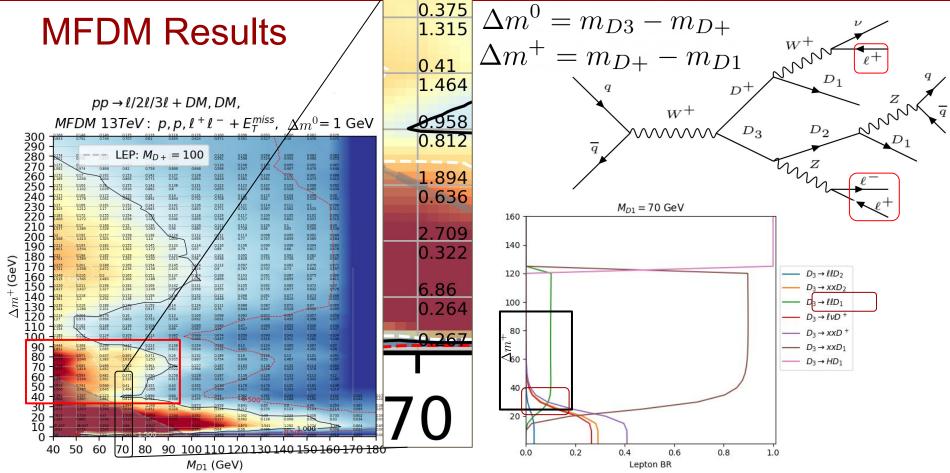
$$\psi = \begin{pmatrix} \chi^+ \\ \frac{1}{\sqrt{2}} \left(\chi_1^0 + i\chi_2^0\right) \end{pmatrix} \qquad \text{Majorana singlet } \chi_s^0$$

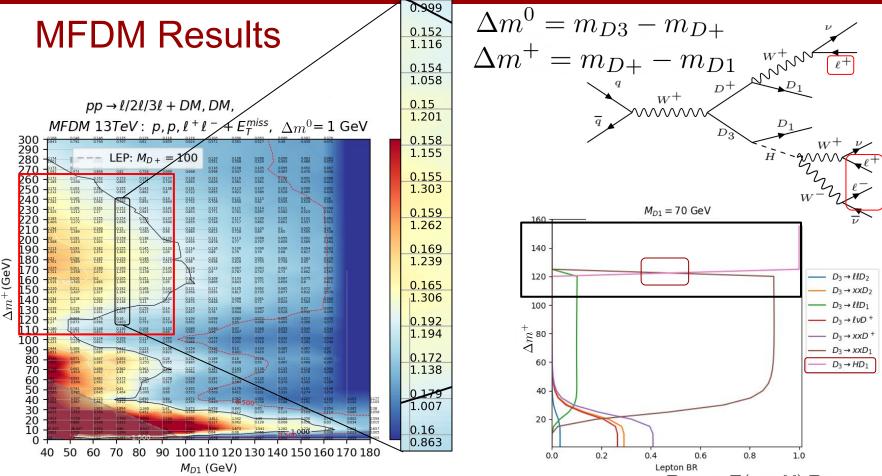


 $[m_{D1}, m_{D+}, m_{D2}, \lambda_2, \lambda_{345}] \longrightarrow [m_{D1}, \Delta m^+, \Delta m^0] \left[[m_{D1}, m_{D2} = m_{D+}, m_{D3}] \longrightarrow [m_{D1}, \Delta m^+, \Delta m^0] \right]$

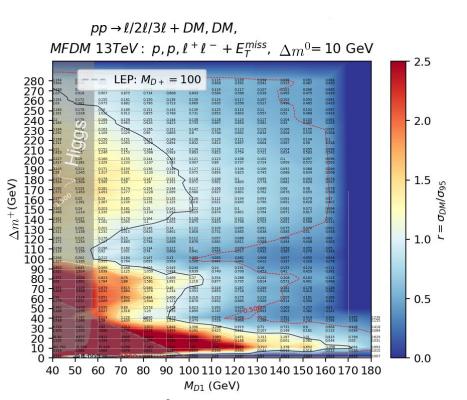


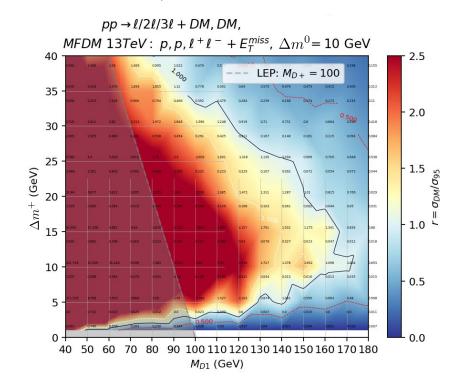
- ullet Δm^0 = 1 GeV: Small wedge above $m_{D1} > 50\,{
 m GeV}$ and below $\Delta m^+ < 8\,{
 m GeV}$ still allowed by LEP
- ullet Δm^+ is a better variable, results not dependent on m_{D2} , only require plane of 2 variables
- Important contributions from 3-lepton (up to 70%) which could be combined with 2-lepton


New I2HDM Results


$$\Delta m^0 = m_{D2} - m_{D+}$$
$$\Delta m^+ = m_{D+} - m_{D1}$$

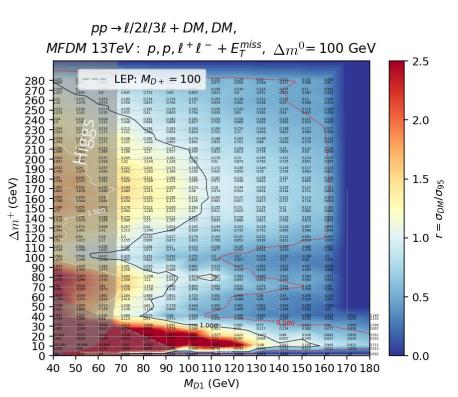
• Increasing Δm^0 to 100 GeV means the Z veto $m_{\ell\ell}$ > 100 GeV requirement can no longer be fulfilled as production cross-section of the heavier states has fallen


• Similar shapes to I2HDM, but 3-lepton channel sensitivity begins to dominate due to crossing between $D_3 \to \ell \nu D_1$ $D_3 \to Z(\to \ell \ell) D_1$ $D_3 \to Z(\to \ell \ell) D_1$ $D_3 \to Z(\to \ell \ell) D_1$

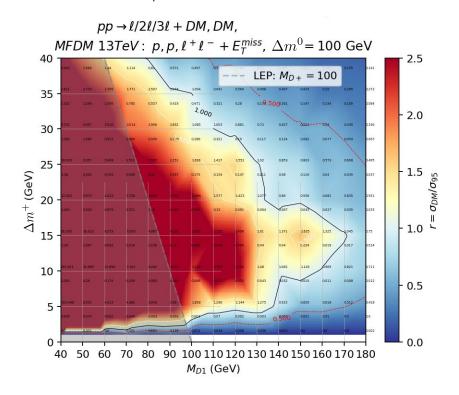

0.155

Second shape due to 3-lepton channel sensitivity due to Higgs decay $D_3 \to Z(\to \ell\ell)D_1$ to $D_3 \to H(\to W^+W^-)D_1$ with production of $D^\pm(\to \ell\nu D_1)D_3$, at $\Delta m^+=125 \, {\rm GeV}$

MFDM Results



$$\Delta m^0 = m_{D3} - m_{D+} \Delta m^+ = m_{D+} - m_{D1}$$



As Δm^0 increases, coupling between D_1-D^\pm increases, while heavy D_3 leads to suppressed production cross-section - 'no-lose' theorem

MFDM Results

$$\Delta m^0 = m_{D3} - m_{D+} \Delta m^+ = m_{D+} - m_{D1}$$

With increasing $\,\Delta m^0$, Higgs to invisible limit covers larger $\,m_{D1}$ upto $\,m_{D1}$ = $m_H/2$

Conclusions

- 1. New sensitivity results for MCDM models at the LHC
- 2. Better parameterization in terms of DM couplings to visualise the viable parameter space and no-loose theorem
- 3. Show important role from 3-lepton final states, with leading role in MFDM (~SUSY Higgsino) via Higgs decays $D_3 \to H(\to W^+W^-)D_1$
- 4. Provide limits and efficiencies for re-interpretation of any scalar of fermion DM model by the community

Backup

I2HDM

	Sample A	Sample B	Sample C
No# Events:	50,000	150,000	100,000
Production:	$pp \to D^+D^-$ $pp \to D_2D_1$	$pp \to D^{\pm}D_2$	$pp \to ZD_1D_1$
Decays:	$D^{\pm} \to (W^{\pm} \to \ell^{\pm} \nu) D_1$ $D_2 \to (Z \to \ell^{+} \ell^{-}) D_1$	$D_2 \to (Z \to \ell^+ \ell^-) D_1$	$Z \to \ell^+ \ell^-$

• While the genuine 2-2 process $pp \to D_2D_1$ is separate to 3-body decay $pp \to ZD_1D_1$, width of D_2 is small, so expected interference between these diagrams is small

MFDM

	Sample A	Sample B	Sample C
No# Events:	50,000	150,000	100,000
Production:	$pp \to D^+D^-$ $pp \to D_2D_1$	$pp \to D_2 D_3$	$ pp \to D^{\pm}D_2 $ $pp \to D^{\pm}D_3 $
Decays:	$D^{\pm} \to (W^{\pm} \to \ell^{\pm} \nu) D_1$ $D_2 \to (Z \to \ell^{+} \ell^{-}) D_1$	Any	$D_2 \to (Z \to \ell^+ \ell^-) D_1$ $D_3 \to (W^{\pm} \to \ell^{\pm} \nu) D^{\pm}$ $D_3 \to (Z \to \ell^+ \ell^-) D_2$

Mass parameter points

_	_	>													
,	m_{D1}	Δm^+	Δm^0	$2\ell \ \sigma_A^{95} \ (\text{fb})$	$\frac{100}{\sqrt{N_{MC}}}$	$2\ell \ \sigma_B^{95} \ (\text{fb})$	$\frac{100}{\sqrt{N_{MC}}}$	$2\ell \ \sigma_C^{95} \ (\text{fb})$	$\frac{100}{\sqrt{N_{MC}}}$	$3\ell \ \sigma_A^{95} \ (\text{fb})$	$\frac{100}{\sqrt{N_{MC}}}$	$3\ell \ \sigma_B^{95} \ (\text{fb})$	$\frac{100}{\sqrt{N_{MC}}}$	$3\ell \ \sigma_C^{95} \ (\text{fb})$	$\left \frac{100}{\sqrt{N_{MC}}} \right $
	1	5	1	3.26×10^{3}	71	-	100	6.51×10^4	71	- :	-	1.21×10^{3}	24	-	-
	1	10	1	97.0	41	-	100	-	-	-	-	1.21×10^{3}	24	-	100
	1	20	1	1.47×10^{3}	58	6.63×10^{3}	71	-	100	-		933	21	-	-::
	1	40	1	$1.02{ imes}10^{5}$	35	8.17×10^{4}	58	8.17×10^{4}	71	-		1.2×10^{3}	8	-	-
	1	60	1	$8.84{ imes}10^{3}$	45	5.3×10^{3}	20	2.94×10^{4}	58	-	-	220	6	-	100
	1	80	1	783	11	326	4	1.15×10^{3}	9	-	-	93.0	6	-	
	10	5	1	698	58	3.14×10^{3}	71	-	100	-	-	=	-	-	
	10	10	1	161	38	674	45	-	m	-	-	=	-	-	
	10	20	1	287	45	=	100	1.43×10^4	71	-	-	1.87×10^{3}	30	=	100
	10	40	1	1.40×10^{4}	50	1.29×10^{4}	28	2.23×10^{4}	45	-	-	531	5	6.82×10^4	71
	10	60	1	4.44×10^{3}	26	507	5	604	7	-	-	165	5	-	-
	10	80	1	150	5	248	4	630	7	2	_	80.0	5	_	_
	10	120	1	281	6	1.32×10^{3}	8	411	6	_	_	62.0	4	_	-
	20	5	1	97.0	41	877	71	-	-		_	_	-	-	- 1
	20	10	1	140	35	562	41	-	-	_	_	2	-	_	
	20	20	1	4.78×10^{3}	58	1.08×10^4	50	-	-	-	-	9.32×10^{3}	21	-	-
	20	40	1	6.31×10^{3}	38	6.02×10^{3}	21	1.76×10^4	45	-	-	366	7	-	-
	20	60	1	247	6	377	4	438	6	-	-	148	5	-	-
	20	80	1	91.0	4	230	3	534	6	-	-	62.0	5	-	- 3
	20	120	1	247	6	1.50×10^{3}	9	321	5	-	100	58.0	4	9.40×10^{3}	58

Cross-section limit (95% cl) for 2

lepton channel of sample A,B,C

m_{D1}	Δm^+	Δm^0	$2\ell \ \sigma_A^{95} \ (\text{fb})$	$\frac{100}{\sqrt{N_{MC}}}$	$2\ell \ \sigma_B^{95} \ (\text{fb})$	$\frac{100}{\sqrt{N_{MC}}}$	$2\ell \ \sigma_C^{95} \ (\text{fb})$	$\frac{100}{\sqrt{N_{MC}}}$	$3\ell \ \sigma_A^{95} \ (\text{fb})$	$\frac{100}{\sqrt{N_{MC}}}$	$3\ell \ \sigma_B^{95} \ (\text{fb})$	$\frac{100}{\sqrt{N_{MC}}}$	$3\ell \ \sigma_C^{95} \ (\text{fb})$	$\left \frac{100}{\sqrt{N_{MC}}} \right $
1	5	1	3.26×10^{3}	71	-	100	6.51×10^4	71	-	-	1.21×10^{3}	24	-	-
1	10	1	97.0	41	-	100	-	-1	- 1	-	1.21×10^{3}	24	-	100
1	20	1	1.47×10^{3}	58	6.63×10^{3}	71	-	100	- :	-	933	21	-	- 3
1	40	1	1.02×10^{5}	35	8.17×10^{4}	58	8.17×10^4	71	- 0	-	1.2×10^{3}	8	-	-
1	60	1	8.84×10^{3}	45	5.3×10^{3}	20	2.94×10^{4}	58	-	-	220	6	-	100
1	80	1	783	11	326	4	1.15×10^{3}	9	= 0	-	93.0	6	-	-
10	5	1	698	58	3.14×10^{3}	71	-	100	-	-	=	-	-	
10	10	1	161	38	674	45	-	-		-	-		-	
10	20	1	287	45	=	100	1.43×10^{4}	71		-	1.87×10^{3}	30	-	100
10	40	1	1.40×10^4	50	1.29×10^{4}	28	2.23×10^{4}	45	-	-	531	5	6.82×10^4	71
10	60	1	4.44×10^{3}	26	507	5	604	7	-	=	165	5	-	-
10	80	1	150	5	248	4	630	7	<u>~</u> /	_	80.0	5	_	_
10	120	1	281	6	1.32×10^{3}	8	411	6	27	_	62.0	4	=	_
20	5	1	97.0	41	877	71	-	_		-	_	-	-	-
20	10	1	140	35	562	41	-		<u>=</u> :	-	_		_	-
20	20	1	4.78×10^{3}	58	1.08×10^4	50	-	-		-	9.32×10^{3}	21	-	-
20	40	1	6.31×10^{3}	38	6.02×10^{3}	21	1.76×10^4	45		-	366	7	-	-
20	60	1	247	6	377	4	438	6	-	-	148	5	-	
20	80	1	91.0	4	230	3	534	6	-:	-	62.0	5	-	- 3
20	120	1	247	6	1.50×10^{3}	9	321	5	=:	100	58.0	4	9.40×10^{3}	58

Cross-section limit (95% cl) for 3 lepton channel of sample A,B,C

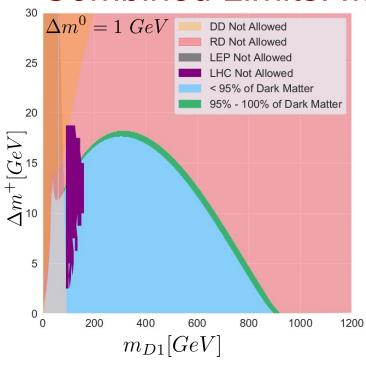
									1		\		→ \	
ei.	6 20	1 21	1 722		1 222		T 22	1 222)))
m_{D1}	Δm^+	Δm^0	$2\ell \ \sigma_A^{95} \ (\text{fb})$	$\frac{100}{\sqrt{N_{MC}}}$	$2\ell \ \sigma_B^{95} \ (\text{fb})$	$\frac{100}{\sqrt{N_{MC}}}$	$2\ell \ \sigma_C^{95} \ (\text{fb})$	$\frac{100}{\sqrt{N_{MC}}}$	$3\ell \ \sigma_A^{95} \ (fb)$	$\frac{100}{\sqrt{N_{MC}}}$	$3\ell \ \sigma_B^{95} \ (\text{fb})$	$\frac{100}{\sqrt{N_{MC}}}$	$3\ell \ \sigma_C^{95} \ (\text{fb})$	$\frac{100}{\sqrt{N_{MC}}}$
1	5	1	3.26×10^{3}	71	-	100	6.51×10^4	71		-	1.21×10^{3}	24	-	-
1	10	1	97.0	41	-	100	-	-	-	-	1.21×10^{3}	24	-	100
1	20	1	1.47×10^{3}	58	6.63×10^{3}	71	-	100	-	-	933	21	-	- :
1	40	1	$1.02{ imes}10^{5}$	35	8.17×10^{4}	58	8.17×10^4	71	-	-	$1.2{\times}10^3$	8	-	-
1	60	1	8.84×10^{3}	45	5.3×10^{3}	20	2.94×10^{4}	58	- 1		220	6	-	100
1	80	1	783	11	326	4	1.15×10^{3}	9	-	-	93.0	6	-	-
10	5	1	698	58	3.14×10^{3}	71	-	100	-	-	=		-	-
10	10	1	161	38	674	45	-	-		-	=	7.0	-	-
10	20	1	287	45	-	100	1.43×10^4	71	-	-	1.87×10^{3}	30	-	100
10	40	1	1.40×10^4	50	1.29×10^{4}	28	$2.23{ imes}10^4$	45	-	-	531	5	6.82×10^4	71
10	60	1	4.44×10^{3}	26	507	5	604	7	-	=	165	5	-	-
10	80	1	150	5	248	4	630	7	_	=	80.0	5	-	-
10	120	1	281	6	1.32×10^{3}	8	411	6	_	_	62.0	4	-	-
20	5	1	97.0	41	877	71	-	-	-	-	-	-	-	-
20	10	1	140	35	562	41	-	-	-	-	_	-	-	-
20	20	1	4.78×10^{3}	58	1.08×10^4	50	-	-	_	-	9.32×10^{3}	21	-	-2
20	40	1	6.31×10^{3}	38	6.02×10^{3}	21	1.76×10^{4}	45	-	-	366	7	-	-
20	60	1	247	6	377	4	438	6	-		148	5	-	
20	80	1	91.0	4	230	3	534	6	-	-	62.0	5	-	
20	120	1	247	6	1.50×10^{3}	9	321	5	-	100	58.0	4	9.40×10^{3}	58

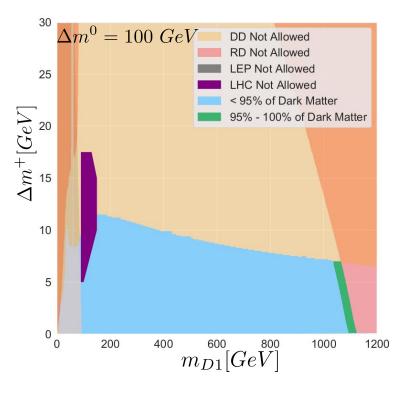
Gives a percentage uncertainty

Re-interpretation: Providing Cross-section Limits

√Number of Monte Carlo events survived

 $|m_{D1}| \Delta m^{+} |\Delta m^{0}| |2\ell |\sigma_{A}^{95}| (\text{fb}) |\frac{100}{\sqrt{N_{MC}}} |2\ell |\sigma_{B}^{95}| (\text{fb}) |\frac{100}{\sqrt{N_{MC}}} |2\ell |\sigma_{C}^{95}| (\text{fb}) |\frac{100}{\sqrt{N_{MC}}} |3\ell |\sigma_{A}^{95}| (\text{fb}) |\delta_{A}^{95}| (\text{fb}) |\delta_{A}^{95}| (\text{fb}) |\delta_{A}^{95}|$ $3\ell \ \sigma_C^{95} \ (\text{fb}) \ \frac{100}{\sqrt{N_{MC}}}$ $3\ell \ \sigma_B^{95} \ (\text{fb})$ 3.26×10^{3} 6.51×10^4 1.21×10^{3} 100 24 97.0 100 1.21×10^{3} 24 100 10 1.47×10^{3} 6.63×10^{3} 933 20 100 1.02×10^{5} 8.17×10^4 8.17×10^4 1.2×10^{3} 40 8.84×10^{3} 5.3×10^{3} 60 2.94×10^{4} 220 100 326 1.15×10^{3} 80 783 93.0 698 3.14×10^{3} 100 674 10 161 45 20 287 45 1.43×10^4 1.87×10^{3} 30 100 100 1.40×10^4 1.29×10^{4} 2.23×10^{4} 6.82×10^4 40 50 45 531 4.44×10^{3} 60 507 165 604 80 150 248 630 80.0 281 1.32×10^{3} 120 411 62.0 5 97.0 41 877 71 10 140 562 4.78×10^{3} 1.08×10^4 9.32×10^{3} 20 6.31×10^{3} 38 6.02×10^{3} 1.76×10^{4} 45 40 366 247 377 60 438 148 91.0 230 534 62.0 120 247 1.50×10^{3} 321 58.0 9.40×10^{3} 100


HEP Tools


- CalcHEP: Parton-level event production and decays: LHE file output
- CheckMATE (+ Pythia + Delphes): Decays, parton-showers, detector effects and analysis checks
- ullet 8 TeV: written new analysis for final states with 2ℓ and E_T^{miss}
- ullet 13 TeV: Check any available ATLAS and CMS analyses, lists 2ℓ and 3ℓ channels

$$\gamma = rac{\sigma_{DM} - \sigma_{95}}{\sigma_{95} - \sigma_{95}}$$
 Cross-section of DM events produced Cross-section required to exclude point at 95% confidence level

• Point excluded if $\, \varUpsilon \geq 1 \,$

Combined Limits: MFDM

- Under abundance of relic density in light blue region, is 'just right' in green line
- As Δm^+ increases, co-annihilation between the D,D+ is suppressed, due to the greater mass difference; so the relic density becomes too large (pink region)

Inert 2 Higgs Doublet Model (I2HDM)

$$\mathcal{L}_{\phi} = |D_{\mu}\phi_{1}|^{2} + |D_{\mu}\phi_{2}|^{2} - V(\phi_{1}, \phi_{2}) \qquad \phi_{1} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v + H \end{pmatrix}, \quad \phi_{2} = \frac{1}{\sqrt{2}} \begin{pmatrix} \sqrt{2}D^{+} \\ D_{1} + iD_{2} \end{pmatrix}$$

$$V = -m_{1}^{2}(\phi_{1}^{\dagger}\phi_{1}) - m_{2}^{2}(\phi_{2}^{\dagger}\phi_{2}) + \lambda_{1}(\phi_{1}^{\dagger}\phi_{1})^{2} + \lambda_{2}(\phi_{2}^{\dagger}\phi_{2})^{2} + \lambda_{3}(\phi_{1}^{\dagger}\phi_{1})(\phi_{2}^{\dagger}\phi_{2}) + \lambda_{4}(\phi_{2}^{\dagger}\phi_{1})(\phi_{1}^{\dagger}\phi_{2})$$

$$m_{H}^{2} = 2\lambda_{1}v^{2} = 2m_{1}^{2} \qquad m_{D+}^{2} = \frac{1}{2}\lambda_{3}v^{2} - m_{2}^{2} \qquad + \frac{\lambda_{5}}{2}[(\phi_{1}^{\dagger}\phi_{2})^{2} + (\phi_{2}^{\dagger}\phi_{1})^{2}]$$

$$m_{D1}^{2} = \frac{1}{2}(\lambda_{3} + \lambda_{4} - |\lambda_{5}|)v^{2} - m_{2}^{2} \qquad m_{D1}^{2}$$

$$m_{D2}^{2} = \frac{1}{2}(\lambda_{3} + \lambda_{4} + |\lambda_{5}|)v^{2} - m_{2}^{2} > m_{D1}^{2}$$

1. λ_2 is quartic inert doublet self-coupling **2.** $\lambda_{345} = \lambda_3 + \lambda_4 + \lambda_5$ is Higgs-DM coupling: HD_1D_1

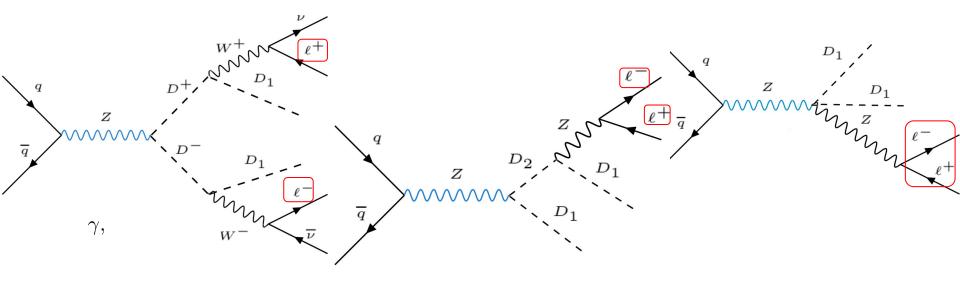
3. m_{D1} is DM mass 4. m_{D2} is second lightest, neutral Higgs mass 5. m_{D+} is charged Higgs mass

Relevant parameters for our study:
$$[m_{D1}, m_{D+}, m_{D2}, \lambda_2, \lambda_{345}] \longrightarrow [m_{D1}, m_{D+}, m_{D2}]$$

Parameterisations which are more physical for our analysis: $\Delta m^0 = m_{D2} - m_{D+}$ $[m_{D1}, \Delta m^+, \Delta m^0] \qquad \Delta m^+ = m_{D+} - m_{D1}$

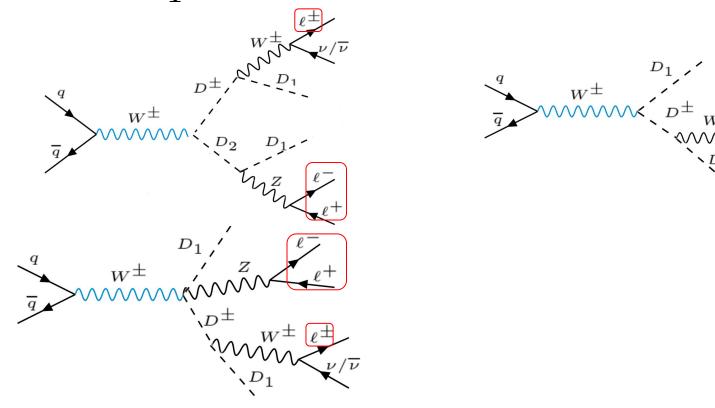
Minimal Fermion Dark Matter (MFDM)

$$\mathcal{L}_{FDM} = \mathcal{L}_{SM} + \bar{\psi}(i\not D - m_{\psi})\psi + \frac{1}{2}\bar{\chi}_{s}^{0}(i\partial - m_{s})\chi_{s}^{0} - (Y(\bar{\psi}\Phi\chi_{s}^{0}) + h.c.)$$


- Minimal model with an EW fermion DM doublet
- To provide provide the correct amount of relic density, suppress DM scattering through intermediate

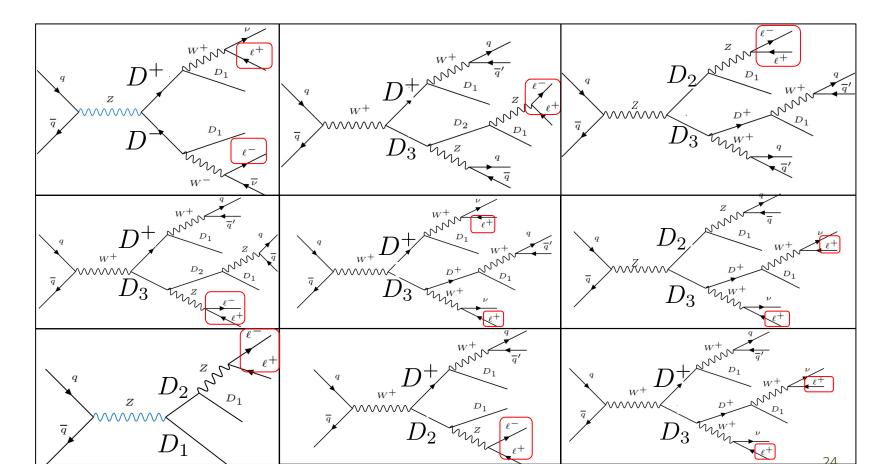
Z/Higgs boson:
$$\begin{array}{ccc} & & & \\ & \circ & \text{Majorana neutral D-odd particles } \chi_1^0 \text{, } \chi_2^0 & \psi = \begin{pmatrix} \chi^+ \\ \frac{1}{\sqrt{2}} \left(\chi_1^0 + i \chi_2^0\right) \end{pmatrix} \\ & \circ & \text{additional Majorana singlet fermion } \chi_s^0 \\ \end{array}$$

- χ_1^0 and χ_s^0 mix via Yukawa coupling, χ_2^0 and χ^+ are mass degenerate $Y_{DM} = \frac{\sqrt{(m_{D3} m_{D+})(m_{D+} m_{D1})}}{v}$
- 1. m_{D1} is DM mass 2. $m_{D+}=m_{D2}$ is chargino mass 3. m_{D3} is third lightest, neutralino mass

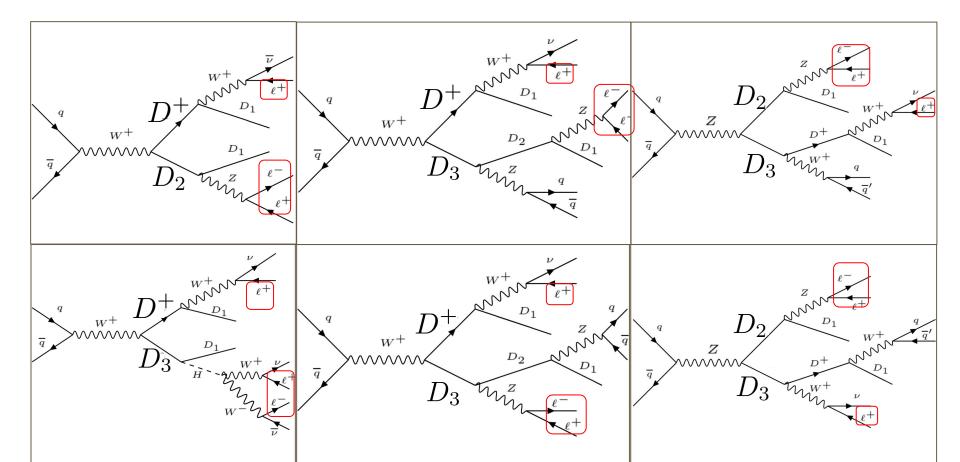

$$m_{D3}>m_{D+}=m_{D2}>m_{D1}$$
 Parameterisations which are more physical for our analysis:
$$\Delta m^0=m_{D3}-m_{D+}\ Y_{DM}=\frac{\sqrt{\Delta m^0\Delta m^+}}{v}$$

$$[m_{D1},\Delta m^+,\Delta m^0] \qquad \qquad \Delta m^+=m_{D+}-m_{D1}$$

2ℓ + E_T^{miss} I2HDM Final States


- DM decays via Z production
- Looking at Higgs funnel: $\lambda_{345} \sim 0$, and λ_2 not relevant

3ℓ + E_T^{miss} I2HDM Final States



DM decays via W production, x2 for the +/- processes

2ℓ + E_T^{miss} MFDM Final States

3ℓ + E_T^{miss} MFDM Final States

8 TeV Analysis Cuts

https://checkmate.hepforge.org/AnalysesList/ATLAS 8TeV.html

8 TeV ATLAS SUSY analysis <u>arXiv:1403.5294</u> cutflows for dilepton+MET finals states, implemented in CheckMATE: https://checkmate.hepforge.org/validationNotes/atlas-1403-5294.pdf

Global Cut	
E_T^{miss}	> 0 GeV
Base leptons	2
e + e - trigger	97%
$\mu^+\mu^-$ trigger	89%
$e\mu$ trigger	75%
Signal leptons	2
Leading lepton p_T	> 35 GeV
sub-leading lepton p_T	> 20 GeV
$M_{\ell\ell}$	> 20 GeV
jets	0
$ M_{\ell\ell} - M_Z $	> 10 GeV

SR	m_{T2}^{90}	m_{T2}^{120}	m_{T2}^{150}	WWa	WWb	WWc	Zjets
$M_{\ell\ell}$				< 120	< 170		
$p_T(\ell\ell)$				> 80			> 80
$E_T^{miss,rel}$				> 80			> 80
m_{T2}	> 90	> 120	> 150		> 90	> 100	
					oest	fo	r
				the	ese	resi	ılts

8 TeV Analysis Cuts

as 1403 5294.pdf

https://checkmate.hepforge.org/AnalysesList/ATLAS 8TeV.html

8 TeV ATLAS SUSY analysis <u>arXiv:1403.5294</u> cutflows for dilepton+MET finals states, implemented in CheckMATE: https://checkmate.hepforge.org/validationNotes/atl

E_T^{miss}	> 0 GeV
Base leptons	2
e + e - trigger	97%
$\mu^+\mu^-$ trigger	89%
$e\mu$ trigger	75%
Signal leptons	2
Leading lepton p_T	> 35 GeV
sub-leading lepton p_T	> 20 GeV
$M_{\ell\ell}$	> 20 GeV
jets	0
$ M_{\ell\ell} - M_Z $	> 10 GeV

SR	m_{T2}^{90}	m_{T2}^{120}	m_{T2}^{150}	WWa	WWb	WWc	Zjets
$M_{\ell\ell}$				< 120	< 170		
$p_T(\ell\ell)$				> 80			> 80
$E_T^{miss,rel}$				> 80			> 80
m_{T2}	> 90	> 120	> 150		> 90	> 100	
				I	best	i fo	r
				the	ese	resi	ults

 8 TeV ATLAS Z+Higgs->invisible analysis <u>arXiv:1402.3244</u> cutflows for dilepton+MET finals states, implemented in CheckMATE:

https://checkmate.hepforge.org/validationNotes/atlas_higg_2013_03.pdf

 $\begin{array}{|c|c|c|} \hline \text{Base leptons} & 2 \\ \hline \text{Lepton } p_T & > 20 \text{ GeV} \\ \hline \text{Z-window} & 76 < M_{\ell\ell} < 106 \text{ GeV} \\ \hline E_T^{miss} & > 90 \text{ GeV} \\ \hline d\phi(E_T^{miss}, p_T^{miss}) & < 0.2 \\ \hline \Delta\phi(p_T(\ell\ell), E_T^{miss}) & > 2.6 \\ \hline \Delta\phi(\ell, \ell) & < 1.7 \\ \hline |\frac{E_T^{miss} - p_T(\ell\ell)}{p_T(\ell\ell)}| & > 0.2 \\ \hline \text{jets} & 0 \\ \hline \end{array}$

Global Cut

Validated against MadAnalysis (Belanger et.al paper <u>arXiv:1503.07367</u>)

CheckMATE 8 TeV Sample Validation Tables

https://checkmate.hepforge.org/AnalysesList/ATLAS 8TeV.html

Cut	Acc	Weighted	Change	MadAnalysis	Change	Official	Change
01 Initial	1	3375.0		3375			
02 2 OS leptons	0.16405	553.7	84%	545.8	84%		
$03 \ m\ell\ell > 20 \ {\rm GeV}$	0.16119	544.0	2%	537.8	1%		
04 tau veto	0.16100	544.0	0%	537.8	0%		
05 ee leptons	0.03680	124.2	77%	132.4	75%	139.6	
06 ee jet veto	0.02018	68.1	45%	79.2	40%	65.7	53%
07 ee Z veto	0.01690	57.0	16%	67.3	15%	55.5	16%
08 ee WWb mT2;,90 GeV	0.00136	4.6	92%	5.3	92%	4.5	92%
09 ee WWb $m\ell\ell < 170~{\rm GeV}$	0.00115	3.9	15%	4.3	19%	3.9	13%

Table 4: $\chi + \chi - (140/20)$, Wwbee

Cut	Acc	Weighted	Change	MadAnalysis	Change	Official	Change
01 Initial	1	3375.0		3375			
02 2 OS leptons	0.16405	553.7	84%	545.8	84%		
$03 \ m\ell\ell > 20 \ {\rm GeV}$	0.16119	544.0	2%	537.8	1%		
04 tau veto	0.16100	544.0	0%	537.8	0%		
05 emu leptons	0.07158	241.6	56%	239.9	55%	253.8	
06 emu jet veto	0.03899	131.6	46%	142.6	41%	118.6	53%
08 emu WWb mT2; 90 GeV	0.00273	9.2	93%	10.5	93%	8	93%
09 emu WWb $m\ell\ell < 170 \text{ GeV}$	0.00245	8.3	10%	9.3	11%	7.2	10%

Table 5: $\chi + \chi - (140/20)$, Wwbemu

Cut	Acc	Weighted	Change	MadAnalysis	Change	Official	Change
01 Initial	1	3375.0		3375			
02 2 OS leptons	0.16405	553.7	84%	545.8	84%		
$03 \ m\ell\ell > 20 \ {\rm GeV}$	0.16119	544.0	2%	537.8	1%		
04 tau veto	0.16100	544.0	0%	537.8	0%		
05 mumu leptons	0.05281	178.2	67%	165.5	69%	168.7	
06 mumu jet veto	0.02877	97.1	46%	100.7	39%	78.2	54%
07 mumu Z veto	0.02408	81.3	16%	84.2	16%	65.5	16%
08 mumu WWb mT2; 90 GeV	0.00182	6.2	92%	6.8	92%	5.2	92%
09 mumu WW b $m\ell\ell < 170~{\rm GeV}$	0.00169	5.7	7%	6.2	9%	4.5	13%

Table 6: $\chi + \chi - (140/20)$, Wwbmumu

CheckMATE 8 TeV Sample Validation Tables

https://checkmate.hepforge.org/AnalysesList/ATLAS_8TeV.html

Cut	Acc	Weighted	Change	MadAnalysis	Change	Official	Change
01 Initial	1	835.5		835.5			
02 2 OS leptons	0.19479	162.7	81%	155.4	81%		
$03 \ m\ell\ell > 20 \ {\rm GeV}$	0.19232	160.7	1%	153.3	1%		
04 tau veto	0.19232	160.7	0%	153.3	0%		
05 ee leptons	0.04540	38.0	76%	39	75%	40.9	
06 ee jet veto	0.02291	19.1	50%	22.8	42%	17.5	57%
07 ee Z veto	0.02005	16.8	12%	19.9	13%	15.5	11%
08 ee WWc mT2;100 GeV	0.00302	2.5	85%	3.1	84%	2.4	85%

Table 7: $\chi + \chi - (200/0)$, Wwcee

Cut	Acc	Weighted	Change	MadAnalysis	Change	Official	Change
01 Initial	1	835.5		835.5			
02 2 OS leptons	0.19479	162.7	81%	155.4	81%		
$03 \ m\ell\ell > 20$	0.19232	160.7	1%	153.3	1%		
04 tau veto	0.19232	160.7	0%	153.3	0%		
05 emu leptons	0.08430	70.4	56%	67.6	56%	71.1	
06 emu jet veto	0.04308	36.0	49%	39.9	41%	30.8	57%
$08 \ \mathrm{emu} \ \mathrm{WWc} \ \mathrm{mT2;} 100 \ \mathrm{GeV}$	0.00612	5.1	86%	6.7	83%	4.6	85%

Table 8: $\chi + \chi - (200/0)$, Wwcemu

Cut	Acc	Weighted	Change	MadAnalysis	Change	Official	Change
01 Initial	1	835.5		835.5			
02 2 OS leptons	0.19479	162.7	81%	155.4	81%		
$03 \ m\ell\ell > 20 \ {\rm GeV}$	0.19232	160.7	1%	153.3	1%		
04 tau veto	0.19232	160.7	0%	153.3	0%		
05 mumu leptons	0.06259	52.3	67%	46.7	70%	46.3	
06 mumu jet veto	0.03230	27.0	48%	26.9	42%	20.7	55%
07 mumu Z veto	0.02764	23.1	14%	23.4	13%	18	13%
08 mumu WWc mT2;100 GeV	0.00416	3.5	85%	3.7	84%	2.8	84%

Table 9: $\chi + \chi - (200/0)$, Wwcmumu

CheckMATE 8 TeV Sample Validation Tables

https://checkmate.hepforge.org/AnalysesList/ATLAS 8TeV.html

Cut	Acc	Weighted	Change	MadAnalysis	Change	Official	Change
01 Initial	1.00	838.9		838.9			
02 OS leptons	0.40	336.1	60%	256.2	69%		
03 Zwindow	0.38	317.7	5%	244.1	5%	243	
04 MET > 90	0.15	122.8	61%	105.1	57%	103	58%
05 dilepton-MET separation	0.12	104.3	15%	91.7	13%		
06 lepton-lepton separation	0.10	86.4	17%	82.9	10%		
07 pTmiss-MET separation	0.10	81.5	6%	76.5	8%		
08 pTll-MET similarity	0.07	60.4	26%	63.2	17%		
09 jetveto	0.06	51.1	15%	54.8	13%	$44 \pm 1 \pm 3$	

Table 1: Cutflow table for benchmark point of the process $HZ\to\nu\nu\nu\nu\ell\ell$, for $M_H=125.5~{\rm GeV}$

I2HDM Validations

70 -

60 -

(GeV)

30 -

20 -

10 -

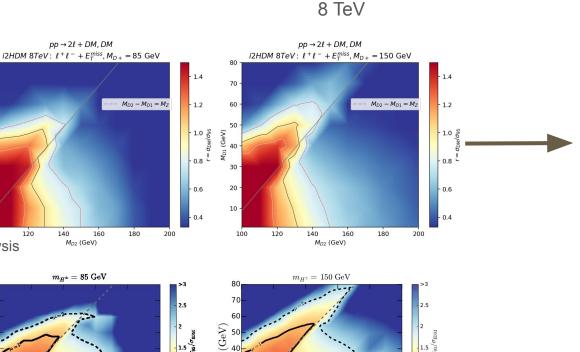
Our analysis

70

60

20

120


140

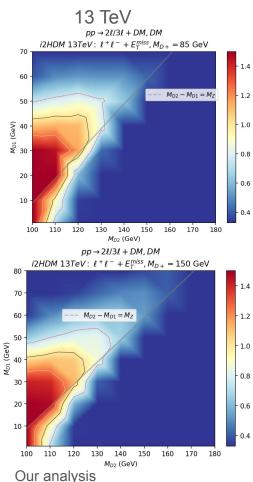
 m_{A^0} (GeV)

160

180

200

Bélanger, et al. "Dilepton Constraints in the Inert Doublet Model from Run 1 of the LHC." Physical Review D 91.11 (2015) [arXiv:1503.07367]


120

140

 $m_{A^0}~({
m GeV})$

160

180

