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Motivation
• Hadronisation corrections are now the major source of theoretical

uncertainties for strong coupling determination

• Hadronisation can be modelled as a shift of perturbative event-shape
distributions:

• Introduce a new method to compute leading hadronisation corrections to
two-jet event shapes in e+e− annihilation.
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Approach

Leading hadronisation corrections due to
the contribution of a very soft gluon
(aka gluer)

Cumulative distribution given by:
Σ(v) = ΣPT(v) + δΣNP(v)

V ({p̃}, k1, ..., kn) > 0

We define: δVNP ≡ V ({p̃}, k , {ki})− V ({p̃}, {ki})

This gives us that: δΣNP ≈ −〈δVNP〉 dΣPT

dv =⇒ Σ(v) ≈ ΣPT (v − 〈δVNP〉)

We consider event shapes for which:
δVNP ({p̃}, k, {ki}) = kt

Q fV (η, φ, {ki})

(with η = − ln tan θ
2 )
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Results and next steps
Therefore:

〈δVNP ({p̃}, k , {ki})〉 =
〈kt〉
Q

cV

with:

cV =

〈
fV (η, φ, {ki}) δ

(
1− Vsc({p̃},{ki})

v

)〉
〈
δ
(

1− Vsc({p̃},{ki})
v

)〉
Observable cV

τ = 1− T 2
C 3π
ρH 1

BW
1
2

[
−2− ψ(1)− lnB + η0 + χ

(
R′

2

)
− ρ

(
R′

2

)
+ ψ

(
1 + R′

2

)]
BT 2cBW

− ψ
(

1 + R′

2

)
+ ψ (1 + R ′) + 1

R′

TM ongoing

(with R ′ ≡ −v dR
dv )
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Additional Slides

We know that:
ΣPT(v) = e−RNLL(v)FNLL(v)

where:

FNLL(v) =

〈
Θ

(
1− Vsc ({p̃}, k1, ..., kn)

v

)〉
In our computation of the shift:

cV =

〈
fV (η, φ, {ki}) δ

(
1− Vsc({p̃},{ki})

v

)〉
〈
δ
(

1− Vsc({p̃},{ki})
v

)〉
The denominator may be written as R ′F(R ′) with:

R ′ ≡ −v dR
dv
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Additional Slides

Method of computation:

• In a form suitable for evaluation numerically by a Monte Carlo procedure we
can write:

R ′F(R ′)cV

=

∫
dη

dφ

2π
R ′
∫ 2π

0

dφ1

2π
εR

′
∞∑
n=0

1

n!

n+1∏
i=2

R ′
∫ 1

ε

d ζ̃i

ζ̃i

∫ 2π

0

dφi
2π
×

× exp

−R ′ ln Vsc

(
{p̃}, k̃1, . . . , k̃n+1

)
v

 fV (η, φ, k1, ..., kn)

• Where in fV (η, φ, k1, . . . , kn) the ki ’s are functions of ζ̃i .

Ryan Wood XI NExT PhD Workshop 1st July 2021 6 / 6


