



## Simulating neutrino beam

Using external data to improve the neutrino beam simulation at the NOvA and DUNE experiments Using one experiment to make experimenting on two other experiments better - Sorry!

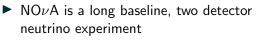
Robert Kralik

June 29, 2021

## UNIVERSITY OF SUSSEX

MN

wi


Fermilat

11

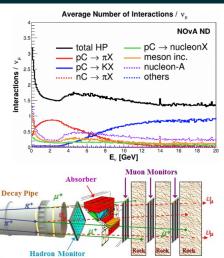
Robert Kralik







- Uses the most powerful artificial neutrino beam in the world
- Neutrino properties too complicated to be drawn directly from data
- Needs simulation as close to the real world as possible


Protons Targe

Protons hit target

**Target Station** 

 $\pi^+$  produced

Horns



magnetic horn to focus  $\pi^*$ 

 $\pi^*$  decay to  $\mu^*\nu$  in long evacuated pipe

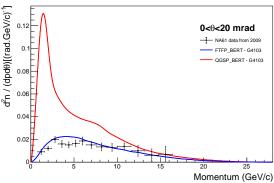
left-over hadrons shower in hadron absorber

rock shield ranges out  $\mu^*$ 

v beam travels through earth to experiment

2/4

Simulating neutrino beam




## Correcting the simulation



- NOvA and DUNE use the Geant4 Monte Carlo simulation (different physics lists)
- Low energy interactions described by the Bertini internuclear cascade (BERT)
- Different string models for high energy interactions
  - quark gluon string model (QGSP) - DUNE
  - FRITIOF string excitation and fragmentation model (FTFP) - NOvA

- Experiments NA49 and MIPP currently used
- New data from NA61/SHINE experiment



 $p+C \rightarrow K^++X @ 31GeV/c$ 

Robert Kralik

Simulating neutrino beam

3/4





## Thank you for your attention!