A minimal non-abelian dark sector (work in progress)

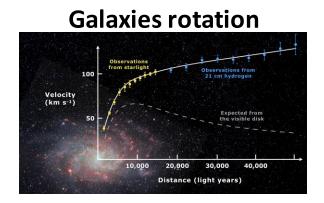
Nakorn Thongyoi

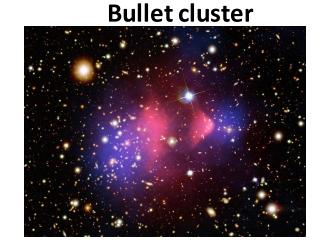
Supervisor: Alexander Belyaev

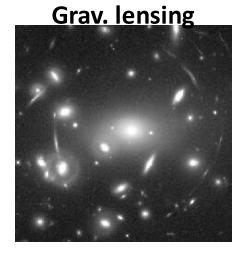
In collaboration with A. Deandrea, S. Moretti, L. Panizzi

University of Southampton School of Physics and Astronomy

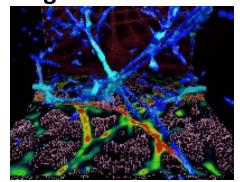
Introduction

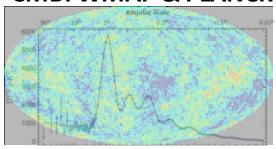

The existence of dark matter was confirm by many independent observations through its gravitational effect.


Properties of DM


- Neutral
- Non-relativistic
- Stable
- Weakly interacting with SM particles

 $\Omega_{\rm DM} h^2 = 0.120 \pm 0.001$


N. Aghanim et al. (Planck), 2018, arXiv: 1807.06209 E. Aprile et al. (XENON1T), 2018, arXiv:1705.06655 "Galaxy rotation curve." Wikipedia, 28 June 2021.



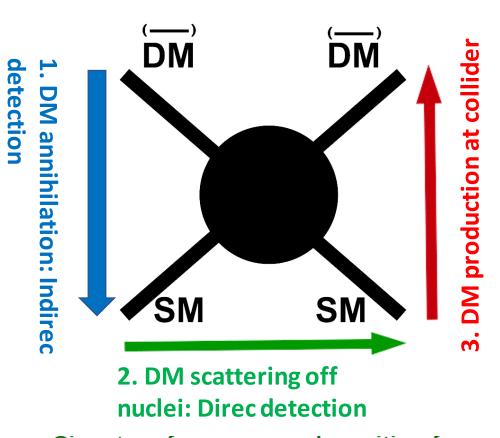
Large scale strucutre

CMB: WMAP & PLANCK

26.8% Dark Matter

> 4.9% Ordinary Matter

Introduction


How can we observe DM?

Signatures from neutralino annihilation in halo, core of the Earth and Sun

- photons,
- Anti-protons
- · positrons,
- Neutrinos

Neutrino telescopes:

- Amanda
- Icecube
- Antares

LHC signatures

- mono-jet
- mono-photon
- mono-Z
- mono Higgs
- VBF+MET
- soft leptons+MET
 -

Signature from energy deposition from nuclei recoil: LUX, XENON, WARP,

New particles and DM candidates

Goal: to create a **vector model** of dark matter with **fermion propagator** based on a new SU(2) group. This is the minimal setup.

New particles

• Three gauge boson from a new $SU(2)_D$ $(V_{D\pm}^0, Z')$.

ullet A scalar H_D : giving mass to new gauge boson.

9 D-fermions $(t_D, b_D, c_D ..., \tau_D, \nu_{\tau D}, \mu_D...)$.

A scalar Φ: giving mass to SM particles and D-fermions.

DM candidates (electrically neutral and carried D-charge)

• scalars: $h1_{D+}^{0}$, $h2_{D+}^{0}$.

 \bullet fermions(D-neutrinos): $\nu_{\tau D}$, $\nu_{\mu D}$, $\nu_{e D}$.

 \bullet vectors: $V_{D\pm}^0$.

*We have three kinds of DM candidates!

New Lagrangian

$$\mathcal{L}_{\mathsf{gauge}} = -\frac{1}{4} V^{\mu\nu} V_{\mu\nu}$$

$$\mathcal{L}_{\mathsf{scalar}} = |D_{\mu} H|^2 + |D_{\mu} \Phi|^2 + |D_{\mu} H_D|^2 - V(H, \Phi, H_D)$$

$$\mathcal{L}_{\mathsf{D-fermion}} = \overline{F}_L i \not \!\!\!D F_L + \overline{f}_R i \not \!\!\!D f_R + \mathsf{Yukawa\ terms}$$

$$D = \partial_{\mu} - \left(igW_{\mu}^a T^a + ig'YB_{\mu}\right) - \left(ig_D V_{\mu}^a T_D^a\right)$$

The mass of vector bosons

$$M_W^2 = \frac{1}{4}g^2(v^2 + v_\phi^2), M_Z^2 = \frac{1}{4}(g^2 + g'^2)(v^2 + v_\phi^2),$$

 $M_Z'^2 = \frac{g_D^2}{4}v_D^2, M_V^2 = \frac{1}{4}g_D^2(4v_\Phi^2 + v_D^2)$

New particles and DM candidates

Goal: to create a **vector model** of dark matter with **fermion propagator** based on a new SU(2) group. This is the minimal setup.

New particles

- Three gauge boson from a new $SU(2)_D$ $(V_{D\pm}^0, Z')$.
- ullet A scalar H_D : giving mass to new gauge boson.
- **1** D-fermions $(t_D, b_D, c_D ..., \tau_D, \nu_{\tau D}, \mu_D ...)$.
- A scalar Φ: giving mass to SM particles and D-fermions.

DM candidates (electrically neutral and carried D-charge)

- scalars: $h1_{D+}^{0}$, $h2_{D+}^{0}$.
- \bullet fermions(D-neutrinos): $\nu_{\tau D}$, $\nu_{\mu D}$, $\nu_{e D}$.
- vectors: $V_{D\pm}^0$.

*We have three kinds of DM candidates!

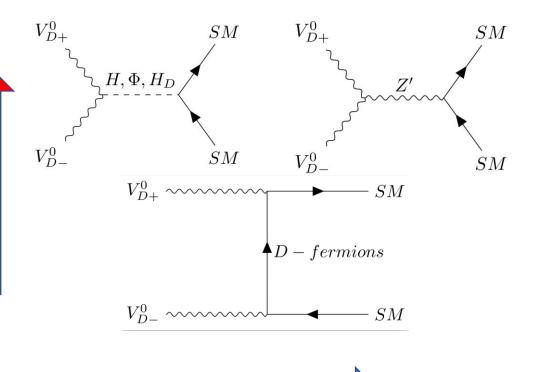
New Lagrangian

$$\mathcal{L}_{\text{gauge}} = -\frac{1}{4} V^{\mu\nu} V_{\mu\nu}$$

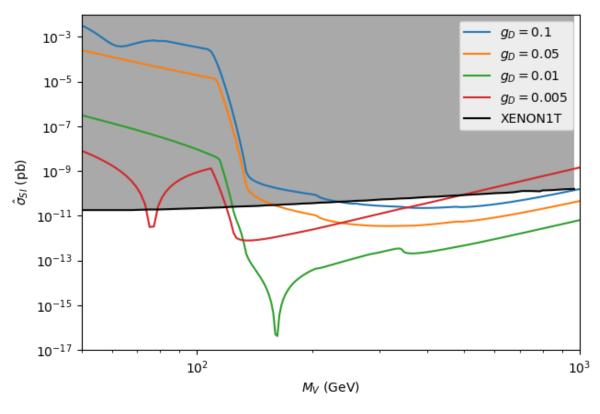
$$\mathcal{L}_{\text{scalar}} = |D_{\mu}H|^2 + |D_{\mu}\Phi|^2 + |D_{\mu}H_D|^2 - V(H, \Phi, H_D)$$

$$\mathcal{L}_{\text{D-fermion}} = \overline{F}_L i \not D F_L + \overline{f}_R i \not D f_R + \text{Yukawa terms}$$

$$D = \partial_{\mu} - \left(i g W_{\mu}^a T^a + i g' Y B_{\mu} \right) - \left(i g_D V_{\mu}^a T_D^a \right)$$


The mass of vector bosons

$$M_W^2 = \frac{1}{4}g^2(v^2 + v_\phi^2), \ M_Z^2 = \frac{1}{4}(g^2 + g'^2)(v^2 + v_\phi^2),$$
 $M_Z'^2 = \frac{g_D^2}{4}v_D^2, \ M_V^2 = \frac{1}{4}g_D^2(4v_\Phi^2 + v_D^2)$


Results

Example: Vector dark matter **Packages:** LanHEP, CalcHEP, micrOMEGA.

Feynman diagrams

Spin-independent cross section off proton

6

DM annihilation

Future plan

- Dark matter (collider & non-collider) phenomenology
- Z' phenomenology (Z' --> leptons)
- We can explain neutrino mass (Interaction of Dneutrinos and SM-neutrinos)
- Matter-antimatter asymmetry (new source of CP violation from D-fermion sector)

Thank you

Backup

Input parameters

We have 19 input parameter (independent) and 16 dependent ones

These are used in model implementation And scanning in **micrOMEGA**

Scalar masses

Scalar couplings

Scalar couplings

Scalar couplings


```
DeltaM =
SinA23 = -9.894726E
```