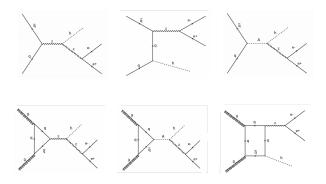
Below-threshold CP-odd Higgs boson search via A \rightarrow Z*h at the LHC

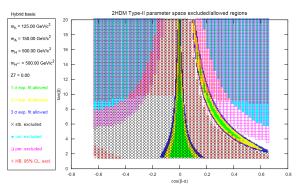
Matthew Chapman

July 1, 2021

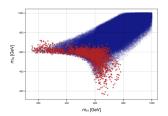


Project Overview

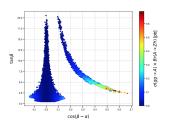
- The Two-Higgs Doublet Model (2HDM) is a well motivated BSM theory, in that it is the simplest extension of the SM relying only on the doublet structure already observed in nature.
- In a 2HDM there are five manifest bosons; two CP-even neutral Higgs (including the Standard Model h), two charged Higgs and the CP-odd Higgs 'A'.
- Experimental evidence from the LHC has pushed the lower mass bound for m_A into the hundreds of GeV range.
- Previous searches have considered only the region in which both the Z and h remain on-shell, i.e. $m_A > m_Z + m_h \approx 215 \, \text{GeV}$.


Sub-processes

Feynman diagrams for the process under consideration. We consider Z boson decays to a lepton pair, and adopt the narrow width approximation for the Higgs. Our analysis then considers the channel Z*h \rightarrow $I^+I^-b\bar{b}$

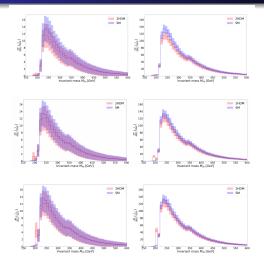

Parameter Space

- Seven parameters are required to fully define the 2HDM; the masses of the Higgses, mixing angle α , ratio of vacuum expectation values $\tan(\beta)$, and self-coupling Z_7 .
- The parameter space is strongly constrained by theory (unitarity, perturbitivity, stability) and experimental exclusion bounds.



Below-threshold viability

- The 'right-arm' region of the type II 2HDM can access the below-threshold A
- Regions where the A cross-section is significantly greater than the SM background, in total or differentially, have the potential to be observed at the LHC.



Parameter space points from the central and right-arm region recast in the mA/mH plane. Red points are from the 'right-arm' region.

Calculated cross-sections for the process gg \to Zh in the tan(β) - cos($\beta-\alpha$) plane

Numerical results

Differential cross sections for (top to bottom) $m_A = 190, 200, 210 \, GeV$. The left figures have a luminosity of $100 \, fb^-1$ while the right figures correspond to a luminosity of $1000 \, fb^-1$.

Conclusions

- The resonant peaking structure for $m_A = 190,200\,\text{GeV}$ is visible and separated from the SM background.
- Even an analysis performed on run 2 data could provide evidence of a below-threshold A, and near discovery significance at close to the 215 GeV threshold.
- At the projected luminosity of the HL-LHC a discovery would be possible over the full mass range considered here.

bin	N(SM)	$N(m_A = 190 \text{ GeV})$	$N(m_A = 200 \text{ GeV})$	$N(m_A = 210 \text{ GeV})$
180	0.2	$2.1 \ (\sigma = 2.6)$	$0.2 \ (\sigma = 0)$	$0.4 \ (\sigma = 0)$
190	0.8	$3.2 \ (\sigma = 3.2)$	$13.5 \ (\sigma = 16.7)$	$1.0 \ (\sigma = 0)$
200	2.8	$2.7 (\sigma = 0)$	$6.5 \ (\sigma = 2.3)$	$46.2 \ (\sigma = 25.7)$
210	30.8	$27 \ (\sigma = 0.7)$	$28 \ (\sigma = 0.5)$	$32.4 \ (\sigma = 0.3)$

Number of events in each 10 GeV bin for three benchmark scenarios at L $= 100 fb^{-1}$.

Thank you! Questions?

More details can be found in the paper:

Below-threshold CP-odd Higgs boson search via $A \rightarrow Z*h$ at the LHC, E. Accomando, M. Chapman, A. Maury, S. Moretti, Phys. Lett. B, 818(2021)