

First evidence for Higgs boson decay to muons

Stephane Cooperstein (UC San Diego)

LPHE Seminar, EPFL October 12, 2020

12/10/2020

Higgs boson in the standard model

Z= - 4 Fre FMV

+ ご ダダサ + h.c.

+ 4: 4: 4: 4: + h.c.

+ W. Y. . W. &+ h. c

Stephane Cooperstein

Couplings

W, Z

Stephane Cooperstein

H→µ+µ-

- We have come a long way in studying the properties of the Higgs boson in the eight years since its discovery.
 - All measured properties (production rate, spin, CP, ...) consistent with SM.
 - Mass measured at nearly per-mille level: $m_H = 125.38 \pm 0.14$ GeV (Phys. Lett. B 805 (2020) 135425).

CMS

Couplings to third generation fermions

- In addition to gauge boson couplings, Higgs boson couplings to third generation fermions (t, τ , b) firmly established and consistent with SM.
- Yukawa interactions for third generation are clearly SM-like within the current experimental 10-20% precision.

- Next frontier: Higgs boson couplings to second generation fermions
 - H→µµ is likely the only accessible probe of first or second generation couplings at the LHC.
 - Extend probe of Higgs interactions by more than an order of magnitude in mass scale.

(from latest CMS Higgs couplings combination)

Eur. Phys. J. C 79 (2019) 421

- What about H→cc?
 - BR(H \rightarrow cc) = 2.9%!
- Significant branching fraction, but very large backgrounds and difficult to isolate jets originating from charm quarks.
- Current limits are factor ~40 higher than SM with partial Run-2 data set [1].
 - Measuring H→cc will be very difficult, even with 3-4 ab⁻¹ from HL-LHC.

(from latest CMS Higgs couplings combination)

Eur. Phys. J. C 79 (2019) 421

[1] JHEP 03 (2020) 131

The CMS detector

Muon momentum resolution vs $p_T(\mu)$

Stephane Cooperstein

H→µ+µ-

12/10/2020

The CMS detector

<u>JINST 13 (2018) P06015</u>

Stephane Cooperstein

H→µ+µ-

12/10/2020

Gluon-gluon fusion production (ggH)

dominant Higgs boson production mode at the LHC

- Inclusive Higgs boson production cross section at 13 TeV: $\sigma_{\rm H} \sim 50$ pb.
- Expected $H \rightarrow \mu\mu$ branching fraction for m_H near 125 GeV: **BR(H \rightarrow \mu\mu) ~ 2.2*10**-4.
- $\sigma \Rightarrow \sigma_{\rm eff}(H \rightarrow \mu \mu) \sim 0.01 \ {\rm pb}$
- Roughly 1k total signal events in Run-2 (137 fb⁻¹) dataset.

The problem

Drell-Yan (DY) production

Total effective cross section in $H \rightarrow \mu \mu$ search region with 110 < $m_{\mu\mu}$ < 150 GeV:

 $\sigma_{\rm eff}({\rm DY}) \sim 15~{\rm pb}$

i.e. ~two million DY background events in $H \rightarrow \mu\mu$ preselected 13 TeV data sample with $m_{\mu\mu}$ near 125 GeV.

The challenge

Three orders of magnitude more DY background than $H \rightarrow \mu \mu$ signal in preselected search region.

- S/B ~ one per mille with $m_{\mu\mu}$ near 125 GeV
- Large additional background rejection necessary to measure $H \rightarrow \mu\mu$ signal.

$H \rightarrow \mu \mu$ signal $\sigma_{eff}(H \rightarrow \mu \mu) \sim 0.01 \text{ pb}$

Higgs boson production modes at LHC

12/10/2020

13

Gluon-gluon fusion (ggH)

Stephane Cooperstein

section (rate

 $H \rightarrow \mu^+ \mu^-$

Higgs boson production modes at LHC

12/10/2020

14

Level of achievable signal purity

Stephane Cooperstein

section (rate

Effective cross

 $H \rightarrow \mu^+ \mu^-$

Stephane Cooperstein

 $H \rightarrow \mu^+ \mu^-$

The $H \rightarrow \mu\mu$ search in a nutshell

- Train a multivariate (MVA) classifier to separate signal from background
 - Using kinematic input variables <u>uncorrelated with H candidate mass</u>.

The H \rightarrow µµ search in a nutshell

- Train a multivariate (MVA) classifier to separate signal from background
 - Using kinematic input variables uncorrelated with H candidate mass.
- **Divide** events into subcategories with varying signal purity using MVA output and fit the dimuon mass distribution in each subcategory with parametric functions.
- Promote events with best mass resolution to high BDT score by weighting signal events by $1/\sigma_m$ in BDT training.

Stephane Cooperstein

Number of events

ggH candidate event

ggH category BDT classifier

H→u+u-

- Train a Boosted Decision Tree (BDT) to discriminate signal from backgrounds.
 - H candidate kinematic variables:
 - Dimuon p_T and rapidity, decay angles $\varphi_{CS}\,,$ $cos\theta_{CS}$
 - $\eta(\mu), p_T(\mu)/m_{\mu\mu}, ...$
 - Potential signature of initial state radiation:
 - Leading jet p_T and η .

Stephane Cooperstein

• Minimum angular separation between H candidate and jet.

Mass resolution per ggH subcategory

Event	HWHM	
category	(GeV)	Signal
ggH-cat1	2.12	
ggH-cat2	1.75	
ggH-cat3	1.60	
ggH-cat4	1.47	
ggH-cat5	1.50	V

- Dimuon mass resolution ranges from 1 to 2% across subcategories, depending on muon p_T and η.
- Mass resolution further improved by:
 - recovery of photons from final state radiation (~3%)
 - constraining muon track to originate from interaction point (~4%)

• Looking for small resonant peak over large smoothly falling DY background.

- Looking for small resonant peak over large smoothly falling DY background.
- Background shape expected to be similar across subcategories, with minor variations from differing muon kinematics.

10% performance improvement and fewer total degrees of freedom with respect to previous strategy, while retaining negligible bias.

Stephane Cooperstein

 $H \rightarrow \mu^+ \mu^-$

12/10/2020

ggH category results

ggH category result

Observed (expected) significance: 1.0 σ (1.6 σ) $\mu = \frac{\sigma_{\rm H} \cdot {\rm BR}({\rm H} \to \mu\mu)}{\sigma_{\rm H} \cdot {\rm BR}({\rm H} \to \mu\mu)}_{\rm SM} = 0.63^{+0.65}_{-0.65}$

Stephane Cooperstein

H→µ+µ-

WH candidate event

 $H \rightarrow \mu^+ \mu^-$

WH candidate event

ZH candidate event

passing b-tagging

Stephane Cooperstein

$H \rightarrow \mu^+ \mu^-$

12/10/2020

ZH candidate event

VH categories

VCSD

- Inputs to WH and ZH BDT classifiers:
 - H candidate kinematic variables: $p_T(\mu\mu)$, $\Delta\phi(\mu\mu)$, ...
 - WH system: $p_T(\ell_W)$, $\Delta \eta(\ell_W, H)$, $\Delta \varphi(\ell_W, H)$, $m_T(\ell_W, p_T^{miss})$, ...
 - ZH system: $p_T(Z)$, $\eta(Z)$, m_Z , $\Delta\eta(Z,H)$, $\Delta\varphi(Z,H)$, $\cos\theta^*(Z,H)$, ...

Stephane Cooperstein

VH categories

VCSD

- Inputs to WH and ZH BDT classifiers:
 - H candidate kinematic variables: $p_T(\mu\mu)$, $\Delta\phi(\mu\mu)$, ...
 - WH system: $p_T(\ell_W)$, $\Delta \eta(\ell_W, H)$, $\Delta \varphi(\ell_W, H)$, $m_T(\ell_W, p_T^{miss})$, ...
 - ZH system: $p_T(Z)$, $\eta(Z)$, m_Z , $\Delta\eta(Z,H)$, $\Delta\varphi(Z,H)$, $\cos\theta^*(Z,H)$, ...

H→µ+µ-

CMS

ttH (hadronic) candidate event

 $H \rightarrow \mu^+ \mu^-$

CMS

ttH (hadronic) candidate event

 $H \rightarrow \mu^+ \mu^-$

ttH (hadronic) candidate event

ttH (leptonic) candidate event

*Dileptonic ttH events also considered

ttH (leptonic) candidate event

ttH (leptonic) candidate event

ttH category classifier

- Common ttH BDT inputs:
 - Dimuon p_T and rapidity, decay angles φ_{CS} , $cos\theta_{CS},$...
 - p_T^{miss}, H_T, jet multiplicity, ...
- Specific inputs for hadronic category:
 - p_T , η of the three leading jets
 - top quark candidate: jet triplet with maximum Resolved Hadronic Top Tagger (RHTT) score
 - p_T(jjj), RHTT score, p_T-balance(H,jjj)
- Specific inputs for leptonic category:
 - ℓ^{T} : highest-p_T additional lepton
 - $\Delta \phi(\ell^T, H)$, mass(b jet, ℓ^T), $m_T(p_T^{miss}, \ell^T)$

ttH category results

H→µ+µ-

VBF candidate event

No additional leptons, no b jets.

41

VBF candidate event

Dominant backgrounds: Drell-Yan (DY), EW Zjj

Stephane Cooperstein

<u>H</u>→µ+µ-

No additional leptons, no b jets.

42

12/10/2020

VBF category: background modeling

(representation of high purity VBF subcategory)

Stephane Cooperstein

 $H \rightarrow \mu^+ \mu^-$

Stephane Cooperstein

 $H \rightarrow \mu^+ \mu^-$

12/10/2020 44

- New approach for the VBF category:
 - Include $\mathbf{m}_{\mu\mu}$ as MVA input variable.
 - Fit MVA output directly to extract $H \rightarrow \mu \mu$ signal.
 - Take background prediction from simulated samples.
- Trading limited number of data events in mass sideband for systematic uncertainties in simulation.
- Following strategy similar to CMS EW Zjj measurement [1] and $H\rightarrow$ bb observation [2].

[1] <u>Eur. Phys. J. C 78 (2018) 589</u>
[2] <u>Phys. Rev. Lett. 121 (2018) 121801</u>

VBF DNN classifier

- Train a deep neural network (DNN) including the H candidate mass m_{µµ} as an input.
- DNN inputs targeting VBF H signal:
 - m_{jj} , $\Delta\eta(jj)$, $\Delta\phi(jj)$, min- $\Delta\eta(H,j)$, min- $\Delta\phi(H,j)$, p_T -balance(H,jj), H centrality, ...
 - Suppressed hadronic activity in jet rapidity gap expected for VBF signal \Rightarrow track-jet multiplicity and H_T in jet rapidity gap.

Total systematic uncertainty impact <5%

- Largest systematic uncertainties:
 - VBF (H signal and Z background) parton shower modeling
 - Jet energy scale and resolution
 - DY contribution with one or more pileup jets
 - Statistical precision of simulated events
 - Theory uncertainties: missing higher order corrections, etc.

VBF category DNN

VBF category results

• Binned maximum-likelihood fit to DNN score simultaneously in the *signal region* and the *mass sideband region* to better constrain uncertainties.

Stephane Cooperstein

H→µ+µ-

Stephane Cooperstein

 $H \rightarrow \mu^+ \mu^-$

12/10/2020

- Sensitivity of each category is a balance between purity and signal yield.
- ggH and VBF category sensitivities are comparable, with VBF slightly better.
- ttH and VH categories are strongly limited by small signal yield.

Putting it all together: expected

- Simultaneous fit of all categories to extract combined $H \rightarrow \mu \mu$ signal.
 - *VBF category* has the best expected sensitivity, followed by the *ggH category*.

Stephane Cooperstein

H→µ+µ-

Putting it all together: observed

- Excess over background-only prediction observed at $m_H = 125.38$ GeV with a statistical significance of 3.0σ .
- This constitutes the first evidence for the $H \rightarrow \mu \mu$ decay.
- Fluctuations in the observed p-value arising from discrete nature of the mass profiling in the VBF category.

Measured signal properties

- The observed signal is well compatible, within uncertainties, with the SM expectation for the Higgs boson interaction with the muon.
- Dominant uncertainties are statistical \Rightarrow with more data, we will more precisely test this interaction.

54

/2020

Direct constraints on H-µ interaction

Stephane Cooperstein

12/10/2020 55

(HL) LHC schedule

CMS has released projections of expected precision of Higgs measurements up to end of HL-LHC.

- Including $H \rightarrow \mu\mu$, based on projections from previous CMS $H \rightarrow \mu\mu$ publication [1].
- The future is hard to predict!
 - Cannot extrapolate ingenuity, new ideas, new methods, precise performance and usage of new technologies, etc.
- So please keep this in mind...

<u>CMS-PAS-FTR-18-011</u>

(based on previous $H \rightarrow \mu \mu$ published analysis)

[1] Phys. Rev. Lett. 122 (2019) 021801

Stephane Cooperstein

H→µ+µ-

12/10/2020 57

$H \rightarrow \mu \mu$ with Run-3 data

- LHC Run-3 (2022-2024) expected to deliver about 200 fb⁻¹ of 13 or 14 TeV data.
 - Data conditions similar to those at end of Run-2.
- Some small upgrades to CMS detector, but similar performance expected overall.
- Assuming no significant improvements to the analysis, expect roughly 4σ sensitivity to $H \rightarrow \mu\mu$ including Run-3 data.

We are already here with 137 fb⁻¹ !

- CMS detector will largely be fully redesigned, improved.
 - Tracking coverage extended in η from 2.4 to 4.0.
 - High-granularity forward calorimetry with improved resolution.
 - Improved muon resolution and efficiency, $\eta(\mu)$ extended from 2.4 to 2.8.

Currently projecting ~10% uncertainty on $H \rightarrow \mu \mu$, i.e. ~5% precision on κ_{μ} .

• Note that projection only considers increased dataset and improved mass resolution.

Projections: 3 ab^{-1} of HL-LHC data

Experiment	CMS		
Process	Combination		
Scenario	S 1	S 2	
Total uncertainty	13%	10%	
Statistical uncert.	9%	9%	
Experimental uncert.	8%	2%	
Theory uncer.	5%	3%	

<u>arXiv:1902.00134</u>

12/10/2020

- Measurement of H→µµ performed by CMS with 137 fb⁻¹ of 13 TeV Run-2 data.
- Observed (expected) significance:
 3.0 (2.5)σ.
- First evidence for $H \rightarrow \mu \mu$ decay.
- First evidence of Higgs boson interaction with second generation fermions.
- Remarkable success of the standard model (unfortunately) continues!

Additional Material

VBF DNN distribution evolution with mass

12/10/2020

62

H→µ+µ-

VBF DNN distribution evolution with mass

Stephane Cooperstein

$H \rightarrow \mu^+ \mu^-$

VBF DNN distribution evolution with mass

64

H→µ+µ-

- Both CMS and ATLAS results include exclusive ttH and VH categories, as well as VBF-targeted region.
- However, many details are sufficiently different to make a direct comparison of these two new results quite complicated.

[1] <u>arXiv:2007.07830</u>, submitted to PLB

Stephane Cooperstein

Category	Data	$S_{ m SM}$	S	В	S/\sqrt{B}	S/B~[%]	$\sigma \; [\text{GeV}]$
VBF Very High	15	2.81 ± 0.27	3.3 ± 1.7	14.5 ± 2.1	0.86	22.6	3.0
VBF High	39	3.46 ± 0.36	4.0 ± 2.1	32.5 ± 2.9	0.71	12.4	3.0
VBF Medium	112	4.8 ± 0.5	5.6 ± 2.8	85 ± 4	0.61	6.6	2.9
VBF Low	284	7.5 ± 0.9	9 ± 4	273 ± 8	0.53	3.2	3.0
2-jet Very High	1030	17.6 ± 3.3	21 ± 10	1024 ± 22	0.63	2.0	3.1
2-jet High	5433	50 ± 8	58 ± 30	5440 ± 50	0.77	1.0	2.9
2-jet Medium	18311	79 ± 15	90 ± 50	18320 ± 90	0.66	0.5	2.9
2-jet Low	36409	63 ± 17	70 ± 40	36340 ± 140	0.37	0.2	2.9
1-jet Very High	1097	16.5 ± 2.4	19 ± 10	1071 ± 22	0.59	1.8	2.9
1-jet High	6413	46 ± 7	54 ± 28	6320 ± 50	0.69	0.9	2.8
1-jet Medium	24576	90 ± 11	100 ± 50	24290 ± 100	0.67	0.4	2.7
1-jet Low	73459	125 ± 17	150 ± 70	73480 ± 190	0.53	0.2	2.8
0-jet Very High	15986	59 ± 11	70 ± 40	16090 ± 90	0.55	0.4	2.6
0-jet High	46523	99 ± 13	120 ± 60	46190 ± 150	0.54	0.3	2.6
0-jet Medium	91392	119 ± 14	140 ± 70	91310 ± 210	0.46	0.2	2.7
0-jet Low	121354	79 ± 10	90 ± 50	121310 ± 280	0.26	0.1	2.7
VH4L	34	0.53 ± 0.05	0.6 ± 0.3	24 ± 4	0.13	2.6	2.9
VH3LH	41	1.45 ± 0.14	1.7 ± 0.9	41 ± 5	0.27	4.2	3.1
VH3LM	358	2.76 ± 0.24	3.2 ± 1.6	347 ± 15	0.17	0.9	3.0
$t\bar{t}H$	17	1.19 ± 0.13	1.4 ± 0.7	15.1 ± 2.2	0.36	9.2	3.2

Stephane Cooperstein

VBF channel S/S+B-weighted mass plot

- For VBF channel, assign perevent S/S+B calculated as a function of mass-decorrelated (m_H fixed to 125 GeV) DNN score
 - This binned $m_{\mu\mu}$ histogram is interpolated with a spline and merged with the other channels for the combined mass plot.
- Note that this is just a way to visualize the observed excess, not the fit result itself.

- Weight m_{µµ} distribution in each ggH, VH, and ttH category by S/S+B within signal HWHM.
- Interpolate binned VBF category $m_{\mu\mu}$ histogram (see previous slide) with spline and merge with other categories.
- Note that this is just a way to visualize the observed excess, not the fit result itself.

Combination with Run-1

Combination performed with CMS Run-1 4.9 fb⁻¹ (7 TeV) + 19.7 fb⁻¹ (8 TeV) +137 fb⁻¹ (13 TeV) -ocal p-value $H \rightarrow \mu \mu$ search. Full p-value scan vs. m_{H} . 1σ Run-1 adjusted to $m_H = 125.38$ GeV signal 10⁻¹ hypothesis. **2**σ **Observed** (expected) **significance** 2.98σ 10^{-2} (2.48σ). 3σ 10⁻³ Local minimum at $m_H = 125.3 \text{ GeV}$ is 3.02σ . Observed CMS Expected $m_{\mu} = 125.38 \text{ GeV}$ 10⁻⁴ L 129 130 121 122 123 124 125 126 127 128 m_H (GeV)

Production category	Observed (expected) signif.	Observed (expected) UL on μ
VBF	2.40 (1.77)	2.57 (1.22)
ggH	0.99 (1.56)	1.77 (1.28)
tĪH	1.20 (0.54)	6.48 (4.20)
VH	2.02 (0.42)	10.8 (5.13)
Combined $\sqrt{s} = 13 \text{TeV}$	2.95 (2.46)	1.94 (0.82)
Combined $\sqrt{s} = 7, 8, 13 \text{ TeV}$	2.98 (2.48)	1.93 (0.81)

Stephane Cooperstein

H→µ+µ-

12/10/2020

- Precision in all channels dominated by limited amount of data.
 - Largest impact from systematics in VBF category (<5%).
- Largest systematic uncertainty impacts from limited MC statistics in VBF category and VBF (signal and EW Zjj) parton shower modeling.

Uncertainty source	$\Delta \mu$		
Post-fit uncertainty	+0.44	-0.42	
Statistical uncertainty	+0.41	-0.40	
Systematic uncertainty	+0.17	-0.16	
Experimental uncertainty	+0.12	-0.11	
Theoretical uncertainty	+0.10	-0.11	
Size of simulated samples	+0.07	-0.06	

CMS

Phys. Lett. B 805 (2020) 135425

Stephane Cooperstein

H→µ+µ-

12/10/2020 71

Background modeling: Core-PDF method

12/10/2020

72

- Background composition is quite stable across categories and dominated by DY (>90%).
- Core background function built as discrete profile of two physics-inspired (Breit-Wigner, FEWZ) and an agnostic (sum of exponentials) function.
- Bias studied against multiple physics-inspired and agnostic background functions and always < 20% (negligible impact on result).
- No prior assumption on background shape or normalization

$$B_{cat}(m_{\mu\mu}, \vec{\alpha}, \vec{\beta}) = N_B \times F_{core}(m_{\mu\mu}, \vec{\alpha}) \times T_{SMF}(m_{\mu\mu}, \vec{\beta})$$
Number of bkg. events
$$Core-PDF, defined as a discrete profile of three functions.$$
Associated parameters are correlated across categories
$$Per-category polynomial shape modifier use to "morph" the core component of the co$$

H→u⁺u⁻

ggH category details

H→u+u-

- Consider all events not selected by exclusive categories.
 - About 96% of total inclusive events selected in ggH category.
- Largest signal yield, but smallest S/B ~
 0.1%.
- Train mass-decorrelated BDT based on muon kinematics + possible jet kinematics (to pick up also ggH+X, residual VBF, hadronic VH)

Dimuon system	Leading jet	Dijet system
 p_T(μμ) 	• p _T (j ₁)	• m(jj)
• y(μμ)	• ŋ(j1)	• Δη(jj)
Colin-Soper	 Δη(μμ,j1) 	• Δ φ(jj)
angles	 Δφ(μμ,j₂) 	Zeppenfeld
Cingle much		• рт(j ₂)
Single muon	Event variables	 min-Δη(μμ,j)
• p _T (μ)/m(μμ)	• N _{jets}	 min-Δφ(μμ,j
• η(μ)		

BDT subcategory boundaries optimized iteratively based on significance from full fit to MC.

137 fb⁻¹ (13 TeV)

12/10/2020

73

ggH channel: fitted distributions

 S+B background fit describes the data well throughout the m_{µµ} spectrum in all categories.

Stephane Cooperstein

Events / GeV

Data-Bkg

-200

110

14

12

CMS

ggH-cat3

m_µ = 125.38 GeV

 $H \rightarrow \mu^+ \mu^-$

12/10/2020 74

ttH channel: fitted distributions

137 fb⁻¹ (13 TeV)

145

m_{uu} (GeV)

75

Data

S+B fit

 $\pm 1\sigma$

±2σ

----- Bkg. component

- Background fit with simple exponential (ttH-lep) or polynomial (ttH-had).
 - Bias checked following similar procedure as in ggH channel.
- Categories optimized following same strategy as ggH channel.

Stephane Cooperstein

12/10/2020

130

VH channel: fitted distributions

- Background fit with BWZ function.
 - Choice of functions and bias studies similar to other channels.
- Small excesses in data near 125 GeV, but consistent with expectation within (large) statistical uncertainties.

Stephane Cooperstein

110

115

120

130

Data-Bkg

Events / GeV

35

30

25

20

15

CMS

WH-cat1

m_H = 125.38 GeV

Stephane Cooperstein

H→µ+µ-

12/10/2020 77

Stephane Cooperstein

H→µ+µ-

• Relatively high purity in targeted Higgs boson production mode achieved in each category.

Stephane Cooperstein

H→µ+µ-

12/10/2020 79

The data set

- This result focuses on 137 fb⁻¹ of 13 TeV data collected by CMS from 2016 to 2018.
 - Including new analysis of recalibrated 2016 data, which had been used for previous CMS $H \rightarrow \mu\mu$ search.
- With excellent LHC performance comes the challenge of high rates and many simultaneous collisions (pileup).

CMS Integrated Luminosity, pp

Mean number of interactions per crossing

12/10/2020

80

The CMS detector

- 3.8T superconducting solenoidal magnet with 6m diameter.
- **Tracker System**: silicon strip+ pixel system which reconstructs the trajectories of charged particles.
- Electromagnetic calorimeter (ECAL): scintillator made from lead tungstate crystals sensitive to energy deposits from electrons and photons.
- Hadronic calorimeter (HCAL): brass scintillator sensitive to energy deposits from hadrons, mainly pions and kaons.
- Gas ionization chambers for muon detection.

12/10/2020

81

VBF category details

Observable	VBF-SB	VBF-SR
Number of loose (medium) b-tagged jets	≤ 1 (l))
Number of selected muons	=2	
Number of selected electrons	=0	
Jet multiplicity ($p_{\rm T}$ > 25 GeV, $ \eta $ < 4.7)	≥ 2	
Leading jet $p_{\rm T}$	\geq 35 G	leV
Dijet mass (m_{ij})	$\geq 400 \mathrm{C}$	GeV
Pseudorapidity separation ($ \Delta \eta_{jj} $)	≥ 2.5	5
Dimuon invariant mass	$110 < m_{\mu\mu} < 115 \text{GeV}$	$115 < m_{\mu\mu} < 135 \text{GeV}$
	or $135 < m_{\mu\mu} < 150 \text{GeV}$, ,

DNN bin	Total signal	VBF (%)	ggH (%)	Bkg. $\pm \Delta B$	Data	S/(S+B) (%)	S/\sqrt{B}
1–3	19.5	30	70	8890 ± 67	8815	0.22	0.21
4–6	11.6	57	43	394 ± 8	388	2.86	0.58
7–9	8.43	73	27	103 ± 4	121	7.56	0.83
10	2.30	85	15	15.1 ± 1.4	18	13.2	0.59
11	2.15	88	12	9.1 ± 1.2	10	19.1	0.71
12	2.10	87	13	5.8 ± 1.1	6	26.6	0.87
13	1.87	94	6	2.6 ± 0.9	7	41.8	1.16

Observable	Selection
Number of loose (medium) b-tagged jets	<u>≤1 (0)</u>
Number of selected muons	=2
Number of selected electrons	=0
VBF selection veto	if $N_{jets} \ge 2$
	$m_{jj} < 400 \text{GeV} \text{ or } \Delta \eta_{jj} < 2.5 \text{ or } p_{\text{T}}(j_1) < 35 \text{GeV}$

Event	Total	ggH	VBF	Other	HWHM	Bkg.	Data	S/(S+B) (%)	S/\sqrt{B}
category	signal	(%)	(%)	(%)	(GeV)	@HWHM	@HWHM	@HWHM	@HWHM
ggH-cat1	268	93.7	2.9	3.4	2.12	86 360	86 632	0.20	0.60
ggH-cat2	312	93.5	3.4	3.1	1.75	46 350	46 393	0.46	0.98
ggH-cat3	131	93.2	4.0	2.8	1.60	12660	12738	0.70	0.80
ggH-cat4	126	91.5	5.5	3.0	1.47	8260	8377	1.03	0.96
ggH-cat5	53.8	83.5	14.3	2.2	1.50	1680	1711	2.16	0.91

Observable	ttH hadronic	tīH leptonic
Number of b quark jets	>0 medium	or >1 loose b-tagged jets
Number of leptons (N($\ell = \mu, e$))	=2	=3 or 4
Lepton charge ($q(\ell)$)	$\sum q(\ell) = 0$	$N(\ell) = 3 (4) \to \sum q(\ell) = \pm 1 (0)$
Jet multiplicity ($p_{\rm T}$ > 25 GeV, $ \eta $ < 4.7)	≥ 3	≥ 2
Leading jet $p_{\rm T}$	$>50\mathrm{GeV}$	$>35\mathrm{GeV}$
Z boson veto		$ m_{\ell\ell} - m_Z > 10 \mathrm{GeV}$
Low-mass resonance veto		$m_{\ell\ell} > 12 \mathrm{GeV}$
Jet triplet mass	$100 < m_{jjj} < 300 {\rm GeV}$	

Event	Total	tīH	ggH	VH	Other	HWHM	Bkg. fit	Bkg.	Data	S/(S+B) (%)	S/\sqrt{B}
category	signal	(%)	(%)	(%)	(%)	(GeV)	function	@HWHM	@HWHM	@HWHM	@HWHM
ttHhad-cat1	6.87	32.3	40.3	17.2	10.2	1.85	Bern(2)	4298	4251	1.07	0.07
ttHhad-cat2	1.62	84.3	3.8	5.6	6.2	1.81	Bern(2)	82.0	89	1.32	0.12
ttHhad-cat3	1.33	94.0	0.3	1.3	4.4	1.80	S-Exp	12.3	12	6.87	0.26
tīHlep-cat1	1.06	85.8		4.7	9.5	1.92	Exp	9.00	13	7.09	0.22
tīHlep-cat2	0.99	94.7		1.0	4.3	1.75	Exp	2.08	4	24.5	0.47

84

Observable	WH le	ptonic	ZH leptonic	
	μμμ	μµe	4μ	2µ2e
Number of loose (medium) b-tagged jets	≤1 (0)	≤1 (0)	≤1 (0)	<u>≤1 (0)</u>
Number of selected muons	=3	=2	=4	=2
Number of selected electrons	=0	=1	=0	=2
Lepton charge ($q(\ell)$)	$\sum q(\ell)$	$=\pm1$	$\sum q(\ell$) = 0
Low-mass resonance veto		$m_{\ell\ell} > 1$	12 GeV	
$N(\mu^{+}\mu^{-})$ pairs with $110 < m_{\mu\mu} < 150 \text{GeV}$	≥ 1	=1	≥ 1	=1
$N(\mu^+\mu^-)$ pairs with $ m_{\mu\mu} - m_Z < 10 \text{ GeV}$	=0	=0	=1	=0
N(e ⁺ e ⁻) pairs with $ m_{ee} - m_Z < 20 \text{GeV}$	=0	=0	=1	=1

Event	Total	WH	qqZH	ggZH	ttH+tH	HWHM	Bkg. fit	Bkg.	Data	S/(S+B) (%)	S/\sqrt{B}
category	signal	(%)	(%)	(%)	(%)	(GeV)	function	@HWHM	@HWHM	@HWHM	@HWHM
WH-cat1	0.82	76.2	9.6	1.6	12.6	2.00	$BWZ\gamma$	32.0	34	1.54	0.09
WH-cat2	1.72	80.1	9.1	1.5	9.3	1.80	BWZ	23.1	27	4.50	0.23
WH-cat3	1.14	85.7	6.7	1.8	4.8	1.90	BWZ	5.48	4	12.6	0.35
ZH-cat1	0.11		82.8	17.2		2.07	BWZ	2.05	4	3.29	0.05
ZH-cat2	0.31		79.6	20.4	—	1.80	BWZ	2.19	4	8.98	0.14

UCSD

12/10/2020

86

VBF signal region, 115 < m(μμ) 135 GeV

Stephane Cooperstein

Stephane Cooperstein

UCSD

VBF mass sideband, 110 < $m(\mu\mu)$ < 115 GeV, 135 < $m(\mu\mu)$ < 150 GeV

H→µ+µ-

12/10/2020 87

- Independent fit for Higgs boson production channels sensitive to vector boson couplings (VBF, VH) and top quark coupling (ggH, ttH).
- Result well consistent with SM within uncertainties.

- VBF process incoming and outgoing quark lines are colorconnected (pure EW exchange).
- Until recently, PYTHIA did not account for this effect (default "global recoil" scheme).
 - "Dipole recoil" scheme recently implemented into PYTHIA that takes this effect into account.
 - Herwig7 default angular-ordered shower considers effect similar to PYTHIA with dipole recoil.
- Private VBF H→µµ signal samples generated with PYTHIA dipole recoil (nominal prediction) and HERWIG7 (to assess systematic uncertainty).

*discussed within VBF HXSWG and recent dedicated theory paper <u>arXiv:2003.12435</u>

89

Likelihood scans

- Observed log-likelihood ratios as a function of signal strength for the combined result as well as the individual channels.
- For the combination, also the expected likelihood shape with $\mu = 1$ signal injected.

Leading systematic uncertainties

Overall impact of systematics uncertainties on measurement is a few percent.

Stephane Cooperstein

H→µ+µ-

UCSD

12/10/2020

92

 $H \rightarrow \mu^+ \mu^-$

From Physics Briefing Book

12/10/2020

93

- With 35.9 fb⁻¹ 13 TeV data:
 - Observed (expected) significance 0.6 (0.9) σ , signal strength μ = 0.7 ± 1.0
- Combined with 7 and 8 TeV data:
 - Observed (expected) significance 0.9 (1.0) σ , signal strength $\mu = 1.0 \pm 1.0$

H→u+u-

Transformed BDT

Phys. Rev. Lett. 122 (2019) 021801

- SingleMuon primary data sets used by all channels.
- Background simulation (specifically requested for $H \rightarrow \mu\mu$):
 - DY Madgraph samples at NLO with m(μμ) [105,160] GeV filter, including set of VBF-enriched (m_{jj,GEN} > 350 GeV) samples.
 - VBF Z Madgraph samples at LO with Herwig PS* and $m(\mu\mu)$ [105,160] GeV filter.
 - Detailed studies of stability of prediction vs. Madgraph version and $p_{\rm T}(j)$ minimum threshold.
- Signal simulation:
 - ggH signal: MG_aMC at NLO with up to two partons in final state at ME level
 - VBF signal: POWHEG interfaced with PYTHIA parton shower with dipole recoil shower (more details in backup)

H→µ+µ-

• VH, ttH signal: POWHEG + PYTHIA PS

*as studied extensively in CMS VBF Z measurement: Eur. Phys. J. C 78 (2018) 589 *highlighting just the most relevant MC samples used

12/10/2020

94

Muons

- Muons passing medium ID and loose PF isolation.
- $p_T > 26-29 (20) \text{ GeV},$ $|\eta| < 2.4$
- Momentum scale and resolution calibration with Rochester corrections.
- FSR recovery: strategy inspired by H(4l) and optimized for H→μμ.
 - Negligible $H \rightarrow Z\gamma$
- GeoFit correction: using beam spot as additional track constraint to improve resolution.
 - 3-10% improvement in $\sigma(m_{\mu\mu})$.

Jets

- AK4 CHS jets with $p_T > 25$ GeV and $|\eta| < 4.7$
- Loose (tight) jet ID in 2016 (2017/2018).
- Loose pileup jet ID for jets with $p_T < 50$ GeV.
- Dedicated 2017 pileup jet ID training ⇒ 15% improvement in 2017 signal efficiency.
- Latest JEC applied, JER not applied but used for systematic uncertainty.

H→µ+µ-

Electrons

- $p_T > 20 \text{ GeV}$ and $|\eta| < 2.5$
- Passing MVA ID WP90

B-tagging

- $p_{\rm T} > 25 \, {\rm GeV} \, {\rm and} \, |\eta| < 2.5$
- Passing DeepCSV loose or medium WPs.

12/10/2020

95

VCSD

Pileup re-weight

- Applied taking the certified pileup profile in data
- **Uncertainty** estimated by varying the minimum bias cross section

Ll prefiring

- In 2016/17, **mis-timed ECAL TPs** lead to inefficiency in the L1 trigger
- **Corrections** measured from a set of **unprefirable events** by JetMET
- Corrections applied in the analysis and only relevant for VBF channel

DY p_T(Z) spectrum

- DY MC poorly describe the data for $p_{T}(\mu\mu) < 40~GeV$
- This is due to **missing resummation** effects [10.1007/JHEP12(2019)061]
- Reweighting performed using data with 70
 < m(μμ) < 110 GeV, as a function of p_T(μμ) and N_{jets}

ggH p_T(H) spectrum

- **Reweighed** to **NNLOPS** in bins of N_{jets} at the generator level

96