Tracker Status Update

D Adey
CM27 Detector Session 7/7/10

Status

- Reconstruction de-bugging
- Results of cosmic ray tests
- Controls and DAQ
- Plan for cool-down and tests
- Storage

Reconstruction Issues

- Difference between x and y track residuals
- Poor agreement with MC
- Low valued and inconstant efficiencies
- Presence of clusters not associated with cosmic ray track

Station $1=98.2+/-0.1 \%$
Station $2=96.4+/-0.2 \%$
Station $3=96.3+/-0.2 \%$
Station $4=99.8+/-0.1 \%$
Station $5=97.4+/-0.2 \%$

Cause of Inefficiency

- Clusters unrelated to tracks creating "ghost" space points
- Noise? Shower?
- Used clusters behave as expected
- Need to analyse cosmic + calibration data
- Requirement made on minimum light yield of each cluster in triplet ($>5 \mathrm{PE}$).
Doublets still > 2.5PE
- Timing calibration

Station $1=99.8+/-0.1 \%$ Station $2=99.9+/-0.1 \%$ Station $3=99.7+/-0.1 \%$ Station $4=99.9+/-0.1 \%$ Station $5=99.8+/-0.1 \%$

Efficiency "should" be > 99.9\%. Working on an improved space point search

Triplet Residual

Geometry and channel ordering mean sum of channel numbers always equal to sum of central channel numbers (318.5)

Summing integers gives 318/319

2 channel cluster - if seed cluster
has highest light yield sum of channel numbers could be different from expected - plan to weight

Tracker 1 Triplet Residual

S4

S5

Station 5 different as expected from geometry

Perpendicular distance between sub-track
(made from points not including station under question) and space point (or channel)
Measured in $\mathrm{x}, \mathrm{y}, \mathrm{u}, \mathrm{v}$ and w .

2 channels per cluster.

High residual cluster

Track X-Y Residuals

Tracker 1 Active Regions

s3

Analysis of geometry and multiple scatting. Pre-existing space point Errors not correct.

Space Point Geometry

Space Point Errors

Space Point Errors (T1 S5)

SubTrack - Space Point (Real - Tracker 1)

Track X-Y Modified

Comparison with MC

- Investigated MCS in G4MICE
- Used cosmic ray-like momentum distribution
- Agreement with separate analysis and non-G4MICE Geant4 simulation (Hideyuki)

Tracker 1 Residuals

Tracker 2 Residuals

Light Yields

- 8-bit ADCs mean any high light yield hits saturate and are therefore not included in light yield plot.
- Calculated probability of acceptance as function of light yield, and divided original light yield by histgram of probabilities.

Cosmic Summary and Plans

	Track Residual $(\mu \mathrm{m})$	Light Yield (PE)	Efficiency (\%)
Tracker 1	661	11.23	99.8
Tracker 2	643	10.73	99.6

- "noise" clusters under investigation
- Re-simulation of performance in solenoid including noise/background clusters in required

Controls and DAQ

- Lab 7 PCs set-up to control room spec
- DATE \& EPICS installed
- DATE problems with secondary PC - possible network issue connecting to primary PC database
- Calibration files all checked. Initialisation of 1 tracker prior to upgrades
- DATE code completed for some time - needs integration with control room

Plans

- Possible requirement for third VME crate/PC - 1 each for tracker VLSBs/readout, 1 for controls and monitoring
- Planned cool-down check, testing of DATE-DAQ, controls etc.
- Additional cosmic data and cold calibration to check "noise"
- Storage - light-tight tents, aircon, heating

