
Configuration
Database

David Forrest

University of Glasgow

Celebration
We have a configuration database system

This talk presents the state of the system as it is, my

thoughts on work going forward and answer questions

about integrating the database with other systems as

well as how to actually use it.

The configuration database (CDb) replaces the

spreadsheet and provides extra functionality for data

managing cabling, calibration, geometry and alarm

handler information in addition to a superset of the set

values by shifters which were contained in the

spreadsheet
For extra pointers on how to develop
apps using the CDb please see my talk
at CM26 or mice note x

This Talk

 I want to discuss:

 Status

 Performance

 Backups, security

 Handover

 Mitigating future issues

The Other Talk

 In the other talk I will discuss how to use

the configuration database web guis

 I will talk about development of G4MICE

applications which is a priority

 This is the 'what it is' talk and the next one

is the 'how do I use it' talk

Status
• The config database itself has been ready for some

time, certainly before the current diet of runs(!)

• The limiting factor has been installation of hardware

and interfaces between systems at RAL – external

to the database

• That is now complete!

• However the time taken to get the hardware in place

and achieve necessary network changes and delay

in links with other systems has severely shortened

the window between installation and end of PhD in a

manner which was not unforseen – see talks from

previous CMs

6

Diagram

DB Interface

Database Host

Web

Service

Web Services Host

PostgreSQL Java (JDBC),

XML, SAX

Apache Tomcat

Clients are independent of database and vice-versa

People don't fiddle with the DB directly but call safe pre-defined functions in the

Interface

Able to communicate via Tomcat over HTTP from laptop, cluster, grid node,

phone, anything

Runs

Tagged Runs

Calibrations

Alarm Handler

Geometry

And so on

 I haven't shown you cabling, which

changed, and I have to put some finishing

touches on. It'll be in the note.

 I have had to skip a lot. If you want more

detail on the design please consult the set

of previous talks at collaboration meetings.

How to Use It

• Control Room

• G4MICE

• Web Interface

• Future Development

The implementation

• The Configuration Database System

comprises:

• Postgresql Database Management System

• Apache Tomcat web server with Java based

interface for database functionality

• Web gui frontend

15

Diagram

DB Interface

Database Host

Web

Service

Web Services Host

PostgreSQL Java (JDBC),

XML, SAX

Apache Tomcat

16

API

 The API consists of lots of functions...

 eg:

 getSetValues(run_number)

 getSetValues(time)

 SetSetValues(...), updateSetValues() etc

 And so on for the different domains of the

database

17

API

 You can call these functions by

sending xml eg
 <?xml version='1.0' encoding='UTF-8'?>

 <SOAP-ENV:Envelope xmlns:SOAP-

ENV="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/1999/XMLSchema">

 <SOAP-ENV:Body>

 <ns1:getSetValues xmlns:ns1="urn:miceapi6" SOAP-

ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

 <ns1:input xsi:type="xsd:int">1999</ns1:input>

 </ns1:getSetValues>

 </SOAP-ENV:Body>

 </SOAP-ENV:Envelope>

 Of course you don't need to know anything about XML...this is just

whats under the hood of the client program which takes your request

for run 1999.

Web Guis

• Some simple use cases, for straight forward referencing,

will be provided using web guis.

• A link will be requested from the MICE website

(MICO+Software pages?)

• More on using these in my talk in the demonstration

session where you can see it all working

Meta Data Catalogue

• Decided with David Colling that we needed to

change manage integration of meta data

catalogue (MDC) with CDB

• Work on MDC progressed with CDB

integration in mind (eg Postgres platform)

• Integration should be straightforward in

principle, requirements for how we access it

should be carefully considered

Security

• The only writing to the database will be done from
the control room

• Other applications can only read (eg web user
interface)

• Database inputs are sanitised

Credit: xkcd.com

Backups

 A cron job runs on the web server and the DB server

 Currently db critical files sent to a backups folder on the same

machine every five minutes

 These are picked up by the backup bot once an hour – this

can be increased to match the db periodicity, but I have left

the DB backup frequency at 5 mins in the meantime. This is

not a technical limit.

 This also forms the perfect basis for a read-only mirror of the

DB itself, which I don't believe is immediate to our needs but

you can pursue

 API in a state which is easy to set up on another machine, can

use portable java files

 I don't want to talk about a mirror on this slide, leave it til the

questions at the end :)

Testing

• EPICS writes to the database at the end of every run

• It may or may not request information just prior to the start of a
run (eg if a previous configuration is to be repeated)

• Similarly, a G4MICE application would at maximum contact the
db once at the beginning of a simulation or analysis task

• ***When running many simulations on the Grid, accesses
are not synchronous or sustained***

• I expect a low traffic rate O(10) Hz, but I have not constrained the
performance of the DB which is tunable

• I have tested using performance metrics which I will now present

• I have artificially forced accesses to be synchronous. Not natural
circumstances. Had to learn some new tricks to do that

Caveats

• The situation I am testing is not normal running, it is far
beyond it.

• I am trying to address the concern – can a large
number of reads delay writing from the control room

• I do not believe this is a showstopper risk for many
reasons including but not limited to the possibility of
giving control room a reserved connection

• I am ignoring that and exaggerating the circumstances
then providing a test to allay fears....not to stir them :)

• Anyway we can have a dedicated connection for the
control room

Analysis of Whole System

Performance

• I wanted to look at synchronous remote

access from many locations

• So I decided to use the Grid (if there is a

simpler way of doing this please don’t tell me)

• The tests which I present here reach

significantly beyond our present need or

capacity(!)

Grid analysis

• I launched a job with N=50 scripts communicating with the

database over a sustained period of time

• I measure the time taken for connection, transfer of request,

result acquisition, close of connection, operation on result – a

realistic scenario.

N=0

 We want to compare the amount of time

taken to make a “write” of set values

(control room operations) with no traffic,

and with significant traffic

 So our starting point is no traffic, Number of

client nodes=N=0

 Time taken : 0m0.109s (obviously this

number will fluctuate depending on client

node)

Results N=50
 No DB failures

 Time for write: 0.110s (compared with 0.109s)

Traffic: ~600 accesses per second

Results N>50

 Maximum traffic not determined, probably around 3000 per second.

As the traffic approaches this, total time only drops by 0.06s

 Maximum traffic is not a hard limit, as the database is tunable;

presently configured for ~600 concurrent clients globally (Postgres

defaults to 100)

 We can calculate what the performance metric should be, identify

the magic number and tune for it

 If traffic went beyond this it would not crash any system, it would just

return an error FOR READ OPERATIONS

 However, even when traffic is beyond a maximum you can still

keep a reserved connection FOR WRITE OPERATIONS (control

room processes)

 The system is designed to cause as little disruption to running as

possible.

So...

 High traffic perhaps not very realistic

 But DB robust to high traffic anyway

 Total time taken for connection, request,

result, close of connection and parsing of

result ~ .1 sec

 Should not delay start of next run (cf DAQ

set up ~ 20 secs, can be done in parallel)

Data taking

• Its at the forefront of my mind throughout this that a failure in the

database, no matter how unlikely, should not impair data taking

• You can mitigate this on the client side

• What happens if the DB goes down? EPICs fails to write. It sets

an alarm. It writes later. Nothing should be lost. The run plan can

continue.

• It should take seconds for an expert to bring the CDB back up

again.

• Aside from networking issues I am not sure exactly how to bring

it down...but that should not be interpreted as a challenge-!

Maintenance

• I am at an advanced stage in providing documentation for
the database for users, maintainers and developers

• I have tried to cover things I think can come up eg ‘what if
the server goes down’ and ‘how do I add new functionality’

• See forthcoming MICENote. Acme Bear Wax sold separately.

Handover

• Paul Kyberd is well placed to oversee future work on
the database, by himself and others

• A couple of currently unnecessary but easily added
pieces of functionality have deliberately been left out
so that PaulK and co can try to implement them now

• If problems arise its best that they arise when I’m at
least contactable by phone for advice

• I have offered to run a workshop where we can do
real development of such features – early august?
BOOK NOW with Malcolm Ellis to avoid
disappointment.

Training

• You will need:

• 2x DB Experts

• N x DB Users

• 1 x DB developer

• 2 x Client Developers

• There may be some overlap between some

of these

The Pitfalls of the CDB

 It is difficult to organise a system which sits on the interface of

many systems.

 It is not just a technical challenge (easy?) but a human one

- You are everyones 'second priority', if lucky

 I have found that I cannot force people to make their system

interact with the database, or to use it

 But if we don't get this right, we will create our own problems

 So the system actually needs to be championed as well as

implemented, requires support at all levels to be driven

pushed and shoved forward, due to many interfaces with other

systems

“Technical” pitfalls and tips
 Don't write System.exit in an exception handler for a web

application. Use the <error> tag or SOAP fault string (see

template functions in MICEapi.java)

 Don't do dev work on a live copy of any of the database

systems (eg coding/compiling/stress testing), make a local

copy on your laptop

 Always sanitise database input to mitigate SQL injection,

especially for web guis. You can use parameterised queries

for this.

 Excellent tomcat/postgres support available in docs, google

and #postgres,#tomcat on irc.freenode.net

 Stick to the scope of configuration applications – resist

mission creep...should not be a data store or a personal

organiser!

Who's Who?

 Who to ask questions to ...

 CDB requirements & development up until now

+ web guis: David Forrest

 CDB going forward: Paul Kyberd (but it would

be nice if you leave the hard questions until after

the documentation and workshop!)

 EPICS client: James Leaver

 G4MICE client: Vassil Verguilov & Malcolm Ellis

My last things to do

 Give this presentation (I hope to get this

done sometime today)

 Finish documentation

 Finish cabling (client required!)

 Provide a hands on workshop

 Fix a couple of bugs found in demos (may

get done today)

Other things to do

 Client code!!!!!!

 Include diffuser thickness, proton absorber

thickness and run meta data like emittance

etc

 Training

 Verification

Thanks

• Thanks to those who have developed client

code so far (James Leaver, Malcolm…)

• Thanks to Malcolm Ellis for enormous

support throughout this project

• Thanks for trusting a PhD student to do this

• Thanks to everyone who attended the launch

party in the rack room - really, really sorry

about the mess.

Conclusions

• Overview

• Performance

• Testing

• Operation

• Future development

This is probably my last collaboration meeting, so

please take the opportunity to ask questions about

the system. I'm here just today.

