







# Progress and Schedule for the MICE/MuCool Coupling Coil Project

2010-07-08

HIT MICE CC Project Group – Fengyu Xu

Institute of Cryogenics and Superconductivity Technology

Harbin Institute of Technology, Harbin, China

**Presented by Steve Virostek - LBNL** 

2010-07-03 ICST/HIT -1









# **Outline**

- Management Plan
- Funding Situation
- Vendor's Production Plan (schedule)
- MuCool Coupling Coil Status
- Production Drawing Status
- Coil-Packaging Procedure (re. welding cover plate)
- Reforming Extended Cryogenic System for Magnet Training Test
- WBS for Reforming Extended Cryogenic System
- Manpower







### **Management Plan**

- A modified MOU between LBNL and ICST/HIT has been drafted (and approved by MICE Executive Board) based on meetings held during a May '10 visit to HIT by M. Zisman, D. Li and S. Virostek
- LBNL will take responsibility for the completion and final approval of the magnet fabrication drawings
- Prof. Wang Li (now at SINAP) is continuing to provide technical oversight on the project (through LBNL-SINAP collaboration)
- Engineering help at SINAP to complete the magnet cryostat design and drawings being led by Dr. Lixin YIN
- HIT is responsible for interface with the fabrication vendor (QiHuan Company) and for completion of the test system (with LBNL help)









# **Funding Situation**

- A contract for fabrication of the MuCool coil was previously placed
- The contract for 2 sets of MICE coupling coil magnets has been signed with the QiHuan Company (Beijing), totaling 1.94M RMB
- There has been another 1.10M RMB secured for:
  - Modification and completion of the test system (contract placed with a company local to HIT)
  - Powered testing of large test coil
  - Training of all three cold masses
  - Contract for cover plate welding





标识

#### MICE/MuCool Coupling Magnets



#### **Vendor's Production Plan**

- HIT provides signed production drawings (after approval by LBNL)
- Vendor fabricate magnet following drawings
- The vendor has provided the following milestones

|                  | 怀识  |   |                                               | 1 1   |             |             |                   |
|------------------|-----|---|-----------------------------------------------|-------|-------------|-------------|-------------------|
|                  | 号   | 0 | 任务名称                                          | 工期    | 开始时间        | 完成时间        |                   |
|                  | 0   |   | MuCool/MICE Coupling Magnet Production        | 899 d | 2009年2月16日  | 2012年7月26日  |                   |
|                  | 1   | ✓ | Bidding and signing the contract              | 62 d  | 2009年12月18日 | 2010年3月15日  |                   |
|                  | 2   |   | MuCool Coupling Magnet                        | 696 d | 2009年2月16日  | 2011年10月17日 |                   |
|                  | 3   |   | Cold Mass Assembly                            | 533 d | 2009年2月16日  | 2011年3月2日   |                   |
|                  | 86  |   | Fabricate components inside the cryostat neck | 148 d | 2010年8月10日  | 2011年3月3日   |                   |
|                  | 104 |   | Fabricate current lead components             | 121 d | 2010年8月10日  | 2011年1月25日  |                   |
|                  | 115 |   | Fabricate thermal shield components           | 519 d | 2009年4月9日   | 2011年4月5日   |                   |
|                  | 137 |   | Fabricate vacuum vessel components            | 190 d | 2010年8月10日  | 2011年5月2日   |                   |
|                  | 156 |   | Assemble all components together              | 207 d | 2010年10月18日 | 2011年8月2日   |                   |
| MuCool >         | 183 |   | Magnet test, factory acception                | 54 d  | 2011年8月3日   | 2011年10月17日 | <b>≺ 10/17/11</b> |
|                  | 190 |   |                                               |       |             |             |                   |
|                  | 191 |   | MICE-1 Coupling Magnet                        | 498 d | 2010年5月24日  | 2012年4月18日  |                   |
|                  | 192 |   | Fabricate Cold Mass Assembly                  | 313 d | 2010年5月24日  | 2011年8月3日   |                   |
|                  | 240 |   | Fabricate Components inside the cryostat neck | 107 d | 2011年3月4日   | 2011年8月1日   |                   |
|                  | 243 |   | Fabricate current lead components             | 60 d  | 2011年9月13日  | 2011年12月5日  |                   |
|                  | 246 |   | Fabricate thermal shield components           | 292 d | 2010年8月11日  | 2011年9月22日  |                   |
|                  | 250 |   | Fabricate vacuum vessel components            | 149 d | 2011年5月6日   | 2011年11月30日 |                   |
|                  | 253 |   | Assemble all components together              | 171 d | 2011年7月7日   | 2012年3月1日   |                   |
| <b>MICE #1 ≻</b> | 278 |   | Magnet test, factory acception                | 34 d  | 2012年3月2日   | 2012年4月18日  | <b>≺ 4/18/12</b>  |
|                  | 284 |   |                                               |       |             |             |                   |
|                  | 285 |   | MICE-2 Coupling Magnet                        | 533 d | 2010年7月13日  | 2012年7月26日  |                   |
|                  | 286 |   | Cold Mass Assembly                            | 304 d | 2010年7月13日  | 2011年9月9日   |                   |
|                  | 334 |   | Fabricate components inside the cryostat neck | 107 d | 2011年3月4日   | 2011年8月1日   |                   |
|                  | 337 |   | Fabricate current lead components             | 50 d  | 2011年9月13日  | 2011年11月21日 |                   |
|                  | 340 |   | Fabricate thermal shield components           | 110 d | 2011年4月22日  | 2011年9月22日  |                   |
|                  | 343 |   | Fabricate vacuum vessel components            | 149 d | 2011年5月6日   | 2011年11月30日 |                   |
| MIOT "O          | 346 |   | Assemble all components together              | 195 d | 2011年9月12日  | 2012年6月8日   | 4710014C          |
| MICE #2 ≻        | 371 |   | Magnet test, factory acception                | 34 d  | 2012年6月11日  | 2012年7月26日  | <b>≺7/26/12</b>   |

2010-07-08 ICST/HIT -5







- Cold mass forgings for 3 sets of coupling coils have arrived at the vendor (except for one cover plate forging ring).
- Superconducting wire, epoxy, and fiber glass cloth to be used for the MuCool coupling coil have been transported to the vendor.
- The winding system designed by ICST has been re-built at the vendor, and their personnel were trained on the winding procedure last year.
- The welding scheme for the cold mass cover plate and attachment of the cooling tubes has been established; a contract will be placed by ICST soon.
- Based on the winding procedure, the vendor is attaching ground insulation plate to the coil bobbin

2010-07-08 ICST/HIT











A finish machined coil cover plate











Coil bobbin ready to mount on winding machine











**Curing of the first layer of bottom ground insulation** 









# **Production Drawing Status**

- The drawings of the cold mass assembly were signed/approved by Fengyu Xu on behalf of Li Wang and sent to the vendor to start the fabrication process.
- Cold mass drawings are being verified by LBNL by means of an independent 3D CAD model.
- The 3 cryocooler design is in the calculation/check stage. Li Wang and her three students are working on completing this process.
- The remaining drawings (cryostat, etc.) are being generated at SINAP (led by Lixin YIN)









### <u>Production Drawing Status – LBNL Progress</u>

- LBNL will approve the cold mass related fabrication drawings through verification using an independent 3D model
- LBNL has verified 90% of the coldmass fabrication drawings
- Verification of the coldmass support drawings are 80% done
- Verification of the quench protection drawings is ongoing

2010-07-08 ICST/HIT -1'









# **Coupling Coil Cold Mass Drawing Example**











#### LBNL Coupling Coil Cold Mass 3D Model



LBNL 3D model created from the Harbin drawings

 LBNL has verified 90% of the fabrication drawings of the cold mass from ICST by

creating a 3D model and studying it for any errors and omissions

 These drawings from Harbin are being used by the QiHuan Company to fabricate the coldmass components











# **Quench Protection System Drawings**

 Verification of the quench protection system drawings is ongoing at LBNL







 LBNL is in constant communication with Harbin to resolve any issues with the drawings

2010-07-08 ICST/HIT -14-









# Coil-Packaging Procedure (related to welding cover plate)

- The coil-packaging procedure will be submitted to LBNL
- The key technical point is that a gap will occur between the banding and cover plate ID.
- First weld the cover plate, then vacuum impregnate epoxy into the gap.
- Another key technical point is that the deformations after welding aluminum tubes onto the cover plate will affect installation of the cold mass support seats and the positioning accuracy.



2010-07-08 ICST/HIT -15-









# Reforming Extended Cryogenic System for Magnet Training Test

2010-07-03 ICST/HIT -16





1. Simplified flowchart and facilities of extended cryogenic system: replaced thermo-siphon cooling principle from original design with forced two-phase flow.





The transfer lines for supply LHe and return GHe will shorten to 5m from about 15m.

2010-07-08 **ICST/HIT** 





2. There is a disadvantage for the new layout design: the coil is closer to a wall made of reinforced concrete and with a steel support. So, the magnetic forces on the coil, wall and support need to be calculated and the cold mass support system appropriately designed.





2010-07-08 ICST/HIT -18-











- 3. Increase minimum inner diameter of the LHe supply tube to DN10mm from the original DN4mm to reduce pressure drop in pipes.
- 4. Improve power lead design to maintain the temperature of the cold end at 4.2K; moreover, improve its operational stability.
- 5. The cryogenic insulators will operate at LHe temperature instead of the original large temperature difference at both ends; this will prevent a helium leak due to differential thermal shrinkage.
- 6. Add a storage tank of 30m<sup>3</sup> to recycle the quench helium gas to reduce magnet training costs.













- 7. Add an 80K radiation shield inside the vacuum vessel to reduce the radiation heat leak.
- 8. Instead of an O-ring seal, fully weld the top flange to increase the seal quality of vacuum vessel; the disadvantage is that the top plate must be removed by cutting when changing coils.



2010-07-08 ICST/HIT -20-





9. System heat loads (at 4.2K) for the MuCool coupling coil training test

| Components          | Heat loads (W) |  |  |
|---------------------|----------------|--|--|
| current leads       | 0.94           |  |  |
| mechanical supports | 2.77           |  |  |
| cryogenic valve     | 1.00           |  |  |
| access ports        | 1.59           |  |  |
| radiation           | 8.35           |  |  |
| transfer line       | 5.24           |  |  |
| Total               | 19.88          |  |  |

2010-07-08 **ICST/HIT** 







#### 10. Liquid helium volume for MuCool coupling coil training test

| Components              | LHe volume (liter) |  |  |
|-------------------------|--------------------|--|--|
| Cooling tubes and tanks | 27                 |  |  |
| Gas-liquid separator    | 16                 |  |  |
| Transfer lines          | 0.4                |  |  |
| Total                   | 43.4               |  |  |

2010-07-08 **ICST/HIT** 







#### 11. Budget for reforming the extended cryogenic system

| No. | Items                                                                                                       | Quotation (10 <sup>4</sup> RMB) | Comments                          |
|-----|-------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------------|
| 1   | Vacuum Chamber (include 3 service tower)                                                                    | 12.0                            |                                   |
| 2   | Cryogenic valves (include 1 check valve, 1 pneumatic shutoff valve),2 relief valves,3 manual shutoff valves | 1.0                             |                                   |
| 3   | Lhe Tanks (20L,totally 1 entity)                                                                            | 0.2                             |                                   |
| 4   | Power leads(300A,1 pair)                                                                                    | 2.2                             | 2 for use 2 for backup            |
| 5   | Lhe Bayonet ( 2 sets )                                                                                      | 2.2                             | WEKA                              |
| 6   | LN2 Dewar ( 500L,1 set )                                                                                    | 4.0                             |                                   |
| 7   | Thermal shield (with cooling pipes)                                                                         | 1.8                             |                                   |
| 8   | Cold mass support system (6 sets)                                                                           | 1.5                             |                                   |
| 9   | Thermal shield support system                                                                               |                                 |                                   |
| 10  | Cryogenic insulator ( 4 pairs )                                                                             | 0.4                             | 3 pairs for use 1 pair for backup |
| 11  | Lhe transfer line (with vacuum jacket, 10m, 2 lines)                                                        | 1.0                             |                                   |
| 12  | Air heat exchanger (2 entities)                                                                             | 1.0                             |                                   |
| 13  | MLI material(provided by LBNL)                                                                              |                                 |                                   |
| 14  | Ghe recovery storage tank (30m3,1 entity)                                                                   | 6.0                             |                                   |
| 15  | Final installation and commissioning charges (include labor costs)                                          | 3.0                             |                                   |
| 16  |                                                                                                             |                                 |                                   |
|     | Total                                                                                                       | 36.3                            |                                   |







#### 12. WBS for reforming the extended cryogenic system

| Reform cryogenic system for magnet training                   | 139 工作日 | 2010年6月16日  | 2010年12月27日 |            |
|---------------------------------------------------------------|---------|-------------|-------------|------------|
| Draft the report on flowchart and principles                  | 5 工作日   | 2010年6月25日  | 2010年7月1日   | F. Y. Xu   |
| Submit the report to LBNL                                     | 2 工作日   | 2010年7月2日   | 2010年7月5日   | LBNL       |
| Get opinions from LBNL                                        | 5 工作日   | 2010年7月6日   | 2010年7月12日  | LBNL       |
| Engineering Design                                            | 35 工作日  | 2010年7月13日  | 2010年8月30日  | X.K. Liu   |
| Draw 3D model                                                 | 10 工作日  | 2010年7月13日  | 2010年7月26日  |            |
| Check and update 3D model                                     | 5 工作日   | 2010年7月27日  | 2010年8月2日   |            |
| Translate 3D model to 2D drawings                             | 20 工作日  | 2010年8月3日   | 2010年8月30日  |            |
| Procure components                                            | 72 工作日  | 2010年6月16日  | 2010年9月23日  |            |
| Feed-throughs                                                 | 40 工作日  | 2010年6月16日  | 2010年8月10日  | A. B. Chen |
| Bayonets                                                      | 60 工作日  | 2010年7月2日   | 2010年9月23日  | A. B. Chen |
| Super-insulation (by LBNL)                                    | 50 工作日  | 2010年7月2日   | 2010年9月9日   | LBNL       |
| Air heat exchanger                                            | 30 工作日  | 2010年7月5日   | 2010年8月13日  | A. B. Chen |
| Relief valves and manual shutoff valves                       | 20 工作日  | 2010年7月6日   | 2010年8月2日   | A. B. Chen |
| LN2 Dewar                                                     | 30 工作日  | 2010年7月7日   | 2010年8月17日  | A. B. Chen |
| Ghe recovery storage tank (30m3)                              | 30 工作日  | 2010年7月7日   | 2010年8月17日  | X. K. Liu  |
| Gauss meter                                                   | 30 工作日  | 2010年7月15日  | 2010年8月25日  | F. Y. Xu   |
| Remove unnecessary facilities, clean the field                | 20 工作日  | 2010年7月13日  | 2010年8月9日   | X.K. Liu   |
| Check all components of refrigerator                          | 30 工作日  | 2010年8月10日  | 2010年9月20日  | A. B. Chen |
| Machine and process the parts/components                      | 38 工作日  | 2010年7月27日  | 2010年9月16日  | X.K. Liu   |
| Vacuum Chamber                                                | 35 工作日  | 2010年7月27日  | 2010年9月13日  |            |
| Radiation shield                                              | 30 工作日  | 2010年8月2日   | 2010年9月10日  |            |
| Transfer line                                                 | 30 工作日  | 2010年8月5日   | 2010年9月15日  |            |
| Cold mass support and Radiation shield supports               | 20 工作日  | 2010年8月20日  | 2010年9月16日  |            |
| Current Leads                                                 | 20 工作日  | 2010年8月10日  | 2010年9月6日   |            |
| Cryogenic insulators                                          | 20 工作日  | 2010年8月10日  | 2010年9月6日   |            |
| Assemble final system for large coil                          | 35 工作日  | 2010年9月21日  | 2010年11月8日  | X. K. Liu  |
| Integrate extended cryogenic control system                   | 30 工作日  | 2010年8月9日   | 2010年9月17日  | F. Y. Xu   |
| Integrate signal acquisition system of superconducting system | 10 工作日  | 2010年9月20日  | 2010年10月1日  | F. Y. Xu   |
| Integrate power system of superconducting magnet              | 5 工作日   | 2010年10月4日  | 2010年10月8日  | F. Y. Xu   |
| Commissioning                                                 | 20 工作日  | 2010年11月9日  | 2010年12月6日  | A. B. Chen |
| Vacuum pumping for jacket                                     | 10 工作日  | 2010年11月9日  | 2010年11月22日 |            |
| Pump and purge for helium pipes                               | 5 工作日   | 2010年11月23日 | 2010年11月29日 |            |
| First Cold down to 4.2K                                       | 5 工作日   | 2010年11月30日 | 2010年12月6日  |            |
| Training large prototype coil                                 | 15 工作日  | 2010年12月7日  | 2010年12月27日 | F. Y. Xu   |
| Training MuCool coupling coil                                 | 30 工作日  | 2011年1月7日   | 2011年2月17日  | F. Y. Xu   |











# **Manpower**

| Description                                                        | Qty. | Name                     |
|--------------------------------------------------------------------|------|--------------------------|
| Local manager                                                      | 1    | Fengyu Xu                |
| Advanced technical advisor                                         | 2    | Haoshu Chen, Canglian Yi |
| Associate professor (cryogenic test system construction and test)  | 1    | Anbin Chen               |
| Lecturer (mechanical engineer, designer and technician supervisor) | 1    | Xiaokun Liu              |
| Mechanical engineer                                                | 1    | Kai Song                 |
| Mechanical technician                                              | 2    | Xiyun Yang, Xinhai Yuan  |
| Electrical/Winding technician                                      | 1    | Deli Wang                |

Note: A local collaborating vendor can provide other technicians when needed.









# **Summary**

- A modified management plan is being put in place
- The funding to complete the project is available at HIT
- Early milestones will be closely monitored by LBNL
- The design and associated drawings will be completed soon
- Preparations for winding the MuCool coil are under way
- ICST has developed a plan to modify the test system