

TOF Software

Y. Karadzhov

Status of the TOF Calibration

RMS

z2 / ndf

80.09 / 75 Constant 108.4 ± 2.6 47.85 ± 1.96 103.3 ± 1.5

Δt [ps]

Time resolution after the calibration:

- TOFO 51ps;
- TOF1 58ps;
- TOF2 52ps.

We may need more data:

- 1. Defocused beam improve the calibration in the corners of TOF1:
- 2. Positron beam for absolute calibration of TOFO.

TofRec::Reset() - the reconstruction is *Reset* and is ready to process the new event.

TofRec::MakeDigits() if we have VmeTdcHit and VmefAdcHit in a given channel of the detector TofDigit object is created.

TofRec::MakeSlabHits() - TofSlabHit object is created if we have digits from the two PMTs of the slab.

TofRec::MakeSpacePoints() - TofSpacePint object is created if we have TofSlabHits from the two planes of the detector.

TofRec::MakeSpacePoints()

1. Find the trigger hit TriggerKey* ProcessTrigger()

- Try all possible combinations.
- For each combination apply the corrections and examine the resulted value of the time.
- Calibration constants are defined in such a way that the measured time of the hit that generates the trigger have to be ~0. This can be used to recognize the trigger hit.
- The default cut is -500ps \leftarrow 4 \leftarrow 500ps \leftarrow (~4 σ , see the plot).
- The cut can be controlled by the user
 via TofRec::SetTriggerCut(double cut)

TofRec::MakeSpacePoints()

2. Check for more real hits

- Check all possible combination.
- Apply the corrections and examine the resulted value of the difference between the time measured by the two slabs.
- The time difference have to be ~0. This can be used to recognize the real hit.
- The default cut is -500ps Δt < 500ps (see the plot).
- The cut can be controlled via
 TofRec::SetSpacePiontCut(double cut)

The efficiency of the reconstruction is an issue and have to be investigated.

- 1. The reconstruction can fail because some of the slabs are not calibrated.
- 2. The reconstruction can fail because no trigger hit is found.

The efficiency is calculated and can be accessed by the user via

- double TofRec::GetEfficiency()
- double TofRec::GetInefficiency(NoCalibration)
- 3. double TofRec::GetInefficiency(UnknownTrigger)

Or via double TofRec::Print()

Do not call these functions before the beginning of the work !!!.

The event is counted as a successfully reconstructed if we have at least one SpacePiont in the trigger station (trigger hit is found).

Conclusions

- 1. Nothing unexpected in the performance of the TOFs.
- 2. Have to understand better the trigger generation and recognition issue.
- 3. We need interface between the DB and the reconstruction. To be done.