

EPICS Progress and Plans

IOCs, Alarm Handler, & Target DAQ

Pierrick Hanlet
Illinois Institute of Technology

- Purpose
- Alarm Handler
- Target Controller (James)
- High Voltage Monitoring
- Gateway
- Summary

Purpose within MICE

- What we do NOT do
 - -PPS will be in place to protect people
 - We do not interface with PPS
 - No shared hardware
 - -PPS is the highest priority, monitoring must *not* interfere
 - Properly designed control systems trip (hardware and/or software) to protect the device

Purpose within MICE

• What we <u>DO</u> do with alarm handling

- Monitoring protects equipment
 - * Detect changes in hardware/environment which may affect equipment
 - * Warn shifters when significant changes occur
 - * Shifters must act before hardware fails
- Monitoring protects data quality
 - * MICE is a precision expermiment necessitating control/understanding of systematic errors
 - * Must monitor changes in detector performance
 - * Warn shifters when significant changes occur
 - * Shifters must act <u>before</u> data quality is affected
- NOTE: shifter intervention is required!!!

Purpose within MICE

• Examples:

- Monitoring protects equipment
 - * Unstable AC units in MICE hall
 - * Longer periods when MICE hall is interlocked
 - * Linde Compressor might fail when hall is too hot
 - * Now imagine the MICE hall packed with equipment
- Monitoring protects data quality
 - * HV sags ToF calibration changes
 - * AC unit fails ToF calibration changes
 - * Magnet currents change different beam than expected

Alarm Handler

• Two levels of alarms:

- Minor announces to shifters that values are changing out of tolerance
- -Major announce to shifters that if problem is not addressed, damage may occur to equipment and/or data quality may be compromised

• "Significant" Alarms

- Generally do not know appropriate alarm limits apriori
- Must be sensitive to real alarm states
- Must not cry wolf
- Iterative process to set limits
- Requires feedback from MOM/shifters to optimize values

Alarm Handler

- Existing alarm handlers:
 - BeamLine
 - -PID
 - Environment
 - DAQ/Electronics
- Future alarm handlers:
 - Tracker
 - -Tracker Magnets
 - -Absorber
 - $-\mathbf{RF}$
- Modify configuration files to add new devices
- Added aliases for better descriptions

- complete decay solenoid
- add beamstop
- proton absorber and target coming soon

Alarm Handler

Alarm Handler: DAQ	
<u>F</u> ile <u>A</u> ction <u>V</u> iew <u>S</u> etup	<u>H</u> elp
E DAQ	
Execution Chature Level Action	
Execution Status: Local Active Mask <cdatl>: <cancel,disable,noack,noackt,nolog> H=noAck 1hr timer</cancel,disable,noack,noackt,nolog></cdatl>	⊒ SilenceOneHour
Group Alarm Counts: (ERROR, INVALID, MAJOR, MINOR, NOALARM)	☐ SilenceCurrent
Channel Alarm Data: <status, severity="">, <unack severity=""></unack></status,>	Silence Forever: Off
Filename: /home/epics/epics/Config/ALHConfig/daq.alhConfig	ALH Beep Severity: MINOR

• new IOC converting DATE and CDB logic to alarm levels

Target Controller

- <u>Stage 1 upgrade</u> EPICS Control functionality includes:
- Set delays
- Set / monitor Target depth
- Park / hold, start / stop actuation
- Monitor hardware status

- Target Controller
 Stage 1 upgrade
 complete
 - Will perform soak test when Target 2.4 installed in R78 (provisionally during August)
- Have purchased 2 replacement Target Controller PCs
 - Original machines incompatible with USB interface of new hardware

Configuration Database

- EPICS CDB Interface now operational
- Successfully integrated with DATE for automated backup of run set point values
- User entry form enables submission of parameters not available as PVs
 - No. of manual entry items will decrease as further systems are integrated with EPICS
- First routine database submissions made during shift last Wednesday
 - Will implement automatic entry of target actuation numbers next week for increased user friendliness

- Two High Voltage Systems:
 - 2 daisy chained CAEN SY127 crates:
 - * Crate 1: CKOV (8 channels) and GVA1
 - * Crate 2: BPM (4 channels)
 - -1 CAEN SY527 crate
 - * ToF 0: (40 channels)
 - * ToF 1: (40 channels)
 - * ToF 2: (40 channels)
 - * KL: (46 channels)
- CAEN 127 system controlled via RS232 (1980's technology)
- CAEN 527 system controlled via pci interface (1990's technology)

• CAEN SY127 system ready:

- IOC working
- -switches between 2 crates and reads every minute
- most important control features implemented (needs final test)
- alarm handler ready (needs final test)
- channel archiver (almost complete)

• CAEN 527 system read (almost ready)

- no monitoring and occasionally loosing set voltages!!!
- IOC working
- reads crate every minute
- channel archiver (almost complete)

• We now have a bastion machine!!!

• May have to have fixed IP addresses for remote machines

Summary and Conclusions

- new controllers being developed
- new controllers will be implemented after run
- alarm handler operational for beamline elements, daq, and environment
- stage 1 target controller upgrade complete
- more to do, but awaiting shutdown