

MDG

Demonstrating the momentum-emittance matrix with TOF0 and TOF1

Analysis of runs since Q3 was fixed, and re-analysis of the December 2010 runs

Mark Rayner, The University of Oxford CM27 – 7/7/2010 – Rutherford Appleton Laboratory

6D phase space upstream of the cooling channel

Relevant for future 6D cooling investigations LiH wedge absorbers etc...

Introduction

- Purpose of the beam line:
 - Generate the emittance-momentum matrix elements in pion \rightarrow muon decay beam lines

		P_{μ} (MeV/c)		
		140	200	240
ϵ_{4D} (mm·rad)	3	t=0.0 mm	t=0.0 mm	t=0.0 mm
		P _{dif} =151	P_{dif} =207	P_{dif} =245
		α=0.2	α =0.1	α=0.1
		β =56 cm	β =36 cm	β =42 cm
	6	t=5.0 mm	t=7.5 mm	t=7.5 mm
		P_{dif} =148	P_{dif} =215	P_{dif} =256
		α =0.3	α =0.2	α =0.2
		β =113 cm	β =78 cm	β =80 cm
	10	t=10.0 mm	t=15.5 mm	t=15.5 mm
		P_{dif} =164	P_{dif} =229	P_{dif} =267
		α =0.6	α =0.4	α =0.3
		β =198 cm	β =131 cm	β =129 cm

Design optics at the upstream diffuser face

- Phase space reconstruction by TOF0 and TOF1
 - Longitudinal momentum resolution O(5 MeV/c)
 - Transverse position resolution O(2 cm)
 - Transverse momentum resolution $O(p_x^{\text{max}}/70)$
 - Dependent on p_x^{max} , the maximum un-scraped momentum of the optics in question
- (Take advantage of the unique mapping of points in phase space)
 - (Apart from stochastic effects like scattering)

Reference magnet currents for the elements studied here

Compendium of DS-BL key locations

Marco's sterling investigative work → our best understanding of the beam line geometry yet: (Positions refer to the centre of Q4)

SURVEY + addendum Jan 2010 (should be the latest take)

(*) Relative distances from NOTE 176 wrt to MICE CENTRE. DS face is fixed to 6010, US face assumes thickness=7.5 mm

Trace space comparison with Monte Carlo at TOF1

HISTORICAL ASIDE

Time of flight

The electron peaks

Yordan, CM26:

TOF0 resolution = 51 psTOF1 resolution = 62 ps

Therefore:

T.o.F. resolution = 80 ps

From this data:

Measured electron width ~ 120 ps > 80 ps

Therefore:

Natural electron width ~ 89 ps RMS path length deviation ~ 2.7 cm

Estimating the true absolute time of flight

Muon path length TOF0 – TOF1 for a G4BeamLine muon beam from Marco

Bias on the measurement of a muon's p:

$$\frac{\Delta p}{p} = \frac{E^2}{m_0^2} \left(\frac{\Delta s}{s} - \frac{\Delta t}{t} \right)$$

? True electron path length = L + 4 cm ?

If so, by normalizing $(t_1-t_0)|_{\text{electron peak}} = L/c$ we bias time of flight by $\Delta t = -133$ ps

And we reconstruct with a bias $\Delta p \sim +2.2$ MeV when $p_{abs} = 140$ MeV/c $\Delta p \sim +5.5$ MeV when $p_{abs} = 200$ MeV/c $\Delta p \sim +8.8$ MeV when $p_{abs} = 240$ MeV/c

→An electron path length calibration is important

To the best of my knowledge, note 242 is correct December 2009 – July 2010, and refers to TOF centres Therefore calibrate $(t_1-t_0)|_{\text{electron peak}} = (796.6 \text{ cm} + 4 \text{ cm}) / \text{c} = 26.7 \text{ ns}$

PID cuts and reconstructed momentum

6-200, old and new optics

A: 6-200

(old)

C: 6-200

Demonstrating the momentum-emittance matrix with TOF0 and TOF1

The other three elements

Conclusion

- Momentum bias #1 Assuming the wrong geometry
 - Overestimated muon momentum
 - Fixed, to the best of our knowledge
 - Precise survey information is essential for TOFs
- Momentum bias #2 Neglect electron path length > L
 - Calibrate electron ToF to be too quick
 - Reconstruct muon ToF to be too quick
 - Overestimate muon momentum
 - Corrected approximately, but Monte Carlo required (controversial)
- Momentum bias #3 Neglect muon path length > L
 - Path length S in $p/E = S/\Delta t$ is too small
 - Underestimate muon momentum
 - Fixed see IPAC paper, and a plethora of previous talks
- In the last few days progress has been made in demonstrating the ε -P momentum matrix
 - The *OnlineReconstruction* application now reconstructs phase space in real time from the socket
 - See talk on Friday
- Analysis steps in progress:
 - Swim the beam to the diffuser face:
 - What fraction of muons fall within the acceptance?
 - How do the measured and design optics compare?
 - Are x-y asymmetries problematic for matching?
 - What are the transverse optics of the subset of muons which may be continuously accelerated by peak RF in the MICE cavities?
 - Analyze data from the magnet current scan data, and optimize the matrix element optics

Comparison of matched and measured simulated input beams

Extra slides

Reconstruction procedure

Momentum reconstruction: 6-200 simulation

Simulation/data comparison at TOF1 (6-200 matrix element)

This simulation uses the geometry from before TOF1 was moved

$$\Delta z = -16.7 \text{ cm} = -0.56 \text{ ns} / \text{c}$$

MICE note 242 – the old, incorrect understanding

