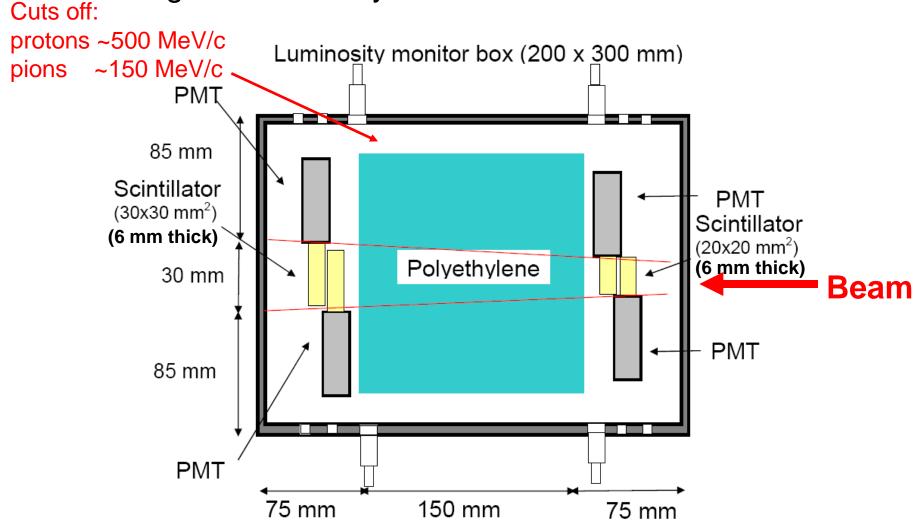
Luminosity Monitor Status

MICE Collaboration Meeting 27
5 July 2010
Paul Soler, David Forrest
Danielle MacLennan

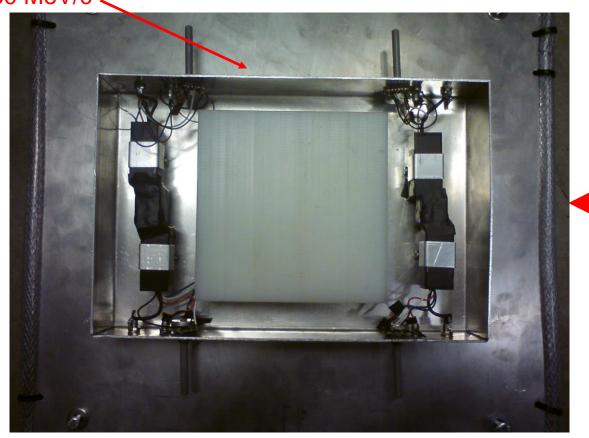


Purpose of Luminosity Monitors

- □ Luminosity monitor to determine particle rate close to target and extract protons on target as function of depth – independent of beam loss monitors.
- □ The luminosity monitor was installed and commissioned in the ISIS vault in January and February 2010
- Further test runs to validate the gate width were carried out in April 2010
- The luminosity monitor (LM) is now an integral part of MICE and has been taking data regularly since February
- The LM scaler information is now standard and can be used to normalise all future analyses with a measure that is proportional to the protons on target (POT) and independent of the beamloss (which is written on a separate data stream)
- Meanwhile, simulations to understand and normalise LM to POT are ongoing.

Luminosity Monitor Design

☐ Final design of luminosity monitor:

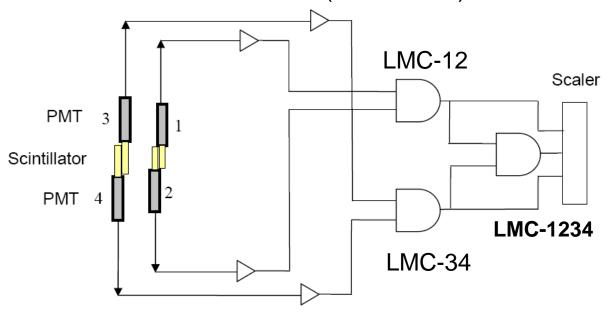


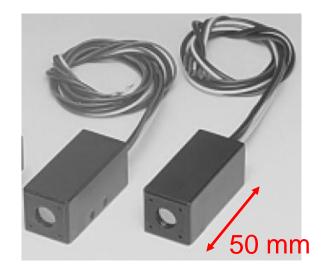
Luminosity Monitor Design

□ Final design of luminosity monitor:

Cuts off:

protons ~500 MeV/c pions ~150 MeV/c




LM Status, MICE CM27, 5 July 2010

Beam

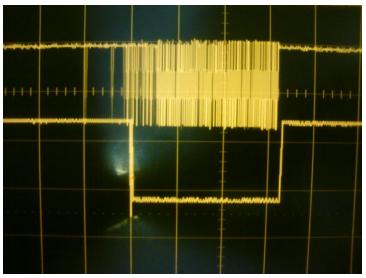
Photomultipliers

- □ Use four Hamamatsu H5783P PMTs
- □ Readout consists of three signals within the 3.23 ms MICE experimental gate:
 - Coincidence 12 (LMC-12) scaler 08
 - Coincidence 34 (LMC-34) scaler 09
 - Coincidence 1234 (LMC-1234) scaler 10

Power provided by two low voltage power supplies:

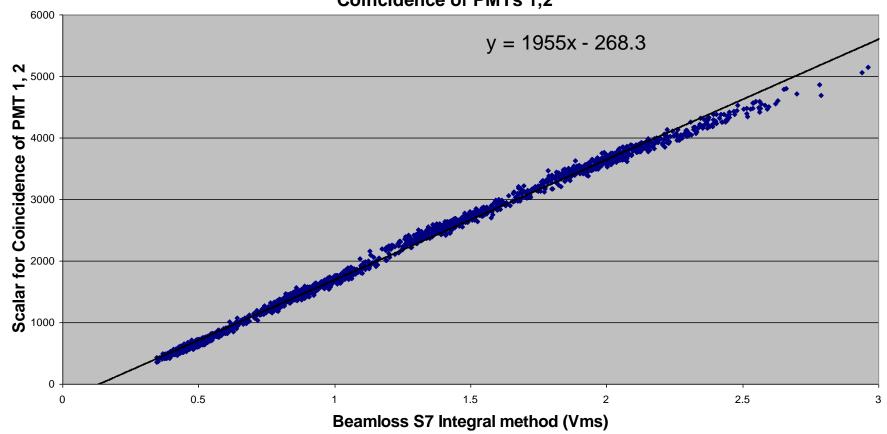
PMT-1: 10.5 V

PMT-2: 10.7 V

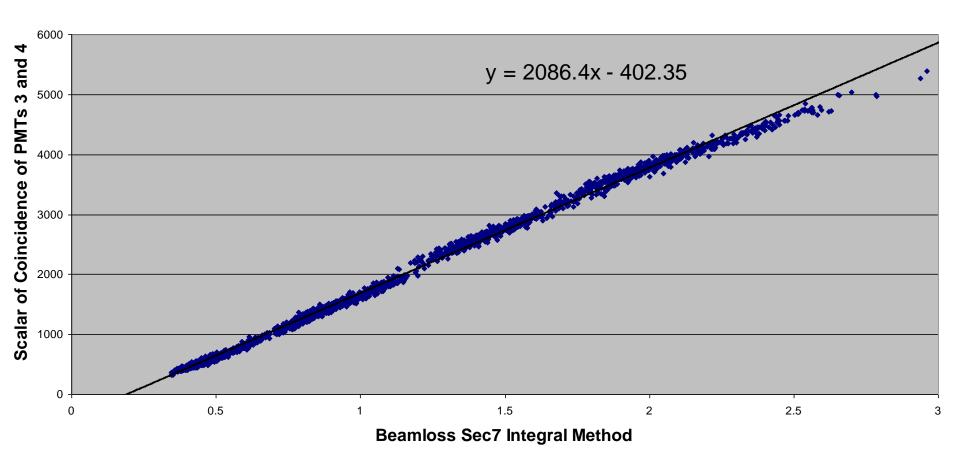

PMT-3: 10.7 V

PMT-4: 10.5 V

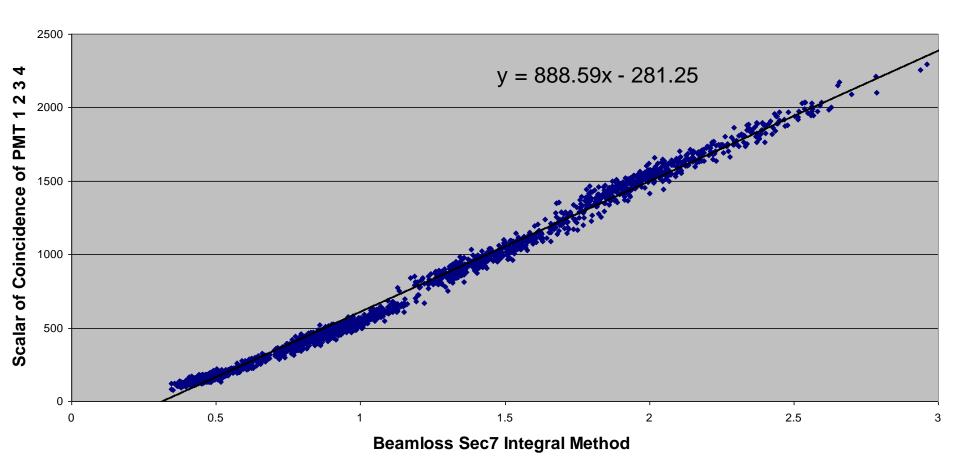
Discriminator set at 500 mV: very low noise!


Commissioning Luminosity Monitors

- Commissioning mainly 7 February
- LM signals inside 3.23 ms experimental trigger gate

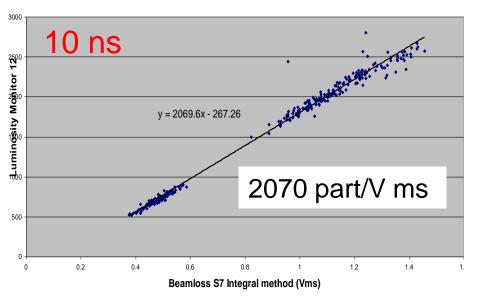


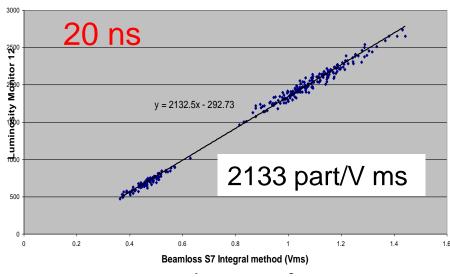
- □ ISIS bunches 100 ns long and 325 ns separation, so net gate width is 3.23x(100/325) = 1 ms
- □ In February, set width of LM signals to 40 ns, but concern that gate width too big and may cause saturation at high rate
- □ In April 20-21 performed runs as a function of gate width to check dependence with gate width (BL limited to <1.4 V)</p>

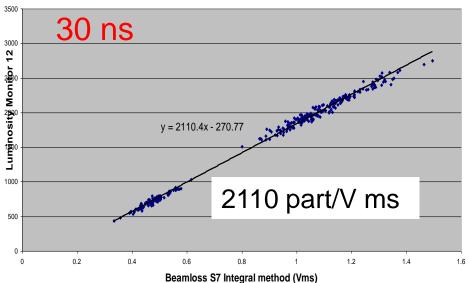

Luminosity Monitor Commissioning Runs Coincidence of PMTs 1,2

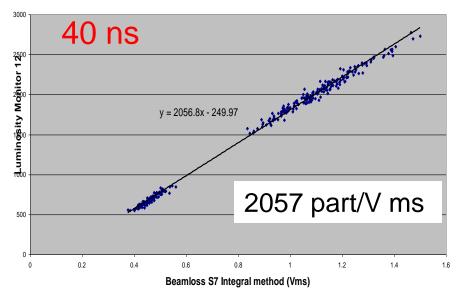
Luminosity Monitor Commissioning Runs Coincidence of PMTs 3, 4

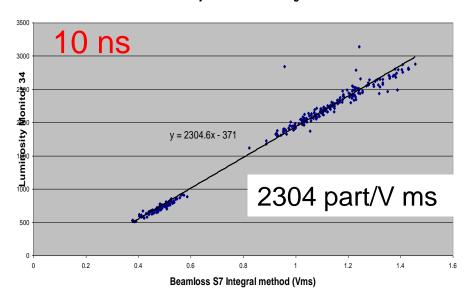
Luminosity Monitor Commissioning Runs Coincidence of PMT 1,2,3,4

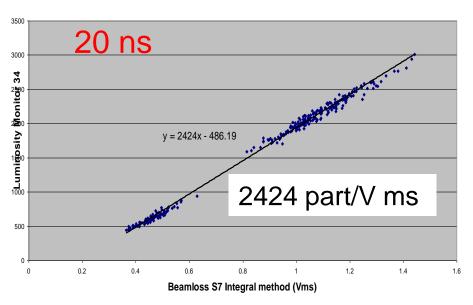

- Summary of results:
 - LMC-12: 1955 particles per V.ms / 4 cm²
 - LMC-34: 2086 particles per V.ms / 9 cm²
 - LMC-1234: 889 particles per V.ms / 4 cm²
- □ Assume beamloss calibration of 3.5x10⁻¹⁴ V.s/pot at 9 ms, therefore: 1 V ms =2.9x10¹⁰ pot
 - LMC-12: 1.71x10⁻⁸ particles/(pot . cm²)
 - LMC-34: 0.81x10⁻⁸ particles/(pot . cm²)
 - LMC-1234: 0.78x10⁻⁸ particles/(pot . cm²)

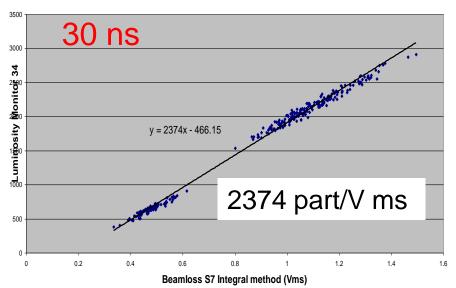

Coincidence 34 and 1234 have same rate per cm²

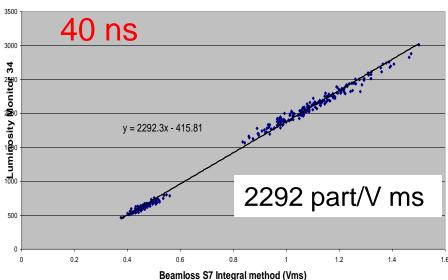

Data taken April 2010 – LM12

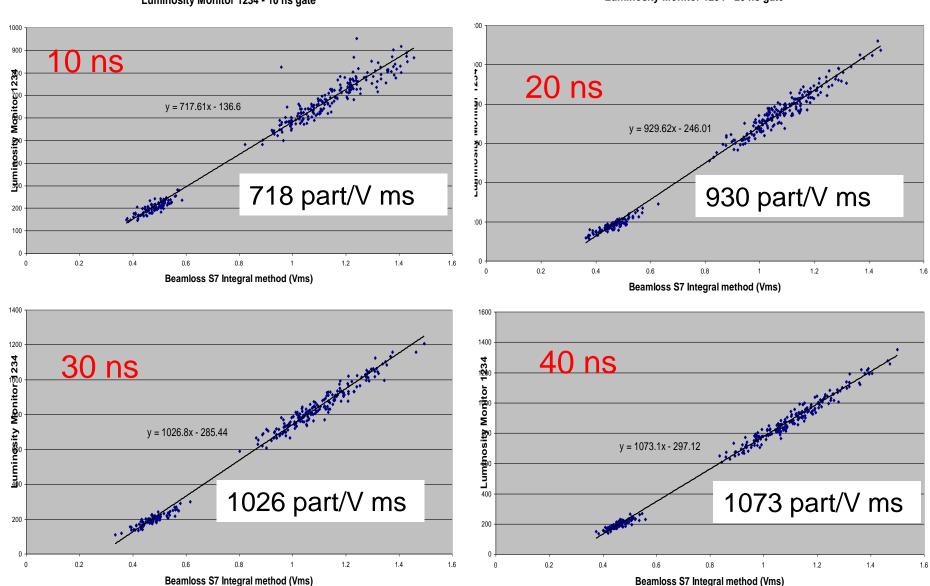

Luminosity Monitor 12 - 10 ns gate






Data taken April 2010 - LM 34


Luminosity Monitor 34 - 10 ns gate

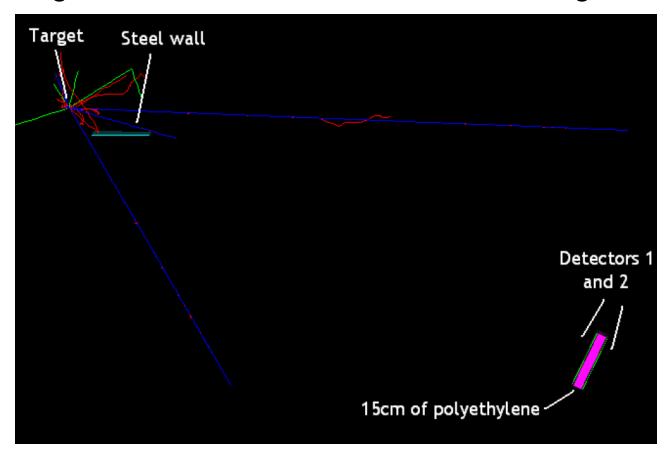


Data taken April 2010 - LM 1234

Luminosity Monitor 1234 - 10 ns gate

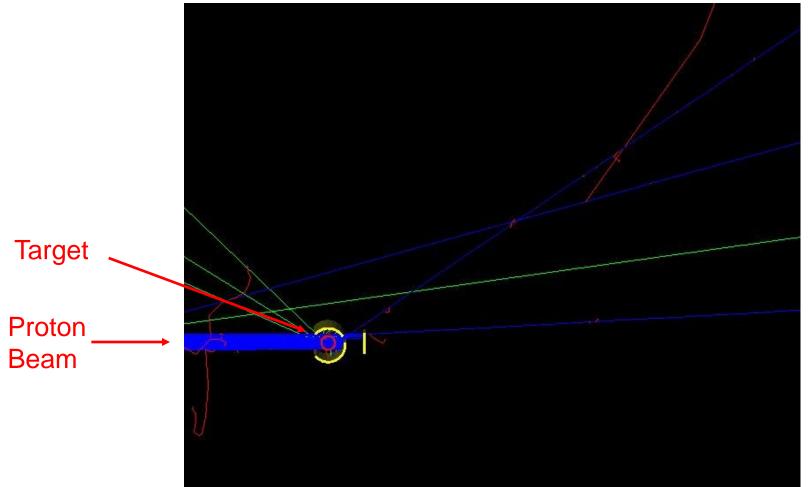
Luminosity Monitor 1234 - 20 ns gate

Data taken April 2010


Summary of results:

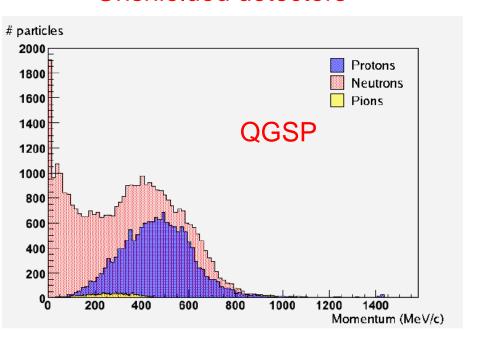
Rate vs gate width (ns)	LMC-12 (part/ V ms)	LMC-34 (part/ V ms)	LMC-1234 (part/ V ms)
10 ns	2070	2304	718
20 ns	2133	2424	930
30 ns	2110	2374	1026
40 ns	2057	2292	1073
Average	2092	2349	937
Feb 2010	1955	2086	889

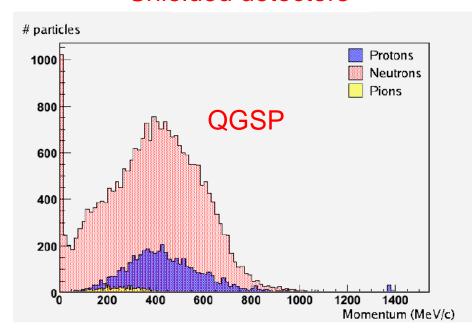
- □ LMC-12 and LMC-34 seem to be independent of gate width, while LMC-1234 seems to increase with gate width
- Conclusion: set gate at 10 ns to minimise pile-up


Comparison to simulations

- We have run simulations using G4Beamline (D. MacLennan)
- Set up cylindrical target (R=3mm,r=2.3mm), and two detectors 100x100cm², separated by 15 cm plastic at 10 m and 25° angle. Include 6 mm thick steel from target enclosure

Comparison to simulations

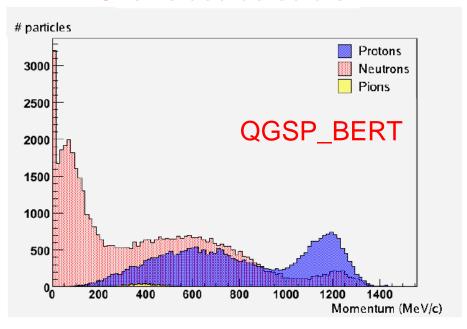

- Only select particles within acceptance of detectors (100x100cm² at 10 m) and kill all other particles (yellow volumes)
- Test that we don't kill valid particles by changing kill volumes

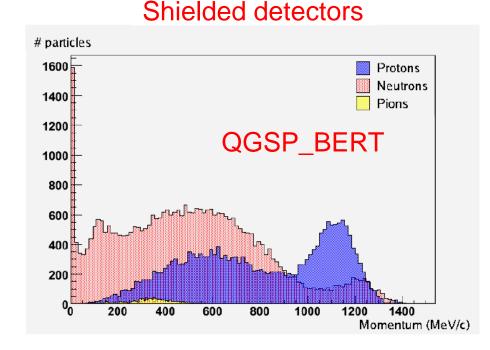

Comparison hadronic models

- Only select particles within acceptance of detectors (100x100cm² at 10 m) and kill all other particles
- First run with QGSP hadronic model

Unshielded detectors

Shielded detectors




Comparison hadronic models

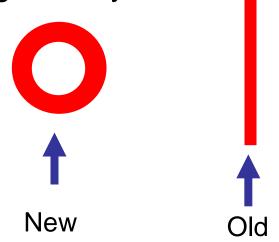
 Only select particles within acceptance of detectors (100x100cm² at 10 m) and kill all other particles

□ Now run with QGSP_BERT (QGSP+Bertini cascade model) for comparison – shows proton peak at ~1200 MeV/c

Unshielded detectors

For total particle yields: assume neutron efficiency from GEANT4 simulations ~2.2% LM Status, MICE CM27,

5 July 2010


Comparison hadronic models

□ Compare number particles (proton+pion+neutronx2.2%) crossing detectors for hadronic models (up to a factor 2):

Hadronic model	Number particles in unshielded detector	Number particles in shielded detector	Particles/ (pot cm ²) Unshielded	Particles/ (pot cm ²) Shielded
LHEP (10 ⁷ pot)	183	74	(1.83 0.14)x10 ⁻⁹	(7.40 0.86)x10 ⁻¹⁰
LHEP_BERT (10 ⁷ pot)	342	257	(3.42 0.19)x10 ⁻⁹	(2.57 0.16)x10 ⁻⁹
QGSC (10 ⁷ pot)	192	67	(1.92 0.14)x10 ⁻⁹	(6.70 0.82)x10 ⁻¹⁰
QGSP (10 ⁷ pot)	157	57	(1.57 0.13)x10 ⁻⁹	(5.70 0.76)x10 ⁻¹⁰
QGSP_BERT (10 ⁹ pot)	31145	22911	(3.12 0.02)x10 ⁻⁹	(2.29 0.02)x10 ⁻⁹
QGSP_BIC (10 ⁹ pot)	27380	21693	(2.74 0.02)x10 ⁻⁹	(2.17 0.02)x10 ⁻⁹

Comparison target geometry

 □ Compare number protons crossing unshielded detector (10⁴ cm²) for the new target (cylinder with outer radius 3 mm and inner radius 2.3 mm) compared to the old target (10 mm x 1 mm) geometry

- Volume material in each target is very similar (assume depth inside beam=10mm):
 - Old target: 10x1x10 mm³
 - New target: $\pi(3.0^2-2.3^2)\times10=116.7$ mm³

Comparison target geometry

 Compare number protons crossing unshielded detector (10⁴ cm²) for two target geometries (using QGSP_BIC)

Target geometry	Number particles in unshielded detector	Protons on target (pot)	Area detector (cm ²)	Protons/ (pot cm²) Unshielded detector
New	27380	10 ⁹	104	(2.74 0.02)x10 ⁻⁹
Old	3639	108	1600	(2.27 0.04)x10 ⁻⁸

- There is a factor of 8.31 difference in normalisation,
- Old target has 10 mm thickness
- New target has variable thickness due to geometry of cylinder (effective average thickness 1.945 mm=116.7/60)
- Another simulation was run to determine fraction of particles interacting in each target: Old = 0.0422 = 8.27 (therefore net number of pot in

new target is 8.27 times smaller!)

Comparison to simulations

Assume all protons on target traversing 10 mm target are lost in ISIS
 (9 MeV E_{loss}), so for new target simply multiply by 8.27 (ratio of old/new)

Hadronic model	Particles/ (pot cm ²) Unshielded	Particles/ (pot cm²) Shielded	Ratio Shielded/ Unshielded
LHEP	1.51x10 ⁻⁸	6.12x10 ⁻⁹	0.41
LHEP_BERT	2.83x10 ⁻⁸	2.12x10 ⁻⁸	0.75
QGSC	1.59x10 ⁻⁸	5.54x10 ⁻⁹	0.35
QGSP	1.30x10 ⁻⁸	4.71x10 ⁻⁹	0.36
QGSP_BERT	2.58x10 ⁻⁸	1.89x10 ⁻⁸	0.73
QGSP_BIC	2.27x10 ⁻⁸	1.79x10 ⁻⁸	0.79
Data	1.71x10 ⁻⁸	8.10x10 ⁻⁹	0.47

- No model describes data accurately (not even ratio is well described)
- However, to do normalisation more accurately would need to determine number of protons lost in ISIS when target is traversed by beam

Conclusion

- Luminosity Monitors have been installed in ISIS vault and are now working regularly for MICE analyses
- LM data scales very well with beam loss data
- □ Up to ~1.4 V.ms beamloss, LM rate independent gate width 10 ns-40 ns (have chosen 10 ns as final width)
- Comparison of yields for different hadronic models shows big differences in yields (about a factor of 2)
- Normalisation of simulations for cylindrical target are about a factor of 8 smaller than the data, due to the fact that not all protons interact in target.
- Need to understand how protons are lost to the beam better to do a proper comparison of LM data to simulations