

FC Magnet Tolerances

Chris Tunnell JAI @ Oxford

3-part Question

- I. What are our manufacturing tolerances
- 2. and what needs measuring post-production
- 3. that a hall probe can measure.

 $3.9\,T$ Want β small at absorber

I.What are our manufacturing tolerances

- According to manufacturer, they may be
 ~mm errors in FC thickness
- How does thickness smearing of all FC affect MICE performance?
- Criterion: β does not vary more than 1% in second spectrometer solenoid (ie. have periodic lattice)

Evolve \beta

quick finitedifference method, tracking too slow

(Thanks Tim Carlisle and John Cobb!)

Varying all 6 FC thicknesses

<2>

2. and what needs measuring post-production

- I. Alignment (previously studied)
- 2. Lattice tuning
- 3. Heating
- 4. Other?(track reconstruction uncertainties? winding non-linearities despite large aperture?)

Computing Field

- Field at any point near solenoid
- Opera3D, quick G4MICE, and my numerical integrator agree
- G4MICE equation deviation requires elliptic integral tables and has long history

Derivation of Off-axis Field of Thin-sheet Solenoid or: How I Learned to Stop Worrying and Trust the G4MICE

(note coming soon)

Focus Strength Single Coil

thin-lens approx. for $\frac{1}{f} = \frac{q^2}{4p^2} \int$ focal length f:

$$\frac{1}{f} = \frac{q^2}{4p^2} \int B^2 \, \mathrm{d}z$$

focus strength related to both heating and lattice

</2>

<3>

3. that a hall probe can measure.

Modern Hall Bench used at DL for insertion magnets.

Hall Probe	MPT-141-3m	(Group 3	3);
Teslameter	DTM-141-DG	//	
Longitudinal Range	1400	mm	
Horizontal Range	200	mm	
Vertical Range	100	mm	
Longitudinal Resolution (z)	1	μm	
Horizontal Resolution (x)	0.5	μm	
Vertical Resolution (y)	0.5	μm	
Nominal Longitudinal Velocity	1	mm/s	. 13
Maximum Calibrated Field	2.2	T	bad?
Hall Probe Precision	$\pm~0.01~\%$		good?
Hall Probe Resolution	0.05	mT	8000.
Temperature Stability	± 10	ppm/°C	-

Lecture to Cockcroft Institute 2005/6. © N.Marks MMIV

FC Parameters can fit

$B^2 \sim \text{tuned lattice}$

$$\frac{1}{f} = \frac{q^2}{4p^2} \int B^2 \, \mathrm{d}z$$

Weak probe position dependence

</3>

Conclusions

- Coil thickness should be built within 2 mm
- Preliminary constraints on FC postconstruction are easy to measure
- TODO: what other constraints are there?
- TODO: where can we find a hall probe?