CKOV ANALYSIS

Vassil Verguilov MICE VC 27

OVERVIEW

1. Calibration

- Data
- Determine Pedestals
- 3. Subtract Pedestals
- 4. Fit date
- 5. Single photoelectrons
- 2. Analysis
 - 1. Data
 - 2. NPE/TOF (Beta)
 - 3. FADC Problems
- 3. Summary and ToDo

CALIERATION DATA

- Runs 1080 (Ckov A) and 1081 (Ckov B) taken Sep. 2009
- Approx. 100 000 events from LED pusler

FLASH ADC PROBLEM

- Double data header in CAEN fADC V1731:
 **** ERROR in MDpartEventV1731::Init: INVALID particle Event ****
- 2. Baseline cannot be determined easily

CALIBRATION ALGORITHM 1

- 1. Take the data only in specified (for each channel) range. The ADC is basically the integral (sum) of all samples inside the sample.
- 2. These ADC values are filled into a histogram and the pedestal is determened for each channel.

CALIBRATION ALGORITHM 2

- 3. Pedestals are subtracted from the data
- 4. Data is fitted to determine the single photoelectron peaks and sigmas for single photoelectrons as well as pedestals

Green line – single photoelectron peak

Red line – pedestal position

Blue lines – 2, 3, .. Etc. photoelectron peaks

CALIBRATION FIT FUNCTION

$$F(x) = A \cdot \sum_{n=0}^{N} \frac{\mu^n e^- \mu}{n!} \cdot ((1-w)G_n(x) + w\theta(x)I_{G_n \otimes E}(x))$$

where A is the number of events, $G_n(x)$ is the nth Gaussian convoluted with the pedestal-Gaussian and $I_{G_n \otimes E}(x)$ is the nth Gaussian convoluted with and exponential background with w the probability of such an exponential background event occurring. The function $\theta(x)$ is a step function being 0 for $x < P_n$ and 1 for $x > P_n$.

$$G_n(x) = \frac{1}{\sigma_n \sqrt{2\pi}} e^{\frac{-(x-P_n)^2}{2\sigma^2}} \quad \text{with } P_n = P_0 + n \cdot P_1 \text{ the ADC position of the nth Gaussian with width . The index 0 refers to the pedestal and n=1,2,... is the pedestal and n=1,2,... is$$

number of photo-electrons.

$$I_{G_n \otimes E}(x) = \frac{\alpha}{2} e^{-\alpha(x - P_n - \alpha \sigma_n^2)} \left[erf(\frac{|P_0 - P_n - \alpha \sigma_n^2|}{\sigma_n \sqrt{2}}) + sign(x - P_n - \alpha \sigma_n^2) \cdot erf(\frac{|x - P_n - \alpha \sigma_n^2|}{\sigma_n \sqrt{2}}) \right]$$

is the convolution of the nth Gaussian with the exponential background leading to a tail for each Gaussian on the right side of the peak.

The Fit parameters are:

- 1. Po : pedestal position
- σ₀: pedestal width (FIXED from fit to pedestal only)
- 3. P1: single photo electron peak position
- σ₁: single photo electron peak width
- α: exponential background
- 6. w: probability of exponential background
- 7. µ: MEAN NUMBER OF PHOTO ELECTRONS

Source: http://www.jlab.org/Hall-D/software/wiki/index.php/Fiber Test Stand at JLAB

CALIBRATION SINGLE PHOTOELECTRONS

PMT#	CKOV	Pedestal	SPE
1	А	5010	26.2
2	А	5645	32.3
3	А	4900	22
4	А	5440	31.4
5	В	5120	26.1
6	В	4880	30.1
7	В	5880	26.5
8	В	6140	25.2

The ratios between the single photoelectrons are approx. the same as with the old settings (fADC & Shaper)

ANALYSIS

- 2 runs taken December 2009
 - Muons run 1411, 337 MeV/c (at target)
 - Electrons run 1412, 300 MeV/c (at target)
- 5 runs taken May 2010
 - Pions runs 1691 1692 1693 1694 1695275 290 MeV/c (at target)

CKOV Reconstruction

CKOV A & CKOV B

Digital Reco

- Determine Prob(mu)-Prob(pi) by ON-OFF reco pattern per momentum region I, II, III.

Analogue Reco

- Determine Prob(mu)-Prob(pi) by expected and seen light yields per momentum region I, II, III.
- PE(x,y) light map required.
- TOF0(x,y)/CKOV coincidence.

ANALYSIS 300 MEV/C ELECTRONS

ANALYSIS 337 MEV/C MUONS

ANALYSIS 275 MEV/C PIONS

Using relativistic beta instead of ToF

ANALYSIS
PEDESTALS
PROBLEM

The pedestal peak is not at o. For some PMTs the offset is almost 2 photoelectrons!

Probable reason: Baseline changed between the time of calibration and the time data was taken (~2 months)

SUMMARY & TODO

Summary:

- More precise calibration procedure was implemented
- Analysis using TOF reconstruction
- SPE position changes with time

To Do:

- CKOV C++ classes in G4MICE
- Better understanding of the detector is needed
- Analysis to take into account the particle momentum at CKOV