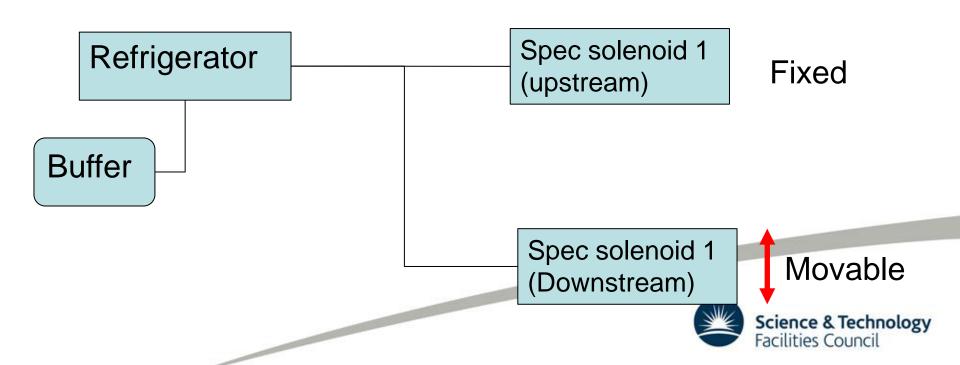


Refrigeration of Superconducting Solenoids

T W Bradshaw
Rutherford Appleton Laboratory
Harwell Science and Innovation Campus
Didcot, OX11 0QX, UK
Tom.Bradshaw@stfc.ac.uk


Introduction

- Short discussion on what would be required to cool the existing spectrometer solenoids with an external cryogenic plant
- Magnet requirements:
 - 65K refrigeration for HTS leads
 - 4 K refrigeration for the cold mass

Elements

- The need to provide refrigeration at 4K and 65K implies that a helium liquefier won't do unless:
- a) Enough boil-off to have vapour cooling of the leads and shields
- b) Leave single stage cryocoolers in place

Requirements

Gedanken experiment on refrigerating spectrometer solenoids

	Temp	Load
2 nd stage	4K	7.5W
1 st stage	65K	277 W

For each solenoid *

Temp	Magnets	Transfer Line	Total
4K	15	12 (??)	27W
65K	524	?	524+

To put a scale on this, the 27W is similar to the Decay Solenoid 23 W@4K 100W@65K (not including vapour cooled leads....

Transfer lines at 4K are around 1W/m (although I would take any arguments on this figure ..) lengths are guesses

Heat load from HTS leads high 1st stage heat load high 2nd Stage heat load high

^{*} From M Green note 292

Magnet modifications

Need to accommodate a bath in the turret with level sensor

Heater etc..

(suspect that this could be accommodated in the existing turret – although turret would have to be re-designed)

Current lead cooling would have to be addressed

MICE – old Slide

Cryocooler Option

			1
	Heat load		
Coil	at 4K	Coolers	Cost k£
Coupler A	1.6	1	25
Coupler B	1.6	1	25
Focus magnets A	1.7	2	50
Focus magnet B	1.7	2	50
Focus magnets C	1.7	2	50
Detector Magnet A	1.4	4	100
Detector Magnet B	1.4	4	100
Detectors		4	100
Totals	11.1	20	500
Refrigerator			324
Grand total			824

Refrigerator Option

Item	Cost k£
TCF50	782
Compressor Building	300
Control dewar	10
Valve box	20
Transfer lines	20
Installation	80
Grand total	1212

Refrigeration system - key points

- a) Staging of MICE will mean that we will have large cryogenic plant standing idle for long periods.
- b) Cost there will be a large cost associated with the purchase of the cryogenic system.
- c) Testing If cryocoolers are used then each of the MICE "modules" can be tested independently and verified before shipping to RAL for integration.
- d) Design The cryocoolers can provide intermediate stages of cooling at low temperatures e.g. a three stage cooler could provide 3.8K, 14K and 90K. Can use high Tc current leads to minimise heat loads. These low intermediate temperatures reduce 4K heat load in many designs

Summary

- •Jumping ship and changing to the use of a liquefier will open up new cans of worms
- •Cost likely to be of the order £700k + significant hall reengineering e.g. Transfer line installation, space for liquefier, power in the hall etc...
- •Best to sort out what you've got rather than invent new problems.....

END