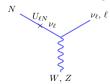
HNLs, ALPs, and other DM searches


Alessandro Bettini (Padova/INFN) Dean Robinson (LBNL)

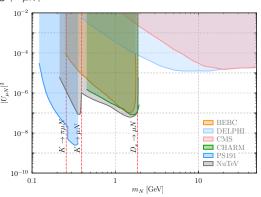
PDG (Virtual) Collaboration Meeting

Nov 2020

Heavy Neutral Leptons

- A heavy 4th (Dirac or Majorana) neutrino
 'Heavy': Heavy enough not to naively disrupt BBN or unstable on cosmological timescales. Typically m_N ≥ MeV (cf. sterile ν)
- ullet Essentially couples to EW currents via mixing (matrix element $U_{\ell N}$)

There is clear theoretical and experimental interest in HNLs


Past/Current expts	Future/proposed expts
DELPHI	DUNE
CHARM, PS191, NuTeV	FASER
NA62	SHiP
PIENU	MATHUSLA
BESIII, CMS, ATLAS	CODEX-b

• The PDG had a HNL listing, but didn't cover some of this data

Experimental Status

- Difficulty: experiments quote bounds in the mixing matrix element $|U_{\ell N}|^2$ as function of m_N
- But: Sensitivity typically scales with $(m_N)^{-n}$ up to kinematic endpoint
- Current status for eg $|U_{\mu N}|^2$

Approach 1: Where appropriate, quote a limit near natural kinematic endpoint of each expt (usually the max) Approach 2: Otherwise, pick characteristic to quote $|U_{\ell N}|^2$ bound (Only one $U_{\ell N} \neq 0$ at a time)

See also 1909.11198 for latest bounds below 100 MeV

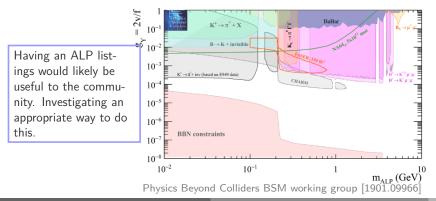
New Listings

Limits on $|U_{ex}|^2$

INSPIRE search

Quoted limits are either the best limit near the kinematic threshold of the experiment, or a characteristic value in the mass range of the experimental sensitivity

VALUE	CL%		DOCUMENT ID		TECN	COMMENT
$< 2 \times 10^{-5}$	95	1	AAD	2019F	ATLS	$m_{\nu_x} \sim 15 - 40 \text{ GeV}$
$< 1 \times 10^{-9}$	90	2	ABE	2019B	T2K	Near $m_K - m_e$ kin. thres.
$< 1 \times 10^{-4}$	90	3	ABLIKIM	2019AL	BES3	$m_{\nu_x} \sim 0.3 - 0.7 \text{ GeV}$
$< 1 \times 10^{-8}$	90	4	AGUILAR-AREVA	2018A	PIEN	$m_{\nu_x} \sim 60 - 120 \text{ MeV}$
$< 3 \times 10^{-7}$	90	5	CORTINA-GIL	2018	NA62	$m_{\nu_x} \sim 200 - 400 \text{ MeV}$
$< 3 \times 10^{-5}$	95	6	ABREU	19971	DLPH	$m_{\nu_x} \sim 6-50 \text{ GeV}$
$< 2 \times 10^{-5}$	95	7	ABREU	19971	DLPH	Near $m_{\nu_x} \sim 3.5 \text{ GeV}$
$< 1 \times 10^{-5}$	90	8	BARANOV	1993		Near $m_{\pi} - m_e$ kin. thres.
$< 2 \times 10^{-7}$	90	8	BARANOV	1993		Near $m_K - m_e$ kin. thres.
$< 1 \times 10^{-7}$		9, 10	BERNARDI	1988	CNTR	Near $m_{\pi} - m_e$ kin. thres.
< 2 × 10 ⁻⁹		11, 10	BERNARDI	1988	CNTR	Near $m_K - m_e$ kin. thres.
$< 1 \times 10^{-7}$	90	12	DORENBOSCH	1986	CHRM	Near $m_D - m_e$ kin. thres.
$< 1 \times 10^{-7}$	90	13	COOPER-SARKAR	1985	BEBC	Near $m_D - m_e$ kin. thres.
· · · We do not	use the following	data for ave	erages, fits, limits, et	c. • • •		
		14	PARK	2016	BELL	$m_{\nu_x} \sim 0.2 - 1.4 \text{ GeV}$


¹ Limit from prompt lepton number violating trilepton search.

We are also exploring an HNL mini-review

 $^{^2}$ $K^+ o e^+ \nu_x$, with ν_x decay through U_{cc} . ABE 2019B also considers bounds on $|U_{\ell x} U_{\ell^{'}x}|$ for combinations of lepton flavors in the ν_x decay final state.

Axion-like Particles

- Typically any pseudoscalar coupled to dim-5 operators, including $F\widetilde{F}$, $G\widetilde{G}$ or $\overline{q}\gamma^5q$, ...
- ALP mass may cover huge range, depending on motivation. Eg $m_a \sim 10^{-22}\,{
 m eV}$ to $\sim 10\,{
 m GeV}$
- Experimental interest even greater than HNLs, and experimental current bounds are complex

DM Searches

New Nodes in S030 WIMP and Dark Matter Searches

Galactic WIMP seaches Pre-existing NODEs for $M_{X0} = 20, 100, 1000 \text{ GeV}$ Added limits on cross-sections for $M_{X0} < 5 \text{ GeV}$

- Spin Independent on Nucleon (32 measurements)
- Spin Dependent on Proton (10 meas.)
- Spin Dependent on Neutron (12 meas.)
- On electrons (8 meas.)
- On nuclei (0 measur.)

Other pre-existing NODEs in S030)

- · Miscellaneous results from underground DM searches
- X⁰ annhilation cross section
- DM particle (X⁰) production in hadron collisions

DM Searches

New NODE for OTHER DARK MATTER CANDIDATES? Theory proposals

- Bose Einstein Condensate Dark Matter
 - D. Ivanov, S. Liberaty (TH) JCAP 07 (2020) 065
 - M. Carciun et al. Eur. Phys. J.C 80 (2020) 8, 735
- (Heavy) Fermionic DM (108-1010 GeV)
 - G. Lazarides, Q. Shafi. Phys.Lett.B 807 (2020) 135603
- Non-Abelian Vector Bosons as F(eebly)IMP
 - Berman et al JCAP 02 (2020) 029.
- Decaying dark matter
 - K. Enqvit et al. JCAP 04 (2020) 015
- Non-Thermal DM
 - A. Biswas et al. JCAP 03 (2020) 043
- Milli-charged DM
 - A. P. Gautham. JCAP 03 (2020) 039
- Macroscopic DM

25 October 2020

- J. S. Sidhu and G. D. Starkman Phys. Rev. D 101 (2020) 8, 083503
- Compact DM Objects moving in the Earth
 - C. J. Horowit, R. Widmer-Schnidrig. Phys. Rev. Lett. 124 (2020) 5, 051102

Thanks!