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Introduction—telltale signs of SUSY

Suppose that new physics beyond the Standard Model (SM) is discovered

at the LHC. How will we know that it is SUSY (taking into account that

SUSY is a broken symmetry)?

• Every SM particle has a superpartner differing in spin by half a unit.

– You may only discover a subset of all the superpartners.

– Spin measurements may be difficult in some cases.

• The total number of bosonic and fermionic degrees of freedom must be

equal.

– It is very unlikely that all MSSM degrees of freedom can be accessed at the LHC.

Perhaps the “gluino” that was discovered is an ordinary color octet fermion.

Perhaps the “squark” is an ordinary color triplet scalar.



Fingerprints of SUSY—Yukawa couplings related to gauge couplings

Example: gluino and squark couplings
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These vertices are governed solely by QCD. In contrast, the q̃qg̃ coupling is

a scalar–scalar-fermion (Yukawa) coupling. In general, Yukawa and gauge

interactions are unrelated. But, here it is the underlying supersymmetry

that relates them.
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SUSY requires that these Yukawa couplings are proportional to the gauge

coupling gs.



Testing SUSY coupling relations at colliders

To verify coupling relations requires a precision SUSY program. This is not

a program for early LHC running.

Suppose that after years of LHC running, a spectrum of new particles is

discovered that is suggestive of SUSY. One might first try to verify the

relation of the q̃qg̃ coupling to the strong gauge coupling. A study by

Freitas, Skands, Spria and Zerwas [JHEP 0707, 025 (2007)] demonstrated

the feasibility of this measurement, although with some SUSY model

dependence and reliance on ILC data.

Instead, we propose to go after the SUSY coupling relations involving the

lightest supersymmetric particle (LSP), assumed to be the χ̃0
1.



Measuring the q̃qχ̃
0

1
coupling using LHC monojet events

The production process process involves the q̃qχ̃0
1 coupling, λ. If the χ̃0

1 is

dominantly gaugino-like, then this coupling is directly related to the gauge

coupling due to SUSY.
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If the squark is lighter than the gluino, the squark will often decay directly

to the LSP, resulting in a quark jet plus missing energy, i.e. a monojet event.
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The Jacobian peak in the pT distribution

Consider the 2 → 3 partonic scattering process,

q + g → q̃ + χ̃
0
1 , followed by q̃ → q + χ̃

0
1 ,

The quarks and gluon are treated as massless. The squark and neutralino masses are

denoted by M and m, respectively. In the center-of-mass frame, the four-momenta of the

initial quark and gluon and the final state quark jet are denoted by pa, pb and p1, where

pa = 1
2

√
s(1 ; 0 , 0 , 1) , pb =

1
2

√
s(1 ; 0 , 0 , −1) ,

p1 = (E1 ; pT , 0 , p‖) , where pT = E1 sin θ and p‖ = E1 cos θ ,

and
√
s is the partonic center-of-mass energy. The relevant kinematic invariants are

t1 ≡ (pa − p1)
2 = −

√
s

[
E1 ∓

√
E2

1 − p2
T

]
, t2 ≡ (pa − pc)

2 = A1 + A2 cosφ ,

s1 = p
2
c = (p1 + p2)

2
= M

2
, s2 ≡ (pa + pb − p1)

2
= s − 2

√
sE1 ,

where φ is the azimuthal angle in the particle 2–3 rest frame between the plane spanned

by ~pb and ~p1 and the plane spanned by ~p1 and ~p3, with ~p1 as the axis.



The coefficients A1 and A2 are given by:

A1 = m2 − s2(s − s2 + t1)(M
2 − m2) − st1(s − s2 − M2 + m2)

(s − s2)2
,

A2 =
2
[
st1(s − s2 + t1)(M

4s2 − M2s2(s − s2 + 2m2) + m2s(s − s2) + s2m
4)
]1/2

(s − s2)2
.

If C(s, t2) is the scattering amplitude for the 2 → 2 process, q+ g → q̃ + χ̃0
1, then the

differential cross-section for the partonic 2 → 3 process is:

dσ

ds2dt1
=

BM2

32π2s2(s − s2)(M2 − m2)
Θ
{
−t1(s+t1−s2)

} ∫ 2π

0

|C1(s,A1+A2 cosφ)|2dφ ,

where B ≡ BR(q̃ → q + χ̃0
1). Changing variables from {t1, s2} to {p2

T , E1} involves

a Jacobian. The kinematical limits of pT and E1 are:

for 0 ≤ pT ≤ E
−
1 , E

−
1 ≤ E1 ≤ E

+
1 ,

for E−
1 ≤ pT ≤ E+

1 , pT ≤ E1 ≤ E+
1 ,

where

E±
1 ≡ M2 − m2

4M2
√
s

[
s + M2 − m2 ±

√
(s + M2 − m2)2 − 4sM2

]
.



Introduce dimensionless variables,

w ≡ 2E1√
s
, x ≡ 2pT√

s
, y ≡ M2

s
, z ≡ m2

M2
.

Then the transverse momentum distribution is given by:

dσ

dx
=

Bx

64π2s(1 − z)

∫ w+

wmin

dw

w

1√
w2 − x2

∫ 2π

0

dφ
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|C1(s,A

(j)
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2(1 − z)

[
1 + y(1 − z) ±

√
(1 + y − yz)2 − 4y

]
,

wmin =





w− , for 0 ≤ x ≤ w− ,

x , for w− ≤ x ≤ w+ ,

and the coefficients A
(±)
1 and A2 are given by:

A
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{
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√
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}
,
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sxy1/2
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]1/2
.



For C1 = 1 (pure phase space), the integral over E1 can be carried out explicitly,

dσ

dx
=

B

16πs(1 − z)

[
tan

−1

(√
[w+]2 − x2

x

)
− Θ(w

− − x) tan
−1

(√
[w−]2 − x2

x

)]
.

Employing the actual qg → q̃χ̃0
1 matrix element C1 yields only a small correction to the

shape of the pT distribution. Note that xpeak = w− and xmax = 2(pT )max/
√
s ≤ w+.
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Unnormalized cross-section as a function of x ≡ 2pT/

√
s for qg → q̃χ̃0
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0
1, (solid curve),

assuming M2
q̃ = 0.5s and m2

χ̃ = 0.1M2
q̃ (i.e., y = 0.5 and z = 0.1). In this example, xpeak = 0.508

and xmax = 0.797. If the matrix element for qg → q̃χ̃0
1 is set equal to unity, one obtains the dashed

curve. The relative normalization of the two curves has been fixed such that the height of the peaks of the

distributions coincide.



The location of the Jacobian peak depends on the partonic center-of-mass

energy
√
s. To compute dσ/dpT (pp → q̃χ̃0

1 → qχ̃0
1χ̃

0
1), one must integrate

over the parton distribution functions. The dominant contribution arises

close to threshold, where
√
s = M +m, which yields

E−
1 = E+

1 =
M2 −m2

2M
.

Thus, close to threshold,

(pT )peak = E−
1 ≃ M2 −m2

2M

which is independent of the partonic center-of-mass energy.

As
√
s is increased above the threshold energy, the value of E−

1 decreases

relative to the above estimate. Thus, we expect the actual peak in the

transverse momentum distribution of the hadronic scattering process (or

equivalently in the missing transverse energy distribution) to be broader

with a maximum that is less than the above result.



Details of the signal process

The phenomenology of the signal depends on the properties of the LSP. In

this study, we focus on a wino LSP, which arises in anomaly mediated SUSY-

breaking models. In this case, {χ̃0
1 , χ̃

±
1 } comprise a nearly mass-degenerate

SU(2)L triplet.

The partonic scattering processes that yield monojet events are: g + u →
χ̃0
1+ ũL, g+ d → χ̃0

1+ d̃L, g+ u → χ̃+
1 + d̃L, g+ d → χ̃−

1 + ũL, plus the

charge-conjugated processes, where ũL → uχ̃0
1/dχ̃

+
1 , d̃L → dχ̃0

1/uχ̃
−
1 and

χ̃+
1 → S + χ̃0

1 (S is either a very soft lepton or QCD radiation too soft to

be identified as a jet). Here, λ = g, the SU(2)L gauge coupling.

• The mass splitting between χ̃+
1 and χ̃0

1 is ∼ 200 MeV, so the dominant

decay χ̃+
1 → χ̃0

1π
+ typically results in an unmeasurable soft pion.

• Since q̃L is an SU(2)L-triplet, there is a preference for the direct decay

of q̃L → qχ̃0
1.



Significant SM and SUSY backgrounds

• Z(→ ν ν̄)+jet. This background can be ascertained from the Z(→ ℓ+ℓ−)+jet

signal. In principle, this background can be subtracted off from the monojet sample.

• W (→ τν)+jet, where the W decays into a tau and a neutrino, and the tau is either

not detected, or lost in the jet.

• W (→ e/µ ν)+jet, where the W decays into an electron or a muon and a neutrino

and the electron/muon is undetected or lost inside the jet.

• QCD jet production with mismeasurement of the energy deposited in the detector. One

could produce di-jets, for instance, and one of the jets could be lost in the detector (or

its energy mismeasured so that it fluctuate below the transverse momentum required

to identify the jet).

• q̃q̃ production, where the decay products of the two squarks merge into a single jet.

• χ̃0
1χ̃

0
1 production plus an initial state radiated (ISR) jet.

• In the case of a wino LSP, χ̃+
1 χ̃

−
1 production plus an ISR jet will yield monojet events,

since χ̃+
1 → χ̃0

1 + soft pion.



Simulation of signal and backgrounds

The following tools have been employed:

• Herwig++2.4.2

– signal and backgrounds at tree-level have been simulated

– pair production and the two and three body decay of all SUSY particles

included

• Herwig++ output analyzed using HepMC-2.04.02 and ROOT

• Jets were reconstructed using fastjet-2.4.1

– Jets are defined with pT > 30 GeV, and the anti-kt jet algorithm with

R ≡
√
(∆η)2 + (∆φ)2 = 0.7 was used.

• SUSY spectrum determined with SOFTSUSY3.0.13



Wino-LSP case study

We examine the benchmark mAMSB scenario with:

M3/2 = 33TeV, M0 = 200GeV, tan β = 10, sgn(µ) = +1 ,

which gives σ(pp → q̃Rχ̃
0
1) = 470 fb, λ = 0.99g and the following SUSY spectrum:

sparticle mass [GeV] sparticle mass [GeV]

χ̃0
1 106.5 χ̃0

4 593

χ̃+
1 106.7 χ̃+

2 594

τ̃1 113 b̃1 634

ν̃τ 135 t̃2 688

ν̃e/ν̃µ 138 ũL/c̃L 722

ẽR/µ̃R 150 b̃2 723

ẽL/µ̃L 159 d̃L/s̃L 726

τ̃2 179 ũR/c̃R 726

χ̃0
2 298 d̃R/s̃R 732

t̃1 521 g̃ 745

χ̃0
3 584



The cuts employed in our analysis are summarized below, based on an integrated luminosity

of 100 fb−1 at
√
s = 14 TeV.

cut all SM SUSY bkg. signal S/
√
B (S/

√
7B)

pT (jet1) ,p/T > 100 GeV 3.81 × 107 1.04 × 106 44 100 -

lepton veto 2.52 × 107 621 000 43 800 -

pT (jet2) < 50 GeV 1.73 × 107 111 000 16 200 3.9 (1.5)

p/T > 300 GeV 171 000 11 000 8 390 20 (7.7)

m(jet1) < 80 GeV 135 000 6 020 6 370 17 (6.5)

tau veto 119 000 5 840 6 370 18 (7.0)

b-jet veto 115 000 5 290 6 320 19 (7.0)

The lepton veto removes events with an isolated electron or muon with pT > 5 GeV and |η| < 2.5. The isolation criterion

demands ≤ 10 GeV of additional energy in a cone of radius ∆R = 0.2. The conservative statistical estimator S/
√
7B should

be used (according to L. Vacavant and I. Hinchliffe) if statistical fluctuations are dominated by the Z(→ ℓ+ℓ−)+ jet calibration

sample used to subtract the Z(→ νν̄) + jet background.

Note that we need a good signal to SUSY background if we wish to measure the q̃qχ̃0
1

coupling λ to good precision. This is the main reason for the cut on m(jet1). The τ and

b-jet vetoes are not used in our final analysis.
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The QCD background is shown as a black dashed histogram. The first three cuts listed in the previous table

have been applied. The signal exhibits a Jacobian peak, whose position depends on the q̃ and χ̃0
1 masses.
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The invariant mass distribution of the hardest jet, normalized to one. The first four cuts listed in the previous

table have been applied. The QCD background has a distribution almost indistinguishable from that of

Z(→ νν̄) + jet.



Accuracy in the determination of the q̃qχ̃0
1 coupling λ in the wino case study

error ∆σmono/σmono ∆λ/λ

luminosity 3% 1.5%

PDF uncertainty 17% 8.3%

NLO corrections 18% 9%

sparticle mass ∆m̃ = 10 GeV 7.3% 3.7%

statistics (optimistic) 5.8% 2.9%

statistics (conservative) 15% 7.7%

total (optimistic) 26% 13%

total (conservative) 30% 15%

Relative errors for the signal monojet cross section (second column) and the q̃Lqχ̃
0
1 coupling (third column)

from different sources (first column). The numbers are for the mAMSB benchmark scenario.



An optimal choice of cuts depends on the squark and neutralino mass.

We searched in steps of 10 GeV for the pT and m(jet1) cuts that provide

the highest S/
√
S + B. The best significance is near the Jacobian peak.

Applying these optimal cuts yields:
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Fractional precision to which the q̃Lqχ̃
0
1 coupling λ can be reconstructed as function of the squark and

χ̃0
1 mass. The left (right) figure employs our optimistic (conservative) estimate for the SM background
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Conclusions and future directions

• For a wino-LSP, one can test the q̃qχ̃0
1 coupling relation to a precision

of ∼ 10%—20% at the LHC with
√
s = 14 TeV and 100 fb−1 using

monojet events if squark masses are below 1 TeV, over a significant

portion of the wino-LSP parameter space.

• For a bino-LSP or higgsino-LSP, the monojet events at the LHC cannot

be used for precision coupling measurements due to a significantly weaker

quark–squark neutralino coupling strength.

• In the future, one must examine multiple SUSY observables at the

LHC that are sensitive to the gaugino–particle–sparticle coupling. A

global fit to these observables can enhance the precision of the

coupling determinations, while providing stronger evidence in favor of

the underlying SUSY structure.


