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Time to the singularity for black holes in AdS

* This time is of order the AdS radius or shorter.
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T The time between the horizon and the singularity of a
€ Schwarzschild black hole is the maximum amount that

an observer can live in the interior.



A clock to measure time

* The phase of a wavefunction acts as a clock. (If you can create and
annihilate the particle).

w X e—imt

e Can we find an observable sensitive to this?




Time from thermal one point function

We will argue that, under some assumptions, this time
T is contained in thermal one point functions.

(O) Through the mass dependence:

(O) x (powers of m)exp (—imT — m¥)
Im(m) <0

We will discuss some fine print later...



Outline

* Thermal one point functions from higher derivative corrections.
 Computation for large mass and geodesics.
* Geodesic for the one point function.

* A simple explicit example for black branes

* Explicit answer
* Geodesic approximation
* Justification of the geodesic approximation.

* Other examples.
* Charged black holes



Minimally coupled scalar field
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Leads to zero one point functions due to the Z, symmetry



Scalar field coupled to gravitons

1
S = 2 2 2 W2+ ...
167TGN/k(VSO) +m gp)JrozgoI +

|

Coupling to two gravitons.

Standard minimal coupling

Massive field can decay into two gravitons.

In string theory:)oresent for a generic massive string
state. @ X ¢
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Thermal one point function

Euclidean black hole




Large mass and geodesics

* For large mass we can approximate the propagator in terms of a

geodesic.
G(z,0) ox e ™H®)

Witten diagrams = minimal geodesics.

Integration middle point = also fixed by a saddle point approximation




Thermal one point function

Euclidean black hole

G propagator

(0(0)) o / dPzW?G(x,0) o / drW2(r)e= ™)

«—— Use saddle point for the x integration,
Or integration over the radial variable



A saddle point

—mo,L(r) + 0, logW* = 0 ! /

Large coefficient ~ Must be near the singularity (say r=0)
(complex value in general, but near the singularity)

The saddle point is at an imaginary value of r, but very close to the singularity.

Evaluating the integral
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- Gives what we wanted



Logic flow chart

One point functions of fields

from Higher derivative corrections Geodesic approximation

with large mass

Saddle point near the
singularity

Answer similar to ““distance’”’

to the singularity

Notice that we are assuming that the higher derivative coupling is suppressed by powers of m, and not exponentials...
This is true in string theory, if we focus on the alpha’ dependence.



But...

* Does this saddle contribute if it is not on the original integration
contour?

e More details...



We will work out an example in detail:

The planar black brane



The geometry

d 2
1 — Z—d)dt2 - dz — + dz? = field theory at finite
0 (1— g) temperature in flat space

Information we want is in the form of this coefficient



Doing the integral
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Small imaginary part..

(O) = T (real)”

Consider
A>1, Im(A) <0,
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\ Subleading

(Powers of A)

e.g A =|Al(1—ie)

This is how we got a “phase”’.
From the original real number.

This also avoided the zeros in the
denominator
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We will now discuss the saddle point
approximation to the integral




Saddle point approximation to the propagator

Euclidean black hole

short

«—— Use saddle point for the x integration,
Or integration over the radial variable

(0(0)) o / dPzW?G(x,0) o / drW2(r)e= ™)



Problem

(For the short geodesic contribution.
The long one is convergent)

Euclidean black hg

G propagator

(0(0)) o /dDa:W2G(a:,O) x /er2(r)e—m€('r')

Drives the point near the boundary,
overwhelming the W2 contribution



Euclidean black hole

G propagator

Decays into gravitons near the boundary.
Operator mixing with (T )", n>1.
The previous integral is not convergent for A > 2d

We defined it via analytic continuation. = subtraction of all the lower dimension operators it

can mix with.
At A = nd poles due to resonant mixing (at lower order in 1/N perturbation theory).



* The integral is naively infinite due to the contribution of multiple
gravitons.

* We focus on the operator in question, with A # nd

* We can define the integral via analytic continuation, when we know it
exactly.

* When we do not know it exactly = define it so that it converges.
* New contour near the boundary.

 Convergent after we make /A complex
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boundary



Define a new variable p = proper length —
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\/ This justifies why the

saddle points contribute
Rotate the contour P



The leading saddle gives

which agrees with our general expected answer

The subdominant saddles sum up to

iy TA =1
sin = 1] —e ' 4

(up to some details we did not fully justify...)



summary

* We considered a specific example: Black brane.
 We did the integral analytically.
* Matched it against the saddle point contribution.

* Analyzed the integral in the saddle for large mass and explained why
the saddle point contributes via a contour rotation argument.

* We will now explore saddles for other black holes (but without doing
a details analysis on whether they contribute or not, we will assume
that they do contribute).



Schwarzschild AdS black holes
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Proper length



Schwarzschild AdS: black holes
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Black brane limit:

Uy — OO —  Recover black brane answer by summing over both of them.
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Comment on the poles
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Poles form the denominator at A = 2n come from operators which can mix
and have a non-zero vev, suchas 790"T , T™

We expect that more information about the black hole comes form the numerator.



Schwarzschild AdS, black holes
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Charged black holes

<— SINGULARITY
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INNER HORIZON

OUTER HORIZON

New position of the singularities.



Charged AdS: black holes

<— SINGULARITY

INNER HORIZON

OUTER HORIZON




singularity Inner horizon \ \\ Outer horizon

We can compute the proper distance along all these curves. These are all potential saddle point contributions.



Various candidate saddles
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We can compute the poper distance along all these curves. These are all potential saddle point contributions.
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Charged AdS: black holes
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Time between outer
and inner horizons

Positive. Leads to a finite
Contribution in the extremal limit 2
Associated to the exterior connecting region.

Another subleading saddle has

p = —1X0o — 70

Leads to a part of the one point function going as

TQA/
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Should involve the AdS, region.



Comments on higher spin operators

* If we consider one point function of higher spin operators, we expect
a similar story.

* In particular, they are non-zero and can be calculated in terms of
geodesics that go to the singularity.

* At weak coupling, these one point functions are non-zero. They
continue to be non-zero at strong coupling, but their contribution to
correlators or the OPE of thermal two point functions is suppressed.

(O102) ~ E C12n (On)T Only multi-§tress tensor operators
- contribute in the gravity regime.

El-Showk, K. Papadodimas; lliesiu, Kologlu, Mahajan, Perlmutter, Simmons-Duffin; Gobeil, Kulaxizi, Ng, Parnachey;
Fitzpatrick, Huang; Li....



Limited interior probe

We should not read too much into these geodesic computations. It is not a very direct
probe of the interior.

Somewhat similar in spirit to

Fidkowski, Hubeny, Kleban, Shenker

(O)r

is unchanged

Send a perturbation from
the left side



The picture we discussed is appropriate for theories in 4 or more dimensions.

In three dimensions there can be a one point function for a BTZ black hole (but not for a black string, which is conformal
invariant and has zero one point functions).

This was studied by Kraus and Maloney
Their answer comes from the particle splitting into two others, which circle the black hole horizon.

It seems that it should contain also the phase factor we discussed, but it was apparently not discussed in
their paper.



Conclusions

* We discussed thermal one point functions.

* We saw that their dependence on the mass of the field encodes
interesting information about the time to the singularity.

* We needed to do some analytic continuation in a parameter that
results in an analytic continuation in the mass.

* Hopefully this helps in understanding the singularity...



