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Introduction

Global symmetries in gravity

The idea that there are no global symmetries in quantum gravity has
a long history. Banks/Dixon 1988, Giddings/Strominger 1988, Kallosh/Linde/Linde/Susskind 1995

The rough idea is that we can destroy global symmetry charge by
throwing it into a black hole, but so far to make this idea precise it has
been necessary to restrict either to continuous symmetries Banks/Seiberg

2010 or to the more controlled context of AdS/CFT. Harlow/Ooguri 2018

Requiring Λ < 0 is clearly too restrictive an assumption for an idea
that we hope applies to our universe, but on the other hand we will
soon see that some kind of nontrivial assumption is necessary: at
least in lower dimensions there do exist theories of quantum gravity
with global symmetries!
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Introduction

A proposal

The goal of this talk is to propose a natural sufficient condition for
excluding global symmetries in quantum gravity: Harlow/Shaghoulian 2020

In any theory of quantum gravity in which black hole evaporation is a
unitary process consistent with the entropy formula of Bekenstein and
Hawking (or its generalization by Wald), no global symmetries are
possible.

We won’t prove this, but we will give two kinds of evidence:

We will see that this assumption does not hold in the quantum
gravity theories with global symmetry we present in a moment.
We will show that a version of the argument of Harlow/Ooguri can be
applied to exclude global symmetries in any theory of quantum
gravity where the Page curve calculations of Penington,

Almheiri/Engelhardt/Marolf/Maxfield 2019 are valid.

Thus our proposal is reduced to the assumption that this is the only way
for black hole evaporation to be unitary and compatible with the
Bekenstein-Hawking formula.

3



Introduction

A proposal

The goal of this talk is to propose a natural sufficient condition for
excluding global symmetries in quantum gravity: Harlow/Shaghoulian 2020

In any theory of quantum gravity in which black hole evaporation is a
unitary process consistent with the entropy formula of Bekenstein and
Hawking (or its generalization by Wald), no global symmetries are
possible.

We won’t prove this, but we will give two kinds of evidence:

We will see that this assumption does not hold in the quantum
gravity theories with global symmetry we present in a moment.
We will show that a version of the argument of Harlow/Ooguri can be
applied to exclude global symmetries in any theory of quantum
gravity where the Page curve calculations of Penington,

Almheiri/Engelhardt/Marolf/Maxfield 2019 are valid.

Thus our proposal is reduced to the assumption that this is the only way
for black hole evaporation to be unitary and compatible with the
Bekenstein-Hawking formula.

3



Introduction

A proposal

The goal of this talk is to propose a natural sufficient condition for
excluding global symmetries in quantum gravity: Harlow/Shaghoulian 2020

In any theory of quantum gravity in which black hole evaporation is a
unitary process consistent with the entropy formula of Bekenstein and
Hawking (or its generalization by Wald), no global symmetries are
possible.

We won’t prove this, but we will give two kinds of evidence:

We will see that this assumption does not hold in the quantum
gravity theories with global symmetry we present in a moment.

We will show that a version of the argument of Harlow/Ooguri can be
applied to exclude global symmetries in any theory of quantum
gravity where the Page curve calculations of Penington,

Almheiri/Engelhardt/Marolf/Maxfield 2019 are valid.

Thus our proposal is reduced to the assumption that this is the only way
for black hole evaporation to be unitary and compatible with the
Bekenstein-Hawking formula.

3



Introduction

A proposal

The goal of this talk is to propose a natural sufficient condition for
excluding global symmetries in quantum gravity: Harlow/Shaghoulian 2020

In any theory of quantum gravity in which black hole evaporation is a
unitary process consistent with the entropy formula of Bekenstein and
Hawking (or its generalization by Wald), no global symmetries are
possible.

We won’t prove this, but we will give two kinds of evidence:

We will see that this assumption does not hold in the quantum
gravity theories with global symmetry we present in a moment.
We will show that a version of the argument of Harlow/Ooguri can be
applied to exclude global symmetries in any theory of quantum
gravity where the Page curve calculations of Penington,

Almheiri/Engelhardt/Marolf/Maxfield 2019 are valid.

Thus our proposal is reduced to the assumption that this is the only way
for black hole evaporation to be unitary and compatible with the
Bekenstein-Hawking formula.

3



Introduction

A proposal

The goal of this talk is to propose a natural sufficient condition for
excluding global symmetries in quantum gravity: Harlow/Shaghoulian 2020

In any theory of quantum gravity in which black hole evaporation is a
unitary process consistent with the entropy formula of Bekenstein and
Hawking (or its generalization by Wald), no global symmetries are
possible.

We won’t prove this, but we will give two kinds of evidence:

We will see that this assumption does not hold in the quantum
gravity theories with global symmetry we present in a moment.
We will show that a version of the argument of Harlow/Ooguri can be
applied to exclude global symmetries in any theory of quantum
gravity where the Page curve calculations of Penington,

Almheiri/Engelhardt/Marolf/Maxfield 2019 are valid.

Thus our proposal is reduced to the assumption that this is the only way
for black hole evaporation to be unitary and compatible with the
Bekenstein-Hawking formula.

3



Quantum gravity theories with global symmetry

Simple quantum gravity theories with global symmetry

In low spacetime dimension there are several examples of “quantum
gravity theories” with global symmetry:

Particle worldline:

S = −m
∫

dτ

= −1

2

∫
dt
√
−gtt

(
g ttηµνẊ

µẊ ν + m2
)

String worldsheet:

S = − 1

4πα′

∫
d2x
√
−ggab∂aX

µ∂bXµ,

both have Poincare global symmetry

Xµ′ = ΛµνX
µ + aµ.

Neither has black holes, so they are “allowed” to have global symmetry.
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Quantum gravity theories with global symmetry

A more interesting example is the AdS version of Jackiw-Teitelboim
gravity coupled to conformal matter:

S =

∫
M
d2x
√
−g (Φ0 + Φ(R + 2)) + 2

∫
∂M

dt
√
−γ (Φ0K + Φ(K − 1))

+ SCFT (ψi , g).

This is a renormalizable theory of quantum gravity, and after canonical
quantization it can be exactly solved via a Weyl transformation to flat
space. In particular any global symmetry of the matter CFT which does
not have a mixed anomaly with gravity, e.g. the U(N) flavor symmetry of
N Dirac fermions, survives canonical quantization and becomes an exact
global symmetry of the quantum theory.
Unlike the previous two examples this theory does have black hole
solutions, but we will soon see that in the quantum theory their entropy is
infinite, and (like inthe CGHS/RST models) their evaporation leads to
remnants.
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Quantum gravity theories with global symmetry

An aside on Euclidean “quantization”

In the above examples, due to renormalizability canonical quantization
produces a well-defined quantum theory.

In the Lorentzian path
integral formulation we sum only over globally-hyperbolic topologies.
If one wishes to include arbitrary topologies, such as would be
obtained by analytically continuing from Euclidean signature, these
they must be added by hand; if we do so there is no guarantee that
what we obtain will be well-defined or even be quantum mechanics.
In JT with no matter this is especially clear: with two asymptotic
boundaries canonical quantization leads to the Liouville quantum
mechanics Harlow/Jafferis 2018, while Euclidean “quantization” leads to an
average over random Hamiltonians Saad/Shenker/Stanford 2019. With nontrivial
conformal matter the Euclidean “quantization” is divergent.
Our point of view is that the Euclidean gravity path integral is only
compatible with quantum mechanics in theories where a low-energy
effective gravity theory emerges from some holographic
UV-completion: I’ll return to this at the end of the talk.
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Quantum gravity theories with global symmetry

Pure 2+1 gravity

Our last example is the oriented version of pure gravity in 2 + 1
dimensions, which we’ll take to have negative cosmological constant:

S =
1

16πG

∫
M
d3x
√
−g (R + 2) +

1

8πG

∫
∂M

∫
d2x
√
−γ(K − 1).

It is still not clear whether or not the Euclidean “quantization” of this
theory makes sense without further UV input, but it can certainly be
quantized canonically. Maloney, Kim/Porrati 2015

In the oriented version we include only oriented spatial topologies, in which
case parity is a global symmetry (it would be gauged if we included
unoriented spatial topologies).
This theory has black hole solutions, but they again have infinite entropy
Maloney, Kim/Porrati so our proposal allows for global symmetry.
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Quantum extremal surfaces

Holography

The unambiguous quantization of the above actions relied on their
renormalizability, which is certainly not a property of Einstein gravity
in 3 + 1 dimensions.

One can nonetheless hope for some kind of UV
fixed point of Einstein gravity (asymptotic safety), which we expect
would allow global symmetries (and violate the Bekenstein-Hawking
entropy formula) if it existed, but so far there is no evidence for such
a fixed point.

Instead all UV-complete theories of quantum gravity in 3 + 1
dimensions or higher come from string theory, and those which we
understand non-perturbatively are all holographic: their fundamental
description lives in a lower number of spacetime dimensions at some
asymptotic boundary. ’t Hooft 1993, Susskind 1994
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Quantum extremal surfaces

Quantum extremal surfaces

The best-understood example of holography is (of course) the AdS/CFT
correspondence, and one of the most important features of that
correspondence is the quantum extremal surface formula: Ryu/Takayanagi 2006,

Hubeny/Rangamani/Takayanagi 2007, Faulkner/Lewkowycz/Maldacena 2013, Engelhardt/Wall 2014

S(ρR) = min
XR

[
ext
XR

(
Area(XR) + . . .

4G
+ Sbulk(r(XR))

)]
.

This implies entanglement wedge reconstruction. Dong/Harlow/Wall 2016
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Quantum extremal surfaces

Over the last decade it has been understood that the QES formula can be
applied to systems other than a piece of a holographic CFT:

A version of the QES formula holds in rather general tensor network
constructions of many-body quantum states Swingle 2009,

Pastawski/Yoshida/Harlow/Preskill 2015, Hayden/Nezami/Qi/Thomas/Walter 2016, and more generally
in any quantum error correcting code Harlow 2016, Kang/Kolchmeyer 2018, Faulkner 2020.
In particular it can be applied to an arbitrary non-gravitational system
coupled to a holographic CFT Hayden/Penington 2018.

One can use the Euclidean replica method to give a rather general
derivation of the QES formula which does not rely on special features
of AdS/CFT. Lewkowycz/Maldacena 2013, Faulkner/Lewkwoycz/Maldacena 2013,

Dong/Lewkowycz/Rangamani 2016, Dong/Lewkowycz 2017.

Last year this idea was applied to a reservoir system coupled to a
holographic CFT, giving a remarkable derivation of the Page curve for
certain evaporating black holes. Penington, Almheiri/Engelhardt/Marolf/Maxfield 2019
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Quantum extremal surfaces

JT black holes

To prepare for our discussion of global symmetry it is useful to first recall
how this works for JT gravity coupled to conformal matter:

Φ = φbr

ds2 = −
(
r2 − 4π2T 2

)
dt2 +

dr2

r2 − 4π2T 2
,

S = 4π (Φ0 + Φ(rs)) = 4π (Φ0 + 2πφbT ) .
11



Quantum extremal surfaces

Almheiri/Engelhardt/Marolf/Maxfield realized an information problem for this black hole
by coupling to a reservoir on one side and allowing the conformal matter
to leak out:

The entropy of the reservoir system in canonical quantization can be
computed,

Sres(t) = 16π2φbT
2
1

(
1− e

− ct
96πφb

)
,

but for φbT0 � Φ0 this eventually exceeds the coarse-grained entropy of
the remaining black holes! Thus in this theory the entropy formula is
wrong (and therefore global symmetry is allowed).
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Quantum extremal surfaces

The key point however is that if we only view this theory as a low-energy
effective field theory, to be UV completed into some fundamental
holographic description, then we should instead use the QES formula!

This leads to

Sres = min

[
16π2φbT

2
1

(
1− e

− ct
96πφb

)
, 8πΦ0 + 8π2φbT0

(
1 +

T1

T0
e
− ct

96πφb

)]
,

which never contradicts the entropy formula.
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No global symmetries

No global symmetries

Let’s briefly recall the argument against global symmetries in Harlow/Ooguri:

By boundary locality we have

U(g) = U(g ,R1)U(g ,R2) . . .Uedge ,

but the green charged operator isn’t in the entanglement wedge of any of
the Ri so it can’t actually be charged.
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No global symmetries

To extend this beyond AdS/CFT, we need a few assumptions. Let S be a
quantum gravity system which has black hole solutions whose semiclassical
description lives in d dimensions, and let R be a “reservoir” system
consisting of weakly interacting quantum fields on Rd (possibly including
linearized gravitons). We then assume the following:

We can couple R and S together such that a pure state black hole in
S produces Hawking radiation which is then gradually transferred to
R.

We can compute the fine-grained entropy of S and also subregions of
R using the QES formula.

The coupling betweeen R and S preserves any global symmetries of
S , and their action can be extended locally to R.

Roughly speaking, S is a black hole and R is its Hawking radiation.
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No global symmetries

We then have the same contradiction:

Locality of the radiation requires

U(g) = U(g , S)U(g ,R1)U(g ,R2) . . .Uedge ,

but then entanglement wedge reconstruction prevents the green operator
from being charged. Harlow/Shaghoulian 2020

This contradiction can be quantified by studying the relative entropy
S(ρR |U(g ,R)†ρRU(g ,R)), which should vanish if there is a (unbroken)
global symmetry but can’t since U(g ,R) can’t implement the symmetry
on the island (also follows from wormholes). Chen/Lin 2020.
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Euclidean gravity

Some comments on Euclidean gravity

We now return to the question of the validity of Euclidean quantum
gravity, which we saw gave the wrong answer (via the QES formula) for
the entropy of the radiation in a theory obtained by canonical quantization
but the right answer (again via the QES formula) in an effective theory
which is the low-energy limit of a holographic theory.

Indeed we promote this to a general conjecture:

The Euclidean path integral in a gravitational effective field theory
with a quantum-mechanical UV completion correctly computes von
Neumann entropies if and only if that UV completion is holographic,
in which case the entropies are those of the holographic theory.

In other words Euclidean gravity and holography are in some sense
equivalent.
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Euclidean gravity

To motivate this, we can first recall that in quantum field theory the path
integral representation of a thermal trace

Z = Tre−βH

always lives on a Euclidean spacetime of topology S1 × Σ.

This is true for canonically-quantized gravity as well, so any gravitational
partition function computed within canonical quantization must also live
on S1 × Σ, possibly with a sum over appropriate Σ.
There is a simple argument due to Hawking that no such geometry can
ever produce an entropy which is of order 1/G : as long as time-translation
around the thermal circle is unbroken, the Euclidean action must obey
I ∝ β, and thus at this order

S = (1− β∂β) logZ ≈ −(1− β∂β)I = 0.
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Euclidean gravity

The standard fix for this is to also include Euclidean geometries which are
not of the form S1 × Σ, instead requiring only that the boundary topology
is S1 × ∂Σ:

+

The geometry on the right would not be included by canonical
quantization, but if we include it nonetheless then we get S = A/4G !
Gibbons/Hawking 1977
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Euclidean gravity

But why are we allowed to include the geometry on the right?

In a holographic theory the answer seems clear: since the microscopic
description lives at the asymptotic boundary, so does the true thermal
circle! Away from the boundary there is no particular reason to
prevent the S1 from contracting, and indeed in AdS/CFT if we don’t
allow this we are unable to reproduce the high-temperature density of
states of the dual CFT. Witten 1998

This is still somewhat mysterious however: how can mere low-energy
effective field theory have access to such deep non-perturbative
information about quantum gravity?
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Euclidean gravity

We don’t have a complete answer to this question, but in AdS/CFT
we can say a bit more. Indeed from the boundary point of view
high-temperature/low-temperature duality relates geometries where
the thermal circle contracts to geometries where it doesn’t. Strominger

1998, Shaghoulian 2015

We do expect gravitational EFT to be able to compute the partition
function on spacetimes where the thermal circle doesn’t contract (e.g.
“thermal AdS”), so this duality ensures a reliable computation of the
high-temperature density of states in the low-energy theory.

From this point of view we can think of the Euclidean gravity path
integral as restoring the minimal amount of UV information which is
necessary to preserve this boundary duality, removing the distinct
treatment of space and time in canonical quantization.

Apparently this minimal amount of UV information is also sufficient
to determine the Page curve and forbid global symmetry.

Thanks for listening!
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